JOURNAL OF
g NEUROSCIENCE
* METHODS

ELSEVIER Joumnal of Neuroscience Methods 63 (1995) 197--204

Object-oriented approach to fast display of electrophysiological data
under MS-Windows "

Frédéric Marion-Poll *
INRA Station de Phytopharmacie. route de St. Cvr. 78206 Versailles, France

Received 28 November 1994; revised S July 1995; accepted 27 July 1995

Abstract

Microcomputers provide neuroscientists an alternative to a host of laboratory equipment to record and analyze electrophysiological
data. Object-oriented programming tools bring an essential link between custom needs for data acquisition and analysis with general
software packages. In this paper, we outline the layout of basic objects that display and manipulate electrophysiological data files. Visual
inspection of the recordings is a basic requirement of any data analysis software. We present an approach that allows flexible and fast
display of large data sets. This approach involves constructing an intermediate representation of the data in order to lower the number of
actual points displayed while preserving the aspect of the data. The second group of objects is related to the management of lists of data
files. Typical experiments designed to test the biological activity of pharmacological products include scores of files. Data manipulation
and analysis are facilitated by creating multi-document objects that include the names of all experiment files. Implementation steps of
both objects are described for an MS-Windows™ hosted application.

Keywords: Object oriented language: MS-Windows ™; Fast display; Electrophysiology

1. Introduction

Microcomputers equipped with data acquisition cards
replace sophisticated laboratory equipment. Fast display
peripherals, large storage facilities and the combined speed
and precision of analog-to-digital converters favor the
trend of using microcomputers both as recorders and signal
monitoring devices (Fadda et al., 1989; Turner and
Schlieckert, 1990; Skeen et al., 1992). Traditional paper
printouts and even oscilloscopes are no longer needed to
perform experiments and to analyze data (Stromquist et al.,
1990; Stys, 1991). Whatever system is used, there is a
need for visual inspection of experimental data either to
evaluate the quality of the recordings or to gain an overview
of the results of the experiments (Fadda et al., 1989; Dietz
et al., 1990).

In our laboratory, we record the electrical activity of
insect olfactory and gustatory sensilla. Traditional ap-

* Corresponding author: Tel.: (33) 1-30833145; Fax: (33) 1-30833119:
E-mail: marion@ versailles.inra.fr.

0165-0270/95/509.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0165-0270(95)00110-7

proaches used to improve the occupation of the experimen-
tal setups by recording data on a low-cost media such as
magnetic tape. Data were acquired and analyzed after the
experiments, either when experiments kept a low pace or
by duplicating one of the equipment necessary to replay
and analyze recorded data. In order to rationalize the data
analysis process, we decided to integrate our computerized
data acquisition setups into a group of general purpose
microcomputers running MS-Windows™ and to develop a
common data analysis program. This approach improves
how experimental setups are used and provides a simple
way to share common resources such as storage or printing
media (Turner and Schlieckert, 1990).

To this purpose, we have developed an MS-Windows ™
hosted program, AWAVE. This program can read and
analyze data acquisition files under two different binary
formats from any computer of the network. Some of the
procedures described in this paper can be implemented
under most PC or mainframe environments. Implementa-
tion under MS-Windows™ by deriving standard interface
objects is described, with a particular mention to the visual
oriented aspect of this programming approach.



198 F Murion-Poll / Jowrnal of Neuroscience Methods 63 (1995) 197-204

2. Hardware and software development system
2.1. Experimental procedures

Two separate data acquisition systems are used in the
laboratory. Electrical activities from insect olfactory sen-
silla are recorded extracellularly from tip-severed sensilla
(Renou, 1991; Renou and Lucas, 1994). Amplified signals
(Neurolog amplifiers and filters) are converted at 10 kHz
with a 12-bits resolution data acquisition board (DASH-16:
Keithley, USA) driven by programs developed under
ASYST (Renou, unpub.). ASYST files have a specific
binary format, that includes headers and binary data. Elec-
trical activities from insect taste sensilla are recorded
extracellularly by contacting sensilla with an electrode
filled with both an electrolyte and the stimulus. The elec-
trical signal is amplified with a special-purpose DC ampli-
fier (TasteProbe, Syntech, NL) and an RS232-programma-
ble amplifier /filter (CyberAmp A320, Axon Instruments.
USA). Data are converted at 10 kHz with a 12-bits resolu-
tion data acquisition board (DT2821, Data Translation,
USA) driven by a custom DOS program (Marion-Poll and
Tobin, 1991, 1992). Files generated during experiments
include a header and binary data that conform to ATLAB
drivers file structure (ATLAB driver, Data Translation,
USA).

Typical experimental sessions generate 50-200 files a
day. These data are analyzed in several steps. First, raw
data are printed for archival purpose. Then spikes are
interactively detected thus generating spike files. Spikes
are then classed according to amplitude or waveform
criteria and counted. These results are exported as ASCIHI
data to Excel (Microsoft) spreadsheet for further analysis.
The entire analysis process is performed on any microcom-
puter running Windows 3.11 and connected to an Ethernet
network while data files remain localized either on a PC or
on a UNIX server via NFS emulation. At the end of a
series of experiments, raw data and results are archived on
low-cost 2 Gb DAT tapes (WangDAT 3100, WangTek,
Japan).

2.2. Program development environment

An AT-compatible computer was used as a develop-
ment station. This computer included 16 Mb of RAM, a
640 Mb SCSI hard disk and an Intel 486DX CPU running
at 50 MHz. Procedures were developed using Visual C +
+ (version 1.51, Microsoft, USA) and MFC classes (Mi-
crosoft Foundation Classes 2.0). Visual C + + includes a
set of tools such as a source editor, a symbolic debugger, a
class browser and an interface prototyper. Integrated pro-
grams called wizards, assist the process of defining the
framework of the application and generate the correspond-
ing source code. Objects developed for display and analy-
sis of our electrophysiological data are hosted by a pro-
gram under development called AWAVE.

3. Visual object-oriented programming under windows
3.1. Object oriented programming

Object-oriented programming (OOP) is intended to help
programmers to create and maintain large programs. This
approach is becoming available in programming languages
used by the scientific community such as C+ + and
Pascal. One of the goals of OOP languages is to offer the
possibility of creating re-usable programming objects. A
programming object can be defined as a black box that
exchanges messages and data with other objects. Such
objects have two major properties: they are encapsulated
and they can be derived. Encapsulation means that objects
containing both data and procedures can restrict the visibil-
ity of their elements and hide their internal workings to the
outside. Such objects communicate with other objects via
messages or calls to public procedures. Their interface is
completely defined so that they can be used within pro-
grams as building blocks. Inheritance is a mechanism that
allows programmers to build new objects by deriving them
from one or several parent objects. New procedures, pa-
rameters or messages can be added to the new object while
benefiting from parents properties and procedures.

3.2. Windows messaging system and interface objects

Windows is built as a collection of objects exchanging
messages. Typical objects are represented by controls such
as buttons, edit controls, static text, sliders, and list boxes.
These elements are functionally defined as objects with
their own private data and procedures. They receive and
generate messages. Windows messages have a common
structure defined by an identity number associated with
two optional additional parameters. Any event occurring
on the screen or at the level of the peripherals (keyboard,
mouse) generates messages that are directed to one of
these objects. For example, when the mouse cursor is
moved over a window, this window receives a continuous
flow of WM_MOUSEMOVE messages that include the x,y
coordinates of the mouse curser. This flow of incoming
messages imposes a specific structure to any program that
must react appropriately (event-driven instead of procedu-
ral).

Windows interface objects are combined into higher
level structures such as dialog boxes, single document
(SDD or multi-document interface (MDI) windows. Basic
objects are grouped in a functional frame to present the
user a set of common elements including for example a
menu, scroll bars, a client area, size-modifiers, and op-
tional toolbars. Popular word processors or spreadsheet
under Windows follow the MDI structure, which means
that such programs can open many documents or file at the
same time. Programming such applications with non OOP
languages such as C represents a difficult task. The corre-
sponding program layout is complex and difficult to main-
tan.



F. Marion-Poll / Journal of Neuroscience Methods 63 (1995) 197-204 199

3.3. C+ + language: classes and derivation

C + + is considered as an OOP language in that the
basic mechanisms of encapsulation and derivation are im-
plemented by classes. Classes represent an evolution of
‘structures’ defined in C, i.e., collections of variables of
different types. In addition, they include a collection of
methods or procedures that work on data defined within or
outside the class. Procedures and data can be declared
either as public or private.

One of the most useful mechanism of C +~ + is the
possibility of deriving existing classes. For example, a
typical C + + library contains classes to manage dynamic
arrays of integers, pointers or different objects. The behav-
ior of such classes can be enriched by derivation for
example to implement a low-pass filter that works on the
elements of such arrays. The primary task of implementing
the algorithm is the same as in procedural languages but
once done, the new class can be used in different contexts
or further derived to add other possibilities.

3.4. Visual C + + : program framework and visual pro-
gramming

Visual C + + encapsulates Windows standard interface
elements within a hierarchy of C + + classes. In addition
to general purpose classes (strings, arrays, lists, files), a
host of classes encapsulates the user interface elements

(buttons, scrollbars, menus, toolbars, etc.) integrated within
a program framework. This framework structures applica-
tions around two major classes: documents and views.
These classes cooperate to manage data, provide the user a
representation of the data and react to user inputs. Such
classes and the code-generating options of Visual C + +
greatly simplify the definition and layout of a program
project.

Visual C + + stands for ‘visual’ which means that in
addition to the underlying classes and program generating
facilities provided by the environment, a set of tools is
available that allow one to design the user interface. The
user interface includes resources such as strings, dialog
boxes, menus, icons, cursors and bitmaps. For example,
designing a dialog box involves ‘dropping’ controls within
the dialog box area, defining their properties and adjusting
their size and position at will. At the end of this design
process, Visual C + + can be requested to generate the
source code necessary to manage this dialog box. Appro-
priate actions in response to user input are done by trap-
ping specific Windows messages and inserting the corre-
sponding code. Thus, Visual C + + offers a suite of tools
that allow programmers to design projects interactively,
build progressively the user interface while integrating the
generated procedures within a structured framework. Such
programs run on different PC hardware configurations, and
are portable across platforms supporting Windows ser-
vices.

Eile Edit Yiew Format Tgols

CLineViewButton

[ /[

AWAVE Windows Application  TUCSONN.DAT
Hapdware

mEEE wiEE=] ezl B

CELLWOT TAPERFD1234 BOMBYKAL 100 ng [08/08/87]

Ogtions Yindow Help

CDataView S\

Toolbar

L
{1 500 .
RV iy <V' Vertical
g o e o | _scrollbar
el ool el 7 »

IAPROSPRI  Mulife[1/108]  Muifile]1/37) NOTE1
DMTO7100.DAT DLT04000.5PK

CAcqdataDoc

\ ~ Horizontal

For Help, press F1

\| scrollbar

Fig. 1. Interface elements of the program. AWAVE is an MDI application running under MS-Windows™. A single data file is displayed in the child
window (class CDataView). This child window includes edit controls to display text, static controls to draw rectangles and lines, and an owner-drawn
button (class CLineviewButton). On the bottom and right of this view, scrollbars provide a way to browse through the document (horizontal scrollbar)
and to change the position and gain of the curves (vertical scrollbar). Above the client area of the application, a menu is associated to the active view, as
well as a toolbar. On the bottom of the client area of the application, 2 icons represent documents inactive at that moment, respectively a text document
(CNoteview) and another data document including a series of data files (CDataView). Actual data are contained within CDocuments objects,
respectively CNoteDoc and CAcgdataDoc, which are not visible from the user.



200 F. Marion-Poll / Journal of Neuroscience Methods 63 (1995) 197-204

4. AWAVE classes

Using the tools briefly depicted above. we have devel-
oped a Windows-hosted application, AWAVE, that allow
us to analyze our electrophysiological data and export
intermediary results to general purpose spreadsheet pro-
grams. Among the classes developed for AWAVE, three
classes are essential to the structure of the application:
Cacgdatadoc, CDataView and CLineview (Fig. 1).
These three classes were derived respectively from MFC
classes CDocument, CFormView and CButton. They
cooperate to display data in a flexible and convenient way.

4.1. Data acquisition document. class CAcgdataDoc

Data files are managed by the class ‘CAcqgdatabDoc’,
derived from MFC’s ‘CDocument’ class. A CDocument
class includes procedures to create, open, save or close a
document. CAcgdataDoc keeps the same functionality
but in addition, behaves as a data server to external objects
such as CView which need data to build a representation
of the data. CAcgdataDoc incorporates also ASCII data
exporting procedures and basic signal processing routines.

When a data file is opened, CAcqgdataDoc detects the
structure and origin of the data file by analyzing the header
(most data acquisition files have 2 parts, a header and
binary data). Parameters parsed from the header are trans-
ferred into a generic data structure. Binary data are 12-bit
precision words, offset binary encoded (values range from
0 to 4095, zero volt is represented by 2048). This approach
ensures that new data formats can be read simply by
writing the code necessary to detect the header structure
and parse the appropriate parameters.

CAcgdataDoc makes data available to views that
request them. A direct approach would involve loading in
memory all data, both raw and transformed (for example
by a low-pass filter algorithm). Although this approach is
possible given the memory management services provided
by Windows, it would waste resources and slow down all
operations. We chose instead to implement a buffering
mechanism so that the memory footpad of any data acqui-
sition file is at most 128 Kb (Fig. 2). When access to
original data is requested by an external routine, CAcg-
dataDoc loads as much data as possible and returns the
sender a message indicating how much was loaded during
this pass. Thus AWAVE can run with an acceptable
response time on AT-compatible computers with modest
configurations.

4.2. View: class CDataView

CAcgdataDoc documents manage data but do not
deal with any representation of the data. MFC’s framework
proposes CView and derived classes as an effective ground
to implement data display. CView classes interact with
CDhocument classes by exchanging messages. Within an

File data
(any size} \

S

Read buffer
{max. 64 Kb)
CAcqdataDoc
Transform
buffer W ‘
(max. 64 Kb) | 1
5 O OO0 00O CLineViewButton
ata displayed | - - . T ... T
o) OO0 000 & CEnvelope

Fig. 2. Document’s buffers and envelopes. CAcqdataDoc reads data
from data files in a buffer (maximum size: 64 Kb). If transformed data
are requested, for example low-pass filtered, an additional buffer is
created to store the transformed data. These transformed data are com-
puted from the raw data buffer. Additional points on each side of the raw
data data buffer are usually needed to build such transforms (grey zone
on each side of the raw data buffer). When the amount of data to display
is larger than the buffer, data are loaded in consecutive passes. The
requester (CLineviewButton) builds the final curve by storing the
results in an additional array (CEnvelope) that contains the minimum
number of points corresponding to the window resolution.

MDI application such as AWAVE, views are responsible
for drawing a window and all elements contained within it,
i.e., curves, axes, and comments. Views also react to user
inputs {menu selection, mouse movements, etc.), manage
printer output, print preview, window size modifications,
etc. In order to encapsulate the data display functions, we
have chosen to build CDataView as a container to Win-
dows controls that perform specific functions (see Fig. 1).

CDhataView is derived from MFC’s CFormview class.
It includes a custom control to display the curves, text edit
controls for the scale parameters and scale bars. In addi-
tion, two scroll-bars associated with push-buttons provide
access to scale parameters (horizontal scrollbar:
zoom /browse; vertical scrollbar: offset/gain).
ChataView is associated with a menu and a toolbar
including buttons that duplicate the functions of some
menu items. Each control within Cbataview can be
selected and modified by the user. Parameters such as gain
and signal vertical offset, horizontal zoom factor and file
position can be modified either using regular menu selec-
tion, keyboard input to a selected control of the CFor-
mvView or with the mouse (Fig. 1). CDataView thus
orchestrates the relations between the different elements
showed on the screen, the data document and respond
appropriately to Windows requests and user actions. The
more specific task of displaying data is delegated to a
control.

4.3. Display button: class CLineviewButton

While ChataView is constructed as a container to a
group of controls, data are actually displayed by a button-



F. Marion-Poll / Journal of Neuroscience Methods 63 (1995} 197204 201

derived class, "ClineviewButton'. The design of this
control 1s crucial to the performance of AWAVE.
ClineviewButton interacts directly with Cacqgdata-
Doc to build a graphical representation of the data. It
sends requests to CacgdataDoc and reads data in several
passes. CLineviewButton provides flexible scaling on
both ordinates and abscissa axes. All display operations are
performed by calls to standard function of the Graphics
Device Interface (GDI). This involves taking care of sev-
eral aspects, vertical and horizontal scaling, and deciding
how data are displayed.

Vertical scaling involves displaying each curve with an
appropriate amplification factor and vertical offset. When
the GDI is set under MM_ANISOTROPIC mode, this opera-
tion is limited to sending to the GDI proper scaling
parameters prior to the actual drawing of each curve. Data
acquisition values can then be directly fed to GDI routines.
The screen coordinates of a given point are essentially
defined by 4 integer (16 bits) parameters, called window
and viewport Extents (wE and VE, respectively) and win-
dow and viewport Origin (wO and vO) according to the
following formula:

S=(D—-w0) * tE/wE+ O (1) withD =
binary data value and S = screencoordinate

Independent scaling for each curve is thus achieved by
modifying wO and wE just before sending the raw data
points to the GDI display routines.

Horizontal scaling is not directly supported by this
mechanism, essentially because abscissa (file indexes) are
not 16 bits signed integers (upper limit: 32 767) but double
words (upper limit: 2147 482647). As far as data files
with more than 32768 points are common, the basic
scaling facilities provided the GDI are not enough. The
simplest approach to cope with this limitation involves
computing screen abscissa separately using long values
and output the GDI LineTo() routine, pairs of points
including a transformed abscissa and the binary data value.

Significant improvements in display speed can be
achieved by selecting the proper GDI routines and reorga-
nizing data in arrays before sending them to the GDI. In
sample record (Fig. 2), three channels are sampled at 12
kHz during 4.9 s. Total size of the file 1s 354 Kb and
individual data points can be indexed by a long value
ranging from O to 58 880. Displaying each individual point
of this file will involve 58 879 X 3 consecutive calls to the
LineTo () routine. A significant gain in speed is achieved
by using calls to PolyLine () which works on arrays of
coordinates (x,y). These arrays are, however, limited to
16384 points (under Windows™ 3.11). The complete file
could thus be displayed with only 4 X 3 consecutive calls
to PolyLine().

4.4. Display envelopes

Significant improvement of the display performances
can be further achieved by taking into account the actual

; T T L ‘;
: S I ..v,ﬁ-%_,_u ‘ _ : e ‘0
s Lol g
' o
Lolel A b
! 004 ‘ o) _ 0
o | b

q

: i
o
oo ° i
i -
oo b ©
o
ojo O O

—_— —4-
ﬁw

L

a \l_l/
| J@
SIte! 16
| Jelel 1 1@
90000
b B jelel | lele] 1 |
i OCOOe000®

Fig. 3. Data envelope. (a) On most occasions, more data are available
than pixels. [n such situations, it is slower to display all vectors than to
(b) build an envelope and display this envelope. An envelope is defined
as an array (size = 2Xnumber of pixels of the window) where the
maximum and minimum of all vectors are sequentially stored. Sample
shows such a snipet including 15 pixels with 40 data points per pixel:
instead of displaying 600 points, the envelope displays 48 dots.

horizontal resolution of the output window (Fig. 3). The
rationale behind this assertion is best demonstrated with
real data. Let assume a horizontal resolution of 640 pixels
(VGA screen) and a display window that occupies all this
space. With our data sample, each channel is composed of
58 880 vectors that are drawn within 640 vertical columns
(intervals). On average 92 vectors are drawn within each
interval. With higher resolutions, the ratio is still important
since for SVGA screens the minimal ratio is 73.6 (with
800 X 600 pixels) or 57.5 (1024 X 748). If data are dis-
played as interconnected lines (instead of individual dots),
all vectors falling within a given interval are intercon-
nected and the final screen output results in a single
vertical line.

Instead of letting the GDI aggregate vertical vectors, we
can compute the maximum and minimum values of the
data points fitting within each interval and ask the GDI to
plot only the envelope of these vectors. This approach adds
one intermediate step between reading data and displaying
them, i.e.. each data point belonging to a given screen
interval is compared to local extrema. The envelopes cor-
responding to each channel displayed are stored within
CLineviewButton.Envelopes are built with the help of
a scale that maps the file intervals to screen abscissa.

In real-time display applications, this approach has a
distinctive advantage over the direct display only if the
time necessary to display multiple vectors is higher than
computing extrema and displaying the envelope. This



202 F Muarion-Poll / Journal of Neuroscience Methods 63 (1995) 197-204

should be tested on the target configuration because the
display speed depends heavily on a combination of hard-
ware /software factors. On AT-compatible microcomput-
ers, envelope algorithms improve the display speed mainly
because memory accesses are much faster than accesses to
video memory.

For data analysis, time constraints are less critical but
the program is expected to have a good response time.
When the initial data representation is built, users often try
different amplification factors and vertical offsets in order
to examine particular aspects of the biological responses.
The envelope approach is definitely superior in these
conditions since envelopes do not need to be recalculated
whenever the display is refreshed or modified. In addition.
envelopes are easier to manage when the mouse cursor 1s
used to select a curve since fewer comparisons are neces
sary to define a hit.

The envelope approach delivers fast display but possi
bly slower data accesses. This can be optimized under
various ways. For example, computing time can be saved
by storing intermediary results that can be reused later. In
order to build an envelope spanning a given set of file
intervals, we need to estimate how many data points fit

into a given interval. This computation does not need to be
performed each time but only once, i.e., when the sizes of
the window and of the number of data to be displayed are
changed. Horizontal scrolling represents a case where sig-
nificant improvements can be made. The rationale is that if
the scroll is small, most data points of the envelope are
still valid. Only a small fraction of the envelope needs to
be recalculated. This approach does not generate errors if
all intervals are equal and if scroll increments are con-
strained to a multiple of the interval. For unequal intervals,
a trade must be chosen between display errors and speed.

4.5. Mulsi-file document: class CMultiFileDoc

Typical experiments designed to test the responsiveness
of sensory receptors to a set of chemicals yield several
hundred data files. The first step in the analysis of our
experiments consists in detecting spikes and sorting them
on amplitude and form criteria. Groups of files are ana-
lyzed with the same parameters, especially when recorded
from the same sensilla, the same insect or when they
belong to the same set of experiments. Likewise, printing
these experiments for visual inspection involves the selec-

AWAVE Windows Application - Multifife[32/96] DHT13X00.DAT

_ Iro Page l Zoom |n i[ Zoon Jut i Close g

[GRT J —

CIACGlﬂI\TM.EFTZEIDP-TU EO4CAT 09:28:94 18:20.06
{ L A 10-2M  CFadist
- Hire = 0,000 - zouusbnzm ms
T ! | b o [ o chir#0 tar = 4
. prctes 1A<m1 g-l(lCD LF=4000 IN+20 IN-s -1
bl

C 1ACGIPRT ACEFT260HTOIX0 1 CAT 08,2894 18:11:17
10-2M  CFd rrparkCt
lirre = 0.000 - 2000 sba=2(C. ms

LA 1 T

<+
-+

1 cher¥0 kar = 431
! picteaTASTO! g=10(0 LF=24000 IN+=20 [N-=-1

I CoACOAAT AEEFT260RTIZ000 CAT  0928:34 16:24:32 :
10-2M CFb 1 NaC
e x 0,000 - 2!))0 sbiz2(C. s
char#0 tar o 491
picke=TASTO! gﬂDfO LF=4000 IN+3D th-=-t

CAACGART P\SEFTZE‘DP“MDO LAT  032%8¢ 6:15:01
10-ZM CFb2 hal

Wrre = 0.000 - 2.000 sbde(O rs

chir#Q Lar= 491 Y

prckesTASTO1 g=100 LF=4000 iN+20 (N-=-1

CAACLART AVCEFT26DFT12200.0AT  03:23:94 16:55:32
10-2M CFp3  hallt

tirve = 0.000 - 2000 sber=2(0. s

cher#0tars 4314

picte=TAST0Y g= 1MO LF=4000 Ne=0 IN-=-1

CHACGANT MSEFTZEDETIZA00CAT  09128/94 16:65:59
10-2M  CFapicx hiCl

tirre = 0,000 - zooa $ba=200. s

cher#0 bar « 4913

prckesTASTON g= 1&0 LF=4000 IN+20 IN-=-1

CIACGIONT MEEFT2E0RTIZEOOCAT  09:28:94 16:56:19
10-2M  CFadin NaCl

e = 0.000- 2000 sba=2(0. s

chir#0 Lar = 431,Y

picte=TASTO1 g=10(0 LF=4000 N+ 0 IN-=-1

CAACLANT ASEFTZEOFTISN00CAT  09:28/94 16:57:08
10-2M  CFd mparhiCl
tirre = 0.000 - 2000 sba=200 rrs

),

CHACCONT SISEFTES poge 412 13-5:19¢5

L L
4 LM char#0 tat = 4314
picte=1ASTO1 g*IUED LF=4000 [Nz 0 IN-=-1

Page 4

INUM |

Fig. 4. Printing preview of a series of data documents. Multifile documents are of great help when the same data analysis is applied on a series of
documents. Printing the results of 4 series of experiments is simpler and allows one to benefit from standard features such as printing preview.



F.Marion-Poll / Journal of Neuroscrence Methods 63 (1995) 197 -204 203

tion of groups of files, sorted either along time, stimulus
order or other parameters. Although the MDI standard
offers the possibility of opening many files simultaneously
within the same program, the user interface is not adequate
for easy switching through them. We have derived a
multi-file document from standard documents that helps
managing groups of files, clarifies the user interface and
eases programming the data analysis.

‘CMultiFileDoc’ was designed to manipulate lists
of files. Creating such an object is straightforward under
MFC and consists in a direct derivation from the standard
Chocument object. Our derived class adds procedures
that maintain and manipulate a list of file names. At the
present time, only one file from the list is active at a time.
Public procedures are provided to browse through the list,
add or delete elements or to get information from one
element of the list. CMultiFileDoc can be derived to
manipulate any document, such as data files or spike files.
These new features are made available to CAcgdatabDoc
simply by deriving CAcgdatabDoc from CMultirFile-
Doc instead of from CDocument.

In order to exploit the possibilities of CMultirile-
Doc documents under the MDI framework, specific addi-
tions to the user interface should be made. The first step
involves selecting multiple files from within the standard
dialog box "FileOpen’. This is done simply by calling the
procedure explicitly and changing the value of a flag.
Then, the text returned is parsed to extract the path and the
individual name of the each member of the list. This minor
addition provides the ground of a fully functional multi-file
object. User-interface elements should be added to exploit
the possibilities of a multi-file document, such as brows-
ing, editing and modifying the list. Browsing through the
list is achieved in AWAVE by adding two menu items and
two buttons included in the toolbar. Editing the list is
currently implemented with a dialog box that can exchange
textual data with the clipboard. These additions and other
not described here are essentially implemented by trapping
Windows messages within CDataView (see example on
Fig. 4).

5. Discussion

AWAVE was initially developed to answer two emerg-
ing needs in our laboratory. First we wanted to concentrate
our programming development efforts on one platform.
Secondly a program running under MS-Windows™ bene-
fits from the facilities provided by our office environment,
i.e., text processors, spreadsheet, graphics program and
network. This approach lead us to reconsider the life cycle
of our data, estimate how much time was devoted to data
acquisition versus data analysis. As far as our experimental
setups are routinely used for insects involving different
research programs, this software project adds more flexi-
bility in the use of our experimental setups. Data are now

analyzed from any PC connected to the network. This
decreases the occupancy of our experimental setups.

The initial development efforts targeted on elaborating
an object-oriented program that would serve as a basis to
turther developments. AWAVE answered basic needs for
display and printing of our experimental data. Despite
programming in a high-level language and the implementa-
tion under MS-Windows™ that is notoriously slow for
some graphical applications, we constructed classes that
achieve fast and flexible display of large amount of data.
The approach outlined here is applicable to other window-
ing environments and basically involves the manipulation
of intermediary representations of the experimental data.

Displaying envelopes rather than raw data represents a
new approach to our knowledge. Usually, electrophysio-
logical data are displayed within limited frames, and
browsing through the file is allowed by ‘paging’ the data
stream (Dietz et al., 1990). In order to examine closer
specific regions of the data, additional tools are sometimes
provided to zoom in or out parts of the graph (Dietz et al.,
1990). In order to improve the display speed of large data
arrays, alternate approaches exist, one of which consisting
in plotting only one point under n (n = number of data
points/number of horizontal pixeis). This way, fewer
points are displayed but fast transients may be missed. The
envelope approach is superior in that fast events are never
missed because the display behaves like a storage oscillo-
scope. It is also more flexible in that viewing a complete
file or part of it, becomes integrated in the same object.
Lastly the display time is not dependent on the size of the
data chunk.

In order to improve the task of analyzing series of data,
we further created multi-file documents that store lists of
files belonging to the same group of experiments. This
concept is by no mean new since it mimics some proper-
ties of a database where each record is represented by an
individual file. *Metafiles’ are used by researchers working
on a number of small duration recordings (voltage and
current clamp experiments). These files reduce the number
of files down to a key file indexing data stored in a
companion binary file (Turner and Schlieckert, 1990) or to
a single data file as in programs like pPCLAMP, CED and
Strathclyde Software. Metafiles would, however, not suit
our needs since file sizes would become too big. We have
recently created ‘project’ documents that incorporate lists
of files and are able to open the data documents corre-
sponding to the list. Therefore groups of files can be
defined, stored, manipulated and consulted more easily.

From the programming point of view, developing a
specific data analysis program benefits greatly from ob-
ject-oriented programming environments. The existing
tools and the program framework are well adapted both to
manipulate experimental data and to create a program
running under a windowing environment. The objects cre-
ated and used within AWAVE are of general value and
can be adapted to other file header formats and to data



204 F.Marion-Poll / Journal of Neuroscience Methods 63 (1995) 197-204

encoded under different modes. The encapsulation of Win-
dows user interface elements within MFC framework and
the prototyping facilities of the development program en-
sure that such a program will be able to evolve according
to our needs.

Our current development efforts focus on two direc-
tions. First, we want to port our existing spike detection
analysis and spike sorting routines (Marion-Poll and To-
bin, 1991) and develop template sorting (Foster and
Handwerker, 1990; Jansen and Ter Maat, 1992) using
semi-automated procedures (insect sensilla: Hanson et al..
1986; Mankin et al., 1987; Smith et al., 1990). Most of the
routines developed so far will be used as building blocks,
with a special mention to the multi-file object and the
display button described in this paper. At the present time.
we have implemented spike detection and sorting from
amplitude criteria. This development involved the deriva-
tion of the same type of classes depicted above, namely a
spike document and spike views.

Secondly, we want to acquire data under Windows.
This work is greatly facilitated by drivers commercially
available from most data acquisition card manufacturers.
Interacting with a data acquisition card from Data Transla-
tion (under the generic DT Open Layer driver) involves
sending messages through specific functions and trapping
incoming messages to control the data flow. One message
for example is emitted by the driver when an acquisition
buffer is filled. AWAVE can trap this message, send the
corresponding data to a CLineView display procedure
and return after signalling that this buffer is free for
another acquisition. Our current implementation of this
outlined approach allows continuous data acquisition and
display at 10000-30000 Hz (total throughput) on 1-8
channels with a variable sweep time (using Data Transla-
tion DT2821 A /D card and its associated driver). Writing
data to a file will proceed likewise but careful testing will
remain necessary to allow real-time data storage and dis-
play during experiments.

Acknowledgements

I wish to thank Frédéric Gaubert, Olivier Taché (JUT
Informatique, Orsay, FRANCE), and Nicolas Chevrier
(Maitrise de Mathématiques Appliquées, Faculté d Orléans.
FRANCE) who contributed to various aspects of this
project during the course of their study. Special thanks are
due to my colleagues, Michel Renou and Philippe Lucas
who supported this projet through their encouragements.

helpful discussions and critical reading of this manuscript.
Readers belonging to academic institutions and interested
in evaluating this software or use it as a basis for further
developments may contact the author, preferably via E-mail
to marion@ versailles.inra.fr.

References

Dietz, M.A., Grant, A.O. and Starmer C.F. (1990) An object oriented user
interface for analysis of biological data, Comput. Biomed. Res., 23:
82--96.

Fadda, A.. Falsini, B., Neroni, M. and Porciatti, V. (1989) Development
of personal computer software for a visual electrophysiology labora-
tory, Comput. Methods Progr. Biomed., 28: 45-50.

Foster. C. and Handwerker, H.O. (1990) Automatic classification and
analysis of microneurographic spike data using a PC/AT, J. Neu-
rosci. Methods. 31: 109-118.

Hanson. F.E.. Kogge. S. and Cearly, C. (1986) Computer analysis of
chemosensory signals. In: Payne, T.L., Birch, M.C. and Kennedy,
C.E.J. (Eds.), Oxford, Mechanisms of Insect Olfaction, pp. 269-278.

Jansen, R.F. and Ter Maat, A. (1992) Automatic waveform classification
of extracellular multineuron recordings, J. Neurosci. Methods, 42:
123132

Mankin, R.W., Grant, A.J. and Mayer, M.S. (1987) A microcomputer-
controlled response measurement and analysis system for insect olfac-
tory receptor neurons. J. Neurosct. Methods, 20: 307-322.

Marion-Poll, F. and Tobin, T.C. (1991) Software filter for detecting
spikes superimposed on a fluctuating baseline, J. Neurosci. Methods,
37 1-6.

Marion-Poll. F. and Tobin. T.C. (1992) Temporal coding of pheromone
pulses and trains in Manduca sexta, J. Comp. Physiol. A, 171:
505-512.

Renou, M. (1991) Sex pheromone reception in the moth, Mamestra
thalassina. Characterization and distribution of two types of olfactory
hairs, I. Insect Physiol., 37: 617-626.

Renou. M. and Lucas, P. (1994) Sex pheromone reception in Mamestra
brassicae L. (Lepidoptera): Responses of olfactory receptor neurons
to minor components of the pheromone blend, J. Insect Physiol., 40:
75-85.

Skeen, R.S., Van Wie, B.J,, Fung S.J. and Bames, C.D. (1992) Applica-
tion of compiled BASIC in developing software for collection and
analysis of neuronal firing frequency data, J. Neurosci. Methods, 41:
113-121.

Smith. J.J.B., Mitchell, B.K., Rolseth, B.M., Whitehead, A.T. and Albert,
P.J. (1990) SAPID tools: microcomputer programs for analysis of
multinerve recordings, Chem. Senses, 15: 253-270.

Stromquist. B.R., Pavlides, C. and Zelano, J.A. (1990) On-line acquisi-
uon, analysis and presentation of neurophysiological data based on a
personal microcomputer system. J. Neurosci. Methods, 35: 215-222.

Stys, P.K. (1991) Neurobase: a general-purpose program for acquisition,
storage and digital processing of transient signals using the Apple
Macintosh I computer, J. Neurosci. Methods, 37: 47-54.

Turner, D.A. and Schlieckert, M. (1990) Data acquisition and analysis
system for intracellular neuronal signals, J. Neurosci. Methods, 35:
241-251.



