The 100 000 T. water rocket

(Method to reach extreme altitudes with water rockets(1)) 

by Bernard from Go Mars! 

This is the ‘‘zero” version of the translation of our funny work. Can you help us to correct all the mistakes (in the meaning or the form) ?

How high will go a huge water rocket equipped with an unlimited number of stages? 1 Km? 10 Km? 100 Km? 

This is the topic of this investigation. 

We already know that, with simplification, a big one-stage rocket will not go up so much higher altitudes than a small rocket : indeed, the big rocket yields a stronger thrust, but it moves and raises up harder, which almost cancels the benefits of its strong thrust(2). 

To gain height, one has to opt for a multi-stage rocket: the ignition of each stage occurs at the height achieved by previous stages, and especially at the velocity they reached. 

General assumptions

Rocket shape

In this report, a perfectly pyramidal rocket with N stages has been chosen. All the stages have the same shape, they differ only by their dimension parameters (diameter, for instance). 

This rocket, on its launching pad, could resemble the famous giant lunar rocket N1 which the Soviets have never succeeded to adjust: it was shaped like a perfectly regular cone. In our case however, considering the usual cylindrical shape of bottles and pressurized tanks, it seems better that each stage (cylindrical) is bound to the next one (with a lesser diameter) by a trunconic junction piece, at the image of the giant moon rocket Saturne 5. 

The rocket shape will also be characterized by a constant ratio between the height of each stage and its diameter (for instance equal to 8, as for the CocavicM). 

One can admit that the rocket is not provided with visible fins, should they be streamlined by the above mentioned trunconic junction pieces, or merely retracted. 

With this shape, it then seems reasonable to estimate the aerodynamic drag of the rocket during its fly based on the diameter of the pushing stage (the stage currently operating), and on a constant general Cx (Cx therefore taking into account the successive impediments represented by the aforementioned trunconic pieces along all the stages not yet separated). 

Ratio water/gas

The water ratio will be, at first approximation, of 1/3 of the volume of each stage. 

Staging ratio

Each stage will be designed with an initial mass E times greater than the whole rocket over it (thus, E is the Staging Ratio; we can choose, for instance, a value for E around 6, which is a classical value for actual fire rockets). Of course, the rocket shape will depend on this parameter: the greater E and the bigger the first stages will be, compared to the upper stages. 

Structural index

All the stages will carry up a water mass proportional to their empty mass. One thus define a number i, called Structural Index, representing the ratio between the proper mass of a stage whilst empty and its proper mass whilst full (for our water rocket, i frequently goes around 1/6; for the actual rockets, technicians go beyond 1/10). One can guess this Structural Index reflects the lightness (and thus the quality) of a rocket structure. To make calculations easier, i will be assumed to be the same for all of the rocket stages. 

Boundary mass

Considering the propelling force of a water rocket is proportional to the nozzle(3) section (all things equal besides) and this propelling force must increase as the cube of the rocket diameter (to ensure the lift-off of the machine, since the mass itself increases in the same cube proportion), it will be advisable to maintain a nozzle section proportional to the cube of the rocket diameter (whereas a mere homothety of shapes will make it proportional to the diameter square). 

As a consequence, one moment will occur when, while the rocket dimensions increases, the required nozzle diameter will be greater than the diameter of the rocket itself. We will therefore remain beyond this boundary dimension for which our ticket depreciates (yet, it might exist other kind of tickets). I have determined from this the whole rounded mass of the machine narrowing to this boundary dimension: 100 000t. This water rocket boundary mass depends, obviously and mostly, on the desired lift-off acceleration and on the initial pressure tanks(4) can bear. 

Propulsion duration

The law describing the evolution of the nozzle diameter of the propelling stage, depending on the mass to push (assuming a given acceleration) yields in an operating duration that is the same for each stage(5). 

Boundary speed

While analyzing the momentum each stage of a "highly multistage" water rocket pervains to, it quickly appears the speed reaches a ceiling. This is because the rocket drag quickly increases (as the speed square) and quickly reaches a threshold the propelling hydropneumatic force can't exceed: the speed of the whole machine cannot therefore grow any more. One could say that the rocket runs up against the atmospheric wall. 

While making equal the two major forces into action, the thrust and the aerodynamical drag (given that the law describing the evolution of the ratio nozzle diameter/mass lays down an equal propelling period for each stage), we easily find this boundary speed is proportional to the square root of the diameter of the considered thrusting stage (the thrusting stage is the operating stage at the moment this calculation has to be done; it carries up an undefined number of stages above itself). Here it follows that, as the diameter of the thrusting stage decreases, the boundary speed this stage reach also decreases. 

The full scale powder rockets (like Ariane and the space shuttles also suffer from this limitation, bound to the atmosphere traverse). They wait till they have reached the appropriate altitude where air becomes scarce to end their acceleration... Let's advise us right now the height reached by our 100 000t rocket does not position it at these altitude levels where air is significantly easier to go through. 

In the frame of our study, it thus appears desirable a part (to be determined) of the kinetic energy acquired by the rocket is converted in altitude. This will merely be done by putting back the release of each stage by few seconds. 

A supplementary decrease of the thrust for the last stages could also be considered (by decreasing the nozzle diameter). 

Mass of the last stage

We choose for the last stage a mass of 130 grams whilst full (60g empty), a mass which can be easily implemented for a rocket like the Tubul R (see the Projects pages). The mass of this last stage has in fact poor repercussion on reaching its culmination point. 

Some results

An Excell sheet, slicing the flight of each stage to 1000 steps (the table thus comprises 1000 rows) has been used as a basis for the calculations. A complementary macro is in charge of querying successively this table for the performances of each stage (speed and altitude reached by the previous stages are taken into account). 

The temporary results that follow, give an idea of the performances our huge water rocket with an undefined number of stages can attain. For all that, these performances are poor, mainly due to the boundary speed imposed by the presence of the atmosphere (see "Boundary speed" section). 

For the moment, the aforementioned Excell table only works for a maximum rocket mass of 130t. Such a machine is, according to our conventions, 64,5m in height and 4m in diameter at its base (eventual winglets not taken into account). 

The maximum altitude one can hope such a 130t-weight rocket reaches (which would have 8 stages, the last one with a full weight of 130g), is over 1450m. This altitude is reached with ignition delays that go from 1,8'' to 2,6'' for each stage. These delays incidentally make the apogee time go to 40''. 

As a counterpoint, on a planet devoid of atmosphere (but developing a gravitation equivalent to our Earth), one could predict for the same machine an apogee height that goes beyond 5000m (all things equal besides, and especially delays). 

One can note, as an ecological touch, that the pressurization of all of the stages of this huge 130t-weight rocket requires 427 Mega Joules(6) in energy, which is equivalent in heat to 12,7 litres of gas. 

Of course, check these calculi yourselves before performing any examination. And please report me all the theoretical, numerical or educational mistakes within this paper, so I can update the text. 

Bernard from Go Mars!
Translation : Florian Bellard
09 10.2003 



Notes

1. <= We here use the title of the famous book by Goddard. 
  
  

2. <= Nonetheless, it remains a slight advantage to increase the dimensions of a rocket : the apogee height of an one stage rocket with a mass ratio of 6 (final mass/initial mass = Mf/Mi = 6) propelled with a constant mass outflow q is indeed : 

Zc = 3,2 (Vwater2 / 2g) + 5,8 VwaterMf / q
formula where the final mass term Mf is actually encountered) 
  
  

3. <= The propelling force (due to the water flow) for our hydropneumatic rockets is, at each moment: 

F = qVwater = 2 P Snoz
where Snoz is the section of the water flowing nozzle, and P is the relative pressure in the tank. 
  
  

4. <= If one admits, as I do myself, a total rocket mass equal to 2000 D3, this boundary diameter D is determined by the equation: 

Thrust = M Gamma 

that is: 

2 P D2 π/4 = 2000 D3 π/4 Gamma
where Gamma is the desired acceleration, and P the pressure in the tank of the first stage. 
It is then beyond 100 000t. that the nozzle diameter has to exceed the diameter of the tank, this for a given acceleration of 20 m/s2 and a pressure of 8 bars in the previously mentioned tank. 
  
  

5. <= The operating duration of each stage is: 

T = Mwater / qmean
where Mwater is the total mass of water to eject for the stage and qmean is the mean mass outflow.


Now this mass of water is proportional to the total mass of the rocket when the this stage begins to operate, total mass that is immediately defined as proportional to the cube of the D diameter of the stage. Thus, Mwater is proportional to D3. 

Regarding the qmean mean outflow, it is equal to: 

qmean = Snoz [2 Ro Pmean ]0.5
where Ro is the water density and Pmean is the mean pressure in the tank. Snoz has been previously defined as proportional to the whole mass of the rocket (to counterbalance this mass), i.e. proportional to the cube of the diameter of the considered stage. 
It results from all of this the cube of the diameter of the rocket locates as the numerator, and as the denominator in the mathematical expression giving the T operating duration of each stage. That is, this duration remains constant. 
  
  

6. <= The energy required to pressurize air, at constant temperature, in a certain Vair volume, at an absolute Pabs pressure is: 

W = Vair Pabs Ln(Pabs / Patm)

where Patm is the atmospheric pressure and Vair is the volume of the tank which is being pressurized. 
It results pressurizing of air to 8 bars relative, in a tank, lays in an energy equal to 1977 Joules per tank litre, which is the same energy encountered in 59 mm3 of gas. 
  
  

