Linear Quadratic Guassian control
(LQG)

How to straightforwardly compute K and L ?



Outline

- Control gain: K

- Kalman gain: L
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State-feedback
Linear Quadratic Regulator (LQR)

Input-output dynamics:
w = Aw + Bu
y =Cw
w(0) = w;

Find u(t) to minimize the following cost functional:

T
1
I(u) = Ej(yz + 1u?)dt
0

T
J(u) =3(w,u) = %I(W*QW + u*Ru)dt
0

Target specified by: Q = C*C
Control cost specified by: R = [? (I large implies small u)



State-feedback
Lagrangian framework

Governing equation:
w = Aw + Bu
y =Cw
w(0) = w,
State: w(t)
Control: u(t)
Cost functional to be minimized (scalar):

1
J(u) =3(w,u) = Ef(W*QW + u*Ru)dt
Constraints :

Fw,u)=w — (Aw + Bu) =0
G(w) = W(O) w;

Scalar-product to express gradient: 63 < — 6u >

(a,b) = | (a*b)dt
|



Linear Quadratic Regulator
Lagrangian framework

Lagrangian:

T T
Lw,u,w) =3I(w,u) —(w,F(w,u)) = %j(W*QW + u*Ru)dt — j w*(w — (Aw + Bu))dt
0 0

Variation with respect to the state:
I L(w+ edw,u,w) — L(w,u,w)
im =

£—-0 &
fOT% ((W + edw)*Q(w + ebw) + u*Ru)dt — fOTW* (v’v + e6w — (Aw + €Adw + Bu)) dt

y — fOT(W*QW + u*Ru)dt + fOTvT/*(v'v — (Aw + Bu))dt
81—1;% &
T 1 T
= fE(W*Q(SW + sw*Qw)dt — j w* (6w — Adw)dt
0 0
T

T
= j w*Qdéwdt — J (w*ow — W*Asw)dt
0 0



Linear Quadratic Regulator
Lagrangian framework

T T
— J [Qw + A*W]*éwdt — [W*sw]T + f (w*sw)dt
0 0

T
— j[QW + A*Ww + Vb]*c?wdt — (W(T)*6w(T) — W (0)*sw(0))
0

Kill boundary term:
a/ 6w(0)=0 since w(0) = w; is kept fixed (w(0) + Sw(0) = wy)

b/ We choose w(T) = 0 to Kill the boundary term at time T (since there is no

condition
for w(T), 6w(T) is not necessarily zero)

The adjoint is:
w(t) = —A*w(t) — Qw(t)
w(T)=0



Linear Quadratic Regulator
Lagrangian framework

Lagrangian:

Lw,u,w) = %I(W*QW + u*Ru)dt — j w*(w — (Aw + Bu))dt

Variation with respect to the control:

L(w,u+ ebu,w) — L(w,u, W)

lim
-0 &

f 5 (W Ow + (u + e6u)*R(u + edu))dt — f (W (Aw + B(u + edu)))

-/, 7(W ow + u* Ru)dt+f w*(Ww — (Aw + Bu))dt

lim
-0

T r ¢
j (u*Réu + dSu*Ru)dt + j *Béudt = f(Ru + B*W)*Sudt
0

0
0L

:—=——Ru+B*v’\7
du Uu



Linear Quadratic Regulator
Lagrangian framework

Conlusion:
If the system is governed by

w(t) = Aw(t) + Bu(t)
then the gradient of the cost functional can be obtained as:

o~

dJ3
— = Ru+ B*W
du
where:
w(t) = —A"W(t) — Qw(t)
w(T) =0



State-feedback
Optimal control

The optimal control law is obtained when:
d3
du
This yields the following system for the determination of the optimal u(t):
w(t) = Aw(t) + Bu(t)
w(t) = —A"w(t) — Qw(t)
w(T) =0
Ru(t) + B*w(t) =0
Eliminating u(t), this can be rewritten as:
w(t) = Aw(t) — BR™1B*W(t)
w(t) = —A"w(t) — Qw(t)
w(T) =0



State-feedback

Letus try:
w(t) = P(t)w(t)
Then:
w(t) = P(O)w(t) + P()w(t)
= —A*W(t) — Qw(t) = P(O)w(t) + P(t)(Aw(t) — BR™1B*W(t))
= —A*P(Ow(t) — Qw(t) = P()w(t) + P(t)(Aw(t) — BR™IB*P(t)w(t))
Should be valid for all w(t):
P(t) = —A*P(t) — P(t) A+ P(t)BR™'B*P(t) — Q
The condition W(T) = 0, yields the following final condition for P:
P(T)=0
Hence:
u=—-R1B*W(t) = =R~ 1B*P(t)w(t)
K(t)




State-feedback

Conclusion:
The optimal control law is obtained through:
u = Kw(t), K =—-R71B*P(t)
where P(t) is a solution of the following Riccati equation:
P(t) = —A*P(t) — P(t)A+ P(t)BR™'B*P(t) — Q
P(T)=0

Steady-state controller:
The steady-state controller obtained by setting P(t) = 0 is optimal for T — oo. In this case, P
verifies the algebraic Riccati equation (care in Octave):

A*P + PA—PBR™1B*P+Q =0

In the case of a discrete in time system,
K =—(R + B*PB)"'B*PA
where P is the algebraic Riccati equation (dare in Octave):
P =A*PA— A*PB(R + B*PB)"1B*PA + Q



State-feedback
Interpretation as 2-norm

Theorem: The LQR controller K minimizes the 2-norm of the following input-output
system:

. Q1/2
w = (4 + BK)w + Iv, y = [Rl/zl(]
where the input v is a vector of dimension n. The 2-norm of this system is:

IIgIIz=\/trU g(t)*g(t)dt}=J2J |gu'|2dt
0 7 /0

where g(t) is the impulse response :

g(t) =

1
2
e(A+BK)t

R2K
The 2-norm corresponds to the square-root of the sum of the costs linked to the n
initial conditions e;. It may also be rewritten as:

”’g”2 = \/tr {J e(A*+K*B*)t[Q + K*RK]B(A-I-BK)tdt}
0




State-feedback
Interpretation as 2-norm

Proof: Let G = fooog(t)*g(t)dt . We have:

ciGe = | eig@ g@eide= [ D 6| D giegy |8de =" | loul de
0 0 Kj 1 1 -0

=J (w;Qw; + u;Ru;)dt
0

where w;(t) = e@*+BKte. and u; (t) = Kw;(t). Hence the it" diagonal element of G
represents the cost linked to the initial condition e;. The trace of G corresponds to
the sum of the costs linked to all initial conditions e;.

The 2-norm of the input-output system may be written as:

” 1/2
lgll, = \/tr {f e(A"tK*BIt[01/2  K*R1/2] RQl/gKl e(A+BK)tdt}
0

=\/tr{j e(A*+K*B*)t[Q+K*RK]e(A+BK)tdt}
0



- Control gain: K

- Kalman gain: L
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Dynamic observer
Kalman filter

The governing equations of the physical system with a control law based on an

estimated state (u = Kw, + v) are:
{v'v = Aw + BKw, + Bv

y=Cw+g
where v and g are white noises of PSD S, and S, that excite the system.
Introducing the unit PSD noises v =./S,v" and g =,/S;g’, the system may be

rewritten as:
w = Aw + BKw, + /S,Bv'

y=Cw+\/§g’

The estimator is looked for under the form:
{We = Aw, + BKw, — L(y — y,)
Ye = Cw,
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Dynamic observer
Minimization problem

Theorem: the input-output equation governing the estimation error:

é=Ww-—w,= (A+LC)e+[B\/S—v L\/SZ] [Z]
y =le
is characterized by the impulse response:

g(t) = Je(A+LOt [B\/S_v L\/g]

The 2-norm of this sytem:

IIgIIz=jtrU g(t)*g(t)dt}
0

corresponds to the standard deviation of the estimation error /E(e*e) in
presence of unit PSD white noise in g' and v'. It may also be rewritten as:

lgllz = jtr { j (eU+LOBS,B* + LSgL*]e(A*+C*L*)t)dt}
0



Dynamic observer
Minimization problem

Standard deviation of an output signal.

Let us consider a stable system:
w=A'w+ B'v
y=C'w
If v is white-noise characterized by a PSD (Power Spectral Density) S, then
the standard deviation of the output y is equal to:

VE*y) = [IZ7®I] VS

where Z'(¢) = C'e4'tB’ is the impulse response of the system.



Dynamic observer
Minimization problem

Proof:

lgll, = Jtr{ f g(t)*g(t)dt} _ jtr{ j g(t)g(t)*dt}
0 0
00 JS,B*
— ( + ) ( *+C* *)
tr{jo <eA LCt[B,/Sv L/Sg] \/gL* e(A"+C L")t | d¢t

= \/tr{ j (e(A+LC>t[stB*+L5gL*]e<A*+C*L*>t)dt}
0




Dynamic observer
Minimization problem

Estimation problem: ||g||, = \/tr{fooo(e(AJfLC)t[BSvB* + LS, L |ea+C 10t ) qt}

Control problem:||g||, = \/tr{fooo eA+K"BIL[Q + K*RK]e(A+BK)t gt}

Estimation problem is linked to a control problem:
restimation<control
A*SA
C*"<B

< I' =K
S & R
\ BS,B* & (@

Kalman gain:
K=—-R'B*P = L" = -5;'CP
= L=-PC*S;' = -PC*S;*
Riccati equation:
A*P +PA—PBR™'B'P+Q =0
= AP + PA* — PC*S;'CP + BS,B* = 0



Dynamic observer
Kalman gain

The steady-state Kalman gain is:
L=-PC*S;?
where P verifies the algebraic Riccati equation (care in Octave):
AP + PA* — PC*S;'CP + BS,B* = 0

In the case of a discrete in time system (X, = Sg/At and X,, = S,,/At are the noise
variances, At the sampling time, Sy and S,, the PSDs):
L = —APC*(Z, + CPC*)™
where P verifies the discrete algebraic Riccati equation (dare in Octave):
P = APA* — APC*(Z, + CPC*)" CPA* + BX,B"



