Linear Quadratic Guassian control (LQG)

How to straightforwardly compute *K* and *L* ?

Outline

- Control gain: K

- Kalman gain: *L*

State-feedback Linear Quadratic Regulator (LQR)

Input-output dynamics:

$$\dot{w} = Aw + Bu$$
$$y = Cw$$
$$w(0) = w_I$$

Find u(t) to minimize the following cost functional:

$$\Im(u) = \frac{1}{2} \int_{0}^{T} (y^{2} + l^{2}u^{2}) dt$$

$$\Im(u) = \Im(w, u) = \frac{1}{2} \int_{0}^{T} (w^{*}Qw + u^{*}Ru) dt$$

Target specified by: $Q = C^*C$

Control cost specified by: $R = l^2$ (l large implies small u)

State-feedback Lagrangian framework

Governing equation:

$$\dot{w} = Aw + Bu$$
$$y = Cw$$
$$w(0) = w_I$$

State: w(t)Control: u(t)

Cost functional to be minimized (scalar):

$$\Im(u) = \Im(w, u) = \frac{1}{2} \int_{0}^{T} (w^*Qw + u^*Ru)dt$$

Constraints:

$$F(w,u) = \dot{w} - (Aw + Bu) = 0$$

$$G(w) = w(0) - w_I$$

Scalar-product to express gradient: $\delta \Im = <\frac{\mathrm{d}\Im}{du}$, $\delta u>$

$$\langle a,b\rangle = \int_{0}^{I} (a^*b)dt$$

LQG control

Lagrangian:

$$\mathcal{L}(w,u,\widetilde{w}) = \Im(w,u) - \langle \widetilde{w}, F(w,u) \rangle = \frac{1}{2} \int_{0}^{T} (w^*Qw + u^*Ru)dt - \int_{0}^{T} \widetilde{w}^*(\dot{w} - (Aw + Bu))dt$$

<u>Variation with respect to the state:</u>

$$\lim_{\varepsilon \to 0} \frac{\mathcal{L}(w + \varepsilon \delta w, u, \widetilde{w}) - \mathcal{L}(w, u, \widetilde{w})}{\varepsilon} =$$

$$\int_{0}^{T} \frac{1}{2} ((w + \varepsilon \delta w)^{*} Q(w + \varepsilon \delta w) + u^{*} Ru) dt - \int_{0}^{T} \widetilde{w}^{*} (\dot{w} + \varepsilon \delta \dot{w} - (Aw + \varepsilon A \delta w + Bu)) dt$$

$$\lim_{\varepsilon \to 0} \frac{-\int_{0}^{T} (w^{*} Qw + u^{*} Ru) dt + \int_{0}^{T} \widetilde{w}^{*} (\dot{w} - (Aw + Bu)) dt}{\varepsilon}$$

$$= \int_{0}^{T} \frac{1}{2} (w^{*} Q \delta w + \delta w^{*} Q w) dt - \int_{0}^{T} \widetilde{w}^{*} (\dot{\delta w} - A \delta w) dt$$

$$= \int_{0}^{T} w^{*} Q \delta w dt - \int_{0}^{T} (\widetilde{w}^{*} \delta \dot{w} - \widetilde{w}^{*} A \delta w) dt$$

$$= \int_{0}^{T} [Qw + A^*\widetilde{w}]^* \delta w dt - [\widetilde{w}^* \delta w]_{0}^{T} + \int_{0}^{T} (\dot{\widetilde{w}}^* \delta w) dt$$

$$= \int_{0}^{T} [Qw + A^*\widetilde{w} + \dot{\widetilde{w}}]^* \delta w dt - (\widetilde{w}(T)^* \delta w(T) - \widetilde{w}(0)^* \delta w(0))$$

Kill boundary term:

a/
$$\delta w(0)$$
=0 since $w(0) = w_I$ is kept fixed $(w(0) + \delta w(0) = w_I)$

b/ We choose $\widetilde{w}(T) = 0$ to kill the boundary term at time T (since there is no condition

for w(T), $\delta w(T)$ is not necessarily zero)

The adjoint is:

$$\dot{\widetilde{w}}(t) = -A^* \widetilde{w}(t) - Qw(t)$$
$$\widetilde{w}(T) = 0$$

Lagrangian:

$$\mathcal{L}(w, u, \widetilde{w}) = \frac{1}{2} \int_{0}^{T} (w^*Qw + u^*Ru)dt - \int_{0}^{T} \widetilde{w}^*(\dot{w} - (Aw + Bu))dt$$

<u>Variation with respect to the control:</u>

$$\lim_{\varepsilon \to 0} \frac{\mathcal{L}(w, u + \varepsilon \delta u, \widetilde{w}) - \mathcal{L}(w, u, \widetilde{w})}{\varepsilon} =$$

$$\int_{0}^{T} \frac{1}{2} (w^{*}Qw + (u + \varepsilon \delta u)^{*}R(u + \varepsilon \delta u))dt - \int_{0}^{T} \widetilde{w}^{*} (\dot{w} - (Aw + B(u + \varepsilon \delta u)))dt$$

$$\lim_{\varepsilon \to 0} \frac{-\int_{0}^{T} \frac{1}{2} (w^{*}Qw + u^{*}Ru)dt + \int_{0}^{T} \widetilde{w}^{*} (\dot{w} - (Aw + Bu))dt}{\varepsilon} =$$

$$= \int_{0}^{T} \frac{1}{2} (u^{*}R\delta u + \delta u^{*}Ru)dt + \int_{0}^{T} \widetilde{w}^{*}B\delta udt = \int_{0}^{T} (Ru + B^{*}\widetilde{w})^{*}\delta udt$$

$$\Rightarrow \frac{d\mathfrak{I}}{du} = \frac{\partial \mathcal{L}}{\partial u} = Ru + B^{*}\widetilde{w}$$

Conlusion:

If the system is governed by

$$\dot{w}(t) = Aw(t) + Bu(t)$$

then the gradient of the cost functional can be obtained as:

$$\frac{d\Im}{du} = Ru + B^*\widetilde{w}$$

where:

$$\dot{\widetilde{w}}(t) = -A^* \widetilde{w}(t) - Qw(t)$$
$$\widetilde{w}(T) = 0$$

State-feedback Optimal control

The optimal control law is obtained when:

$$\frac{d\Im}{du} = 0$$

This yields the following system for the determination of the optimal u(t):

$$\dot{w}(t) = Aw(t) + Bu(t)$$

$$\dot{\tilde{w}}(t) = -A^* \tilde{w}(t) - Qw(t)$$

$$\tilde{w}(T) = 0$$

$$Ru(t) + B^* \tilde{w}(t) = 0$$

Eliminating u(t), this can be rewritten as:

$$\dot{w}(t) = Aw(t) - BR^{-1}B^*\widetilde{w}(t)$$
$$\dot{\widetilde{w}}(t) = -A^*\widetilde{w}(t) - Qw(t)$$
$$\widetilde{w}(T) = 0$$

State-feedback

Let us try:

$$\widetilde{w}(t) = P(t)w(t)$$

Then:

$$\widetilde{w}(t) = \dot{P}(t)w(t) + P(t)\dot{w}(t)$$

$$\Rightarrow -A^*\widetilde{w}(t) - Qw(t) = \dot{P}(t)w(t) + P(t)(Aw(t) - BR^{-1}B^*\widetilde{w}(t))$$

$$\Rightarrow -A^*P(t)w(t) - Qw(t) = \dot{P}(t)w(t) + P(t)(Aw(t) - BR^{-1}B^*P(t)w(t))$$

Should be valid for all w(t):

$$\dot{P}(t) = -A^*P(t) - P(t)A + P(t)BR^{-1}B^*P(t) - Q$$

The condition $\widetilde{w}(T) = 0$, yields the following final condition for P:

$$P(T) = 0$$

Hence:

$$u = -R^{-1}B^*\widetilde{w}(t) = \underbrace{-R^{-1}B^*P(t)}_{K(t)}w(t)$$

State-feedback

Conclusion:

The optimal control law is obtained through:

$$u = Kw(t), K = -R^{-1}B^*P(t)$$

where P(t) is a solution of the following Riccati equation:

$$\dot{P}(t) = -A^*P(t) - P(t)A + P(t)BR^{-1}B^*P(t) - Q$$
$$P(T) = 0$$

Steady-state controller:

The steady-state controller obtained by setting $\dot{P}(t)=0$ is optimal for $T\to\infty$. In this case, P verifies the algebraic Riccati equation (care in Octave):

$$A^*P + PA - PBR^{-1}B^*P + Q = 0$$

In the case of a discrete in time system,

$$K = -(R + B^*PB)^{-1}B^*PA$$

where *P* is the algebraic Riccati equation (dare in Octave):

$$P = A^*PA - A^*PB(R + B^*PB)^{-1}B^*PA + Q$$

State-feedback Interpretation as 2-norm

<u>Theorem:</u> The LQR controller *K* minimizes the 2-norm of the following input-output system:

$$\dot{w} = (A + BK)w + Iv, \qquad y = \begin{bmatrix} Q^{1/2} \\ R^{1/2}K \end{bmatrix} w$$

where the input v is a vector of dimension n. The 2-norm of this system is:

$$||g||_2 = \sqrt{tr\left\{\int_0^\infty g(t)^*g(t)dt\right\}} = \sqrt{\sum_{i,j}\int_0^\infty |g_{ij}|^2 dt}$$

where g(t) is the impulse response :

$$g(t) = \begin{bmatrix} Q^{\frac{1}{2}} \\ \frac{1}{R^{\frac{1}{2}}K} \end{bmatrix} e^{(A+BK)t}$$

The 2-norm corresponds to the square-root of the sum of the costs linked to the *n* initial conditions e_i . It may also be rewritten as:

$$||g||_2 = \sqrt{\operatorname{tr}\left\{\int_0^\infty e^{(A^* + K^*B^*)t}[Q + K^*RK]e^{(A+BK)t}dt\right\}}$$
nera.fr

MEC651 denis.sipp@onera.fr

State-feedback Interpretation as 2-norm

<u>Proof:</u> Let $G = \int_0^\infty g(t)^* g(t) dt$. We have:

$$e_{i}^{*}Ge_{i} = \int_{0}^{\infty} e_{i}^{*}g(t)^{*}g(t)e_{i}dt = \int_{0}^{\infty} \sum_{k,j} \delta_{ki} \left(\sum_{l} g_{lk}^{*}g_{lj}\right) \delta_{ji} dt = \sum_{l} \int_{0}^{\infty} |g_{li}|^{2} dt$$
$$= \int_{0}^{\infty} (w_{i}^{*}Qw_{i} + u_{i}^{*}Ru_{i})dt$$

where $w_i(t) = e^{(A+BK)t}e_i$ and $u_i(t) = Kw_i(t)$. Hence the i^{th} diagonal element of G represents the cost linked to the initial condition e_i . The trace of G corresponds to the sum of the costs linked to all initial conditions e_i .

The 2-norm of the input-output system may be written as:

$$||g||_{2} = \sqrt{\operatorname{tr}\left\{\int_{0}^{\infty} e^{(A^{*}+K^{*}B^{*})t} [Q^{1/2} \quad K^{*}R^{1/2}] \begin{bmatrix} Q^{1/2} \\ R^{1/2}K \end{bmatrix}} e^{(A+BK)t} dt \right\}}$$

$$= \sqrt{\operatorname{tr}\left\{\int_{0}^{\infty} e^{(A^{*}+K^{*}B^{*})t} [Q+K^{*}RK] e^{(A+BK)t} dt \right\}}$$
inn@onera.fr

MEC651 denis.sipp@onera.f

Outline

- Control gain: K

- Kalman gain: L

Dynamic observer Kalman filter

The governing equations of the physical system with a control law based on an estimated state ($u = Kw_e + v$) are:

$$\begin{cases} \dot{w} = Aw + BKw_e + Bv \\ y = Cw + g \end{cases}$$

where v and g are white noises of PSD S_v and S_g that excite the system.

Introducing the unit PSD noises $v = \sqrt{S_v}v'$ and $g = \sqrt{S_g}g'$, the system may be rewritten as:

$$\begin{cases} \dot{w} = Aw + BKw_e + \sqrt{S_v}Bv' \\ y = Cw + \sqrt{S_g}g' \end{cases}$$

The estimator is looked for under the form:

$$\begin{cases} \dot{w_e} = Aw_e + BKw_e - L(y - y_e) \\ y_e = Cw_e \end{cases}$$

<u>Theorem:</u> the input-output equation governing the estimation error:

$$\dot{e} = \dot{w} - \dot{w_e} = (A + LC)e + \left[B\sqrt{S_v} \quad L\sqrt{S_g}\right] \begin{bmatrix} v' \\ g' \end{bmatrix}$$
$$y = Ie$$

is characterized by the impulse response:

$$g(t) = Ie^{(A+LC)t} \begin{bmatrix} B\sqrt{S_v} & L\sqrt{S_g} \end{bmatrix}$$

The 2-norm of this sytem:

$$||g||_2 = \sqrt{\operatorname{tr}\left\{\int_0^\infty g(t)^* g(t) dt\right\}}$$

corresponds to the standard deviation of the estimation error $\sqrt{E(e^*e)}$ in presence of unit PSD white noise in g' and v'. It may also be rewritten as:

$$||g||_2 = \sqrt{\operatorname{tr}\left\{\int_0^\infty (e^{(A+LC)t}[BS_vB^* + LS_gL^*]e^{(A^*+C^*L^*)t})dt\right\}}$$

Standard deviation of an output signal.

Let us consider a stable system:

$$\dot{w} = A'w + B'v$$
$$y = C'w$$

If v is white-noise characterized by a PSD (Power Spectral Density) S, then the standard deviation of the output y is equal to:

$$\sqrt{E(y^*y)} = ||Z'(t)||_2 \sqrt{S}$$

where $Z'(t) = C'e^{A't}B'$ is the impulse response of the system.

Proof:

$$||g||_{2} = \sqrt{\operatorname{tr}\left\{\int_{0}^{\infty} g(t)^{*}g(t)dt\right\}} = \sqrt{\operatorname{tr}\left\{\int_{0}^{\infty} g(t)g(t)^{*}dt\right\}}$$

$$= \sqrt{\operatorname{tr}\left\{\int_{0}^{\infty} \left(e^{(A+LC)t} \left[B\sqrt{S_{v}} L\sqrt{S_{g}}\right] \left[\sqrt{S_{v}}B^{*}\right] e^{(A^{*}+C^{*}L^{*})t}\right)dt\right\}}$$

$$= \sqrt{\operatorname{tr}\left\{\int_{0}^{\infty} \left(e^{(A+LC)t} \left[BS_{v}B^{*} + LS_{g}L^{*}\right] e^{(A^{*}+C^{*}L^{*})t}\right)dt\right\}}$$

Estimation problem:
$$||g||_2 = \sqrt{\text{tr}\{\int_0^\infty (e^{(A+LC)t}[BS_v B^* + LS_g L^*]e^{(A^* + C^*L^*)t})dt\}}$$

Control problem:
$$||g||_2 = \sqrt{\text{tr}\{\int_0^\infty e^{(A^* + K^*B^*)t}[Q + K^*RK]e^{(A+BK)t}dt\}}$$

Estimation problem is linked to a control problem:

$$\begin{cases} \text{estimation} \Leftrightarrow \text{control} \\ A^* \Leftrightarrow A \\ C^* \Leftrightarrow B \\ L^* \Leftrightarrow K \\ S_g \Leftrightarrow R \\ BS_vB^* \Leftrightarrow Q \end{cases}$$

Kalman gain:

$$K = -R^{-1}B^*P \Longrightarrow L^* = -S_g^{-1}CP$$
$$\Longrightarrow L = -P^*C^*S_g^{-1} = -PC^*S_g^{-1}$$

Riccati equation:

$$A^*P + PA - PBR^{-1}B^*P + Q = 0$$

$$\Rightarrow AP + PA^* - PC^*S_g^{-1}CP + BS_vB^* = 0$$

Dynamic observer Kalman gain

The steady-state Kalman gain is:

$$L = -PC^*S_g^{-1}$$

where *P* verifies the algebraic Riccati equation (care in Octave):

$$AP + PA^* - PC^*S_q^{-1}CP + BS_vB^* = 0$$

In the case of a discrete in time system ($\Sigma_g = S_g/\Delta t$ and $\Sigma_v = S_v/\Delta t$ are the noise variances, Δt the sampling time, S_g and S_v the PSDs):

$$L = -APC^* (\Sigma_g + CPC^*)^{-1}$$

where *P* verifies the discrete algebraic Riccati equation (dare in Octave):

$$P = APA^* - APC^* (\Sigma_g + CPC^*)^{-1} CPA^* + B\Sigma_v B^*$$