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Abstract

When monitoring neurons with a single extracellular electrode, it is common to record action potentials from different neurons.
A recurring problem with such recordings is to identify which neuron is active. Sorting spikes into separate classes is possible
if each neuron discharge spikes differing by their shapes and sizes. However, this approach is not applicable when the spikes
are indistinguishable. In this paper, we develop a method for estimating the respective firing frequencies of two neurons,
producing indistinguishable spikes. It is based on the fact that, when a neuron fires a spike, there is an interval of time during
which the probability of generating a second spike is very low. If a spike occurs during this ‘silent period’, it is likely to be gener-
ated from another neuron and the number of occurrences of such ‘doublets’ can be used to estimate the respective frequencies
of two spike trains. We demonstrate here that a simple relation holds between the frequency of doublets d, the respective
frequencies of the two neurons A and B, fA and fB, and a chosen value ∆ shorter than the silent period, d = 2fAfB∆. This relation
holds for a wide class of firing processes. We used this method to analyze responses from Drosophila taste sensilla. We first
checked if the method was consistent with results obtained with stimuli that elicit responses of two taste neurons firing distin-
guishable spikes. We then applied this method to the study of a pair of taste neurons involved in the coding for salt taste in
Drosophila melanogaster.
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Introduction

Extracellular recordings are a common practice in neuro-
physiology and often represent the only way to measure the
electrical activity of neurons. Arthropod sensilla represent
such a situation because neurons are tightly packed and inti-
mately embedded within a layer of epithelial cells just below
the cuticula. Most insect chemosensory sensilla house two to
four neurons whose dendrites extrude in an hair-like struc-
ture covered with cuticle (Stocker, 1994; Steinbrecht, 1996).
Given the layout of the neurons within the layer of epithelial
cells, when a single electrode is brought into contact with the
sensillum liquor, it will record electrical activities originating
from this small group of neurons (Hodgson et al., 1955). In
order to fully exploit these recordings, each spike should be
assigned to its neuron of origin. This is sometimes possible
when each neuron fires spikes with a distinct amplitude
and/or shape (Stitt et al., 1998). However, when neurons
discharge indistinguishable spikes, no method has yet been
proposed to estimate the firing frequencies of each neuron.

A similar problem is faced when recording from several
channels present under the same patch-clamp electrode.
Methods have been developed to analyze such multi-channel
recordings to get single-channel information (Jackson, 1985;
Colquhoun and Hawkes, 1995), but they are of limited value
here because they are based on the study of tens of thous-
ands events. More recently, methods has been developed
based on multi recording sites (Pouzat et al., 2002; Taka-
hashi et al., 2003) but they are also based on the study of a
number of events much higher than data usually obtained
when stimulating chemoreceptor neurons.

In order to circumvent these limitations, we propose to
take advantage of the firing properties of the neurons. Firing
of a neuron under given stimulation conditions can be char-
acterized by the histogram of its interspike intervals (ISIs).
The smallest ISIs on the left-hand side of the histogram can
be used to define the silent period of the neuron, i.e. the
longest interval during which the probability of having a
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‘natural’ spike (i.e. in the absence of artificial electrical stim-
ulation) is negligible. This silent period is usually much
longer than the refractory period, especially under moderate
stimulation. By this definition, ISIs shorter than the silent
period are very rare in single-neuron recordings. Conversely,
in recordings from two neurons, such ISIs can be frequent,
with the leading spike coming from one neuron and the
following spike from the other neuron. Here we call
‘doublets’ two spikes separated by a chosen time interval ∆
shorter than the silent period. The presence of doublets in
recordings has been used to show that a stimulus triggers the
response of more than one neuron when their spikes are
indistinguishable (Perkel et al., 1967). In the following we
show that the frequency of doublets can be used to estimate
the individual neuron frequencies in a two-neuron recording
containing indistinguishable spikes.

We used this method of doublets to analyze experimental
data obtained from insect taste sensilla which house four
taste neurons. Previous studies showed that stimulation with
sugars elicited the activity of two neurons in taste sensilla of
Drosophila, one, S, sensitive to sugars and the other, W, to
water (Fujishiro et al., 1984). The spikes from these two
neurons are very different in amplitude, and easy to sort
manually. Using three sugars eliciting different ratio of
firing frequencies in S and W neurons, we first verified that
the firing activities predicted with our theoretical method
were consistent with the experimental data. Then, we recorded
on the same preparation, the responses to salts. Previous
studies have shown that salts (NaCl, KCl) stimulate two
taste neurons (L1 and L2) firing indistinguishable spikes
(Meunier et al., 2000) and the respective sensitivities of these
two neurons remained unknown. The use of our new method
allows to discriminate the activities of these two neurons
across a range of salt concentrations and to obtain for the
first time dose–response plots for these tarsal taste neurons.

Materials and methods

Chemicals

Glucose, fructose, sucrose, NaCl and KCl were obtained
from Sigma Chemical Co. (France). Solutions were
prepared in advance and stored at –15°C. Glucose, fructose
and sucrose solutions were prepared as dilutions in 1 mM
KCl and kept at 4°C for <1 week.

Flies

Stocks (Drosophila melanogaster, Canton-S) were main-
tained at 25°C on a standard corn-meal agar medium. Flies
were kept for 1 day on fresh medium after emergence prior
to electrophysiological experiments.

Electrophysiology

Taste cell recording technique

A decapitated fly was secured to a flat support with insect
pins and tape, and electrically grounded via a glass capillary

filled with Ringer’s solution inserted into the abdomen. All
stimulations were performed on tarsal sensilla 5b and 4s
(Meunier et al., 2003). Consecutive stimuli were applied at
least 1 min apart to avoid adaptation. Each stimulation was
performed by covering the tip of a sensillum for <2 s with a
recording electrode containing both an electrolyte (1 mM
KCl) and the stimulus (Hodgson et al., 1955). The recording
electrode (a glass capillary with a tip diameter of 20 µm) was
connected to a TastePROBE amplifier (Marion-Poll and
Van der Pers, 1996). The electric signals were amplified and
filtered (CyberAmp 320, Axon Instrument, USA; gain:
1000; eighth-order Bessel pass-band filter: 1–2800 Hz).
Contacting a taste hair with the stimulus electrode triggered
the data acquisition and storage (sampling rate 10 kHz, 12
bits; Data Translation DT2821), under the control of a
custom-made software Awave (Marion-Poll, 1996). Sensilla
used in this study are located symmetrically and present on
both legs. Thus, we could record from four homologous
sensilla per preparation. This sampling procedure intro-
duced pseudo-replicates as noted below. However, only two
sensilla 5b and one sensillum 4s were recorded on average on
a single fly and care was taken to sample data from at least
four different flies.

Stimulation with sugars and salts

A first set of data was obtained by stimulating sensilla 5b or
4s (Meunier et al., 2003) with 100 mM glucose, fructose and
sucrose, or with increasing concentrations of sucrose (10, 20,
30, 50 and 100 mM). In these recordings (n ≥ 16 observations
per data point), the spikes clearly fell into two amplitude
classes, which allowed to sort them manually and to estimate
their respective firing frequencies. A second set of data was
recorded from sensilla 5b and 4s to a series of dilutions (100,
200, 400, 700, 1000 mM) of either NaCl or KCl (four
different flies for each compound; n ≥ 15 recordings per data
point). In these recordings, spike amplitudes could not be
separated into different classes, although earlier observa-
tions on the proboscis suggested that two cells are concur-
rently active (Siddiqi and Rodrigues, 1980).

Data analysis and spikes sorting

Action potentials frequency was determined by counting
spikes during the 0.2–1 s interval after stimulation. We
excluded from the analysis the first 200 ms, in order to keep
only the tonic part of the response (Meunier et al., 2000) and
to meet one of the conditions imposed by the method (see
Discussion). No more than two taste neurons were con-
currently active in our recordings. When spikes could be
differentiated by their amplitude and shape (i.e. responses
to sugars), spikes were sorted manually (see Figure 1). For
all recordings, we calculated two parameters, the total
frequency f and the frequency of doublets d. Both those oper-
ations and the manual sorting were done using interactive
procedures of custom-made software dbWave (available at
http://quasimodo.versailles.inra.fr/fred/awave/awave1.htm).

http://quasimodo.versailles.inra.fr/fred/awave/awave1.htm).
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Results

Mathematical method

Presentation of the problem 

We consider two neurons, A and B, recorded simul-
taneously, so that only the pooled process resulting from the
superposition of the two spike trains can be observed and we
wish to estimate their respective frequencies fA and fB . Even
if the action potentials fired by neurons A and B are indistin-
guishable by their shape and size, fA and fB can be estimated,
provided the overall frequency f and the frequency of the
doublets d, are known. Two spikes are considered as a
doublet if they are separated by a chosen time interval ∆
shorter than a period we call the silent period. By silent
period, we mean a time interval following a spike during
which the probability of occurrence of a second spike from
the same neuron is small. In case the silent periods of the
neurons are different, the smallest must be taken. This
interval ∆ does not need to be chosen equal to the absolute
or relative refractory period; although it can be taken
shorter, it is usually more useful to take it longer (see Discus-
sion). The only condition is that ∆ remains less than the
shortest ISIs of the most active neuron in the experimental
conditions considered. Then one of the spikes in the doublet
comes from neuron A and the other from neuron B.

The basic relationship between these quantities is

d = 2fA fB∆ (1)

For a given recording the frequency of doublets increases
with higher values of ∆. The second equation necessary for
identification of individual frequencies is based on the fact
that the frequency f of the pooled process is the sum of the
component frequencies, so

f = fA + fB (2)

A general proof of equation (1) is given in Appendix. In
practice, frequency f can be estimated from the total number
of spikes N during the observation period T,

f = N/T (3)

Similarly, from the number Nd of doublets in the obser-
vation period T, their frequency is

d = Nd/T (4)

Heuristic proof

A simple proof can be given in the special case of a couple of
Poissonian neurons, i.e. neurons for which the probability of
emitting a spike within any time interval dt has probability
fidt (i = A or B), where dt is sufficiently short. Then, during
the observation period, T the number of spikes fired by
neuron A is statistically equal to fAT. Each of these spikes

can be followed by a spike from neuron B within time ∆ with
probability fB∆. Thus the number of doublets in which the
leading spike is from neuron A and the second from neuron
B is fAT fB∆. In the same way, the number of spikes fired by
neuron B is fBT and each of them can be followed by a
coincident spike emitted by neuron A with probability fA∆.
Thus the number of doublets in which the leading spike is
from neuron B and the second from neuron A is fBT fA∆.
The total number of doublets Nd is the sum of the two types
of doublets, so

Nd = 2fA fB∆T (5)

from which equation (1) is obtained from equation (4),
dividing both sides by T.

Method for estimating frequencies 

Utilizing equation (2), equation (1) can be written as

d = –2∆fA
2 + 2∆ffA (6)

The graph of function d(fA) is a parabola starting from
d = 0 at fA = 0 (only neuron B is firing), rising to a maximum
for fA = f/2 (both neurons are equally active),

dmax = ∆f 2/2 (7)

and returning to d = 0 at fA = f (only neuron A is active)
(Figure 2). Equations (1) and (2) have two solutions, one on
the rising branch and the other on the decreasing branch of
the parabola,

(8)

(9)

in which we chose to call A the most active neuron and B the
least active one.

Experimental validation of the method

We stimulated terminal tarsal sensilla of Drosophila with
sucrose, fructose and glucose at 100 mM. As it is the case of
most sensilla on the proboscis (Fujishiro et al., 1984), sugars
elicit the responses of two neurons with different spike
amplitudes on tarsal taste sensilla (Meunier et al., 2000).
Small spikes originate from the S cell, which is sensitive to
sugar while large spikes originate from the W cell (Figure
1A). The sugars stimulated the S neuron at different
frequencies while the W cell was less affected. This situation
allows a comparison between experimental data and
predicted values for different ratios of the firing discharges
from both neurons and for different values of the overall
frequency f (Table 1). We also compared the experimental
and estimated value of fA according to (8) for ∆ varying
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between 1 and 15 ms (Figure 3A). For some values of ∆,
equation (6) had no solution. This happened when experi-
mental values of d were higher than dmax. In this case, if d did
not exceed dmax by more than 10%, we chose a value of fA
equal to f/2 (corresponding to dmax). Because in the plot fA
vs. ∆, the differences for the small values of ∆ are difficult to
interpret, we also compared the theoretical and experi-
mental values of d for ∆ varying between 1 and 15 ms (Figure
3B). There was a good fit between experimental and theoret-
ical values of fA for ∆ between 5 and 9 ms. For ∆ < 5 ms,
theoretical values were higher than experimental one and
this was the reverse for ∆ > 9 ms. The best fit was obtained
for ∆ = 6 ms and we chose this value in the analysis of the
second set of experimental data (Table 1).

By using a ∆ value of 6 ms, we extended the previous
experiment to determine the response of the S cell over a

series of concentrations of sucrose (Figure 4). Both esti-
mated and experimental values were found to be in good
agreement. We obtained a value of d slightly greater than
dmax for the recordings corresponding to the concentration
20 mM (d = 7.73; dmax = 7.43 doublets/s), thus we estimated
frequencies of the W and S cell to be half the total frequency
(24.6 spikes/s).

Application to responses to salts on Drosophila tarsal 
sensilla

The sensitivity to salts in Drosophila involves two taste
neurons named L1 and L2 that are present in all sensilla
responding to salts. These two neurons fire indistinguishable
spikes on tarsal sensilla (Figure 1B) and thus no data exists
yet on their relative frequencies (Meunier et al., 2000). On
the proboscis they can be sorted manually (Siddiqi and
Rodrigues, 1980) and L1 neuron is known to be activated at
low concentration of salts whereas L2 is activated at higher
concentration (Singh, 1997). We used the method presented
above to estimate the respective firing of L1 and L2 neurons
in response to increasing concentration of NaCl and KCl in
terminal tarsal sensilla (Figure 5). Both neurons were acti-
vated by the two kinds of salts without reaching saturation
of their activity below 1 molar of salt. We found that L1
neuron activity was always much higher than that of L2, and
that L1 was more sensitive to KCl.

Discussion

In this paper, we develop an approach for estimating the
respective frequencies of two neurons firing indistinguish-

Figure 1 Representative samples of extracellular recordings from a tarsal
taste sensillum of Drosophila melanogaster where two neurons are active.
(A) Response to glucose. Spikes exhibit different amplitudes and are easy to
sort: (filled square) spike from the taste neuron responding to water; (open
square) spike from the taste neuron responding to sugars. (B) Response of
the same sensillum to NaCl, in which two neurons are firing but their
amplitude and shape are similar, making classical sorting methods useless.

Figure 2 Frequency of doublets (d) as a function of the relative firing
frequency of neuron A vs. neuron B according to equation (1). The
maximum value of d (dmax) is reached when neurons A and B discharge at
the same rate (f/2). Since the experimental values of d and f are easy to
observe, we can use equation (1) to estimate the ratio between the firing of
neuron A and B. The error on the estimation of the firing frequency is much
higher if d is close to dmax, i.e. if neurons A and B fire at almost the same
rate. If we assume for example a 5% error in the experimental value of d,
our estimate of the firing ratio of neurons A and B will vary from 4% to
18%.

Table 1   Comparison between measured and estimated frequencies of W- 
and S-neuron responses to different sugars (∆ = 6ms)

aFrequency (spikes/s) of both neurons A and B together.
bFrequency (spikes/s) of doublets in the record A + B.
cFrequency (spikes/s) of the most active neuron A (S neuron in this case).
dFrequency (spikes/s) of the least active neuron fB = f – fA (W neuron in this 
case).
eTheoretical d and estimated fA, fB.

Stimulus fa db fA
c fB

d

Sucrose 100 mM

Experimental values 86 16 66 20

Calculated valuese – 15.7 65 21

Error (%) 2 1 5

Glucose 100 mM

Experimental values 50 7.23 30 20

Calculated valuese – 7.20 30 20

Error (%) 0.4 0 0

Fructose 100 mM

Experimental values 38 4.40 > dmax 19 19

Calculated valuese – 4.32 = dmax ∼ 19 ∼ 19

Error (%) 2 0 0
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able spikes based on the occurrence of ‘doublets’. A doublet
corresponds to an interspike interval shorter than a chosen
value ∆ that must be less than the smallest silence period of

the two neurons considered. We showed that a simple rela-
tionship exists between the discharge rate of the two neurons
firing independently, the number of doublets and the total
number of spikes observed. We tested the validity of this
method on spike trains originating from neurons firing
spikes of different amplitudes. Then, we used this method to
discriminate the firing activities from two neurons delivering
spikes of similar amplitudes in the presence of salts. This
method was designed to analyze time series where only two
neurons are active. It is not applicable in other situations,
except if the other neurons exhibit different spike shapes, so
that they can be removed from the time series prior to
analysis.

Conditions of application of the method

The proof of relation (1) given in the Appendix is based on
two assumptions. The first assumption is that spike genera-
tion in each of the component processes follows a renewal
process, i.e. a process in which the intervals (ISIs) between
events are stationary, independent (not serially correlated)
and identically distributed random variables. The second
assumption is that the individual processes are mutually
independent, i.e. that firing in one of the neurons does not
modify the probability of firing in the other. These condi-
tions must be met by the pair of neurons under study other-
wise formula (1) may lead to wrong results. They may be
difficult to prove although gross deviations from them will
be easily observable, e.g. from abnormal regularities in the
recording (thus recordings including erratic bursting activ-
ities should be avoided).

Sources of errors and limitation of the method

If the conditions of the method are fulfilled, errors in estima-
tion of the component frequencies fA and fB can arise from
three possible causes, as apparent from equations (1) and
(2). The first source concerning the choice of ∆ higher than
the silent period is discussed in the next section. The two

Figure 3 Providing a correct estimate of the silent period is critical to the
method. (A) Comparison between experimental and estimated values of
the firing frequency of the most active neuron as a function of the silent
period ∆ under different stimulation conditions. For each value of ∆, fA was
calculated according to equation (8). When experimental values of d were
higher than dmax, equation (7) has no solution as for the last two data
points of the sucrose curve. However if d did not exceed dmax by more than
10%, we chose a value of fA equal to f/2 (corresponding to dmax). It allows
to keep data resulting from experimental value of d close to dmax. Gray
areas show forbidden values of the silent period. The forbidden area on the
left side comes from the difficulty to discriminate superimposed spikes and
thus missing to count them as doublets. It does not depend on f but on the
duration of spikes. On the right side, forbidden values depend on f
according to equation (10). Such values of ∆ should be avoided and the
corresponding estimated data points are indicated as open symbol.
(B) Comparison between theoretical and experimental values of the
frequency of doublets d as a function of the silent period ∆. For each value
of ∆, we calculated the theoretical value of d from relation (1) using the
manually sorted frequencies of neuron W and S. (See Table 1 for
experimental values of frequencies fA and fB).

Figure 4 Estimated and experimental frequencies of neuron W and S
stimulated by increasing concentration of sucrose. Error bars mean ± SEM
for experimental values (n ≥ 16). Error bars for estimated frequencies were
determined from SEM on d as shown in Figure 2.

Figure 5 Estimated frequencies of neurons L1 and L2 in tarsal taste
sensilla of D. melanogaster stimulated by increasing concentrations of salts.
Error bars (n ≥ 15) were determined from SEM on d as shown in Figure 2;
on the left, bars are the same size or smaller than the circles.
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other sources concern the reliability of the estimates of the
firing frequency f and of the frequency of doublets d. They
depend on the observation period T which must be as long
as possible within the limits of experimental constraints and
the requirement of stationarity. For this reason we chose to
analyze data coming from taste neurons during the tonic
part of the response, i.e. the interval 0.2–1 s after the stimu-
lation (Meunier et al., 2000).

Errors on the estimation of the frequency of doublets d
had two different effects. The first effect, illustrated in
Figure 2, is that the error on fA depends on the magnitude of
d. The same small relative error on d yields a larger relative
error on fA if d is near its maximum value dmax [corres-
ponding to an equal frequency of discharge from both
neurons, equation (7)] than if d is relatively small and far
from dmax. If d is close to dmax, it is thus advisable to use
different recording conditions (e.g. changing the concentra-
tion of stimulus). The second effect arises when the two
neurons fire at approximately the same rate. Then the meas-
ured value of d may happen to be slightly greater or smaller
than dmax. If it is smaller, a unique solution fA is found, but
if it is greater no solution exists. This means that two
random fluctuations of equal magnitude around d lead to
different situations depending on the direction of the fluctu-
ation. In practice if d is close to dmax (e.g. do not differ by
more than 10%, see Figure 3), d can be safely replaced by
dmax. If the difference is greater some caution must be
exerted because either the conditions of application of the
method are not fulfilled or the value of ∆ has not be well
chosen (see below).

It should be stressed that this method does not allow to
assign an estimated frequency either to neuron A or to B. If
one is concerned by the identity of the neurons, other
sources of information must be used. For example, when
stimulating the same neurons with a series of closely related
stimuli, we expect to find a graduated effect on the firing
activities. If the two neurons have different dose–response
curves, it is then possible to resolve the activity of cell A and
cell B without ambiguity. We used that approach to identify
the cell responding to bitter compounds in Drosophila
(Meunier et al., 2003).

Choice of the interval of time ∆

We have investigated quantitatively the validity of the
method by estimating fA and d for a range of ∆s from record-
ings where the spikes from the two neurons could be distin-
guished. We then compared the predicted values of fA and d
to their experimentally observed counterparts. Figure 3
shows that predicted values depart from the experimental
ones when ∆ is too small or too large, and that the range of
acceptable values depends on the firing rate. This is a posi-
tive feature of the method proposed that, in general, the
result obtained does not depend on a strict choice of ∆. How
can we restrict the range of potentially good ∆ values?

For small values of ∆, on the left-hand side of plots in
Figure 3, the difference between experimental and estimated
values can be explained by our inability to differentiate two
superimposed spikes. In the case of responses to sugars,
spikes from the W neuron last 3 ms and are much bigger
than those of the S neuron (Figure 1A). Therefore it is easy
to miss a spike coming from the S neuron if they are occur-
ring close to each other and mistakes on counting doublets
are more frequent when ∆ is small (only a few ms). To avoid
this difficulty, ∆ should be greater than 3 ms. This type of
error is critical when spikes are dissimilar, because it is easy
to miss superposition of a small spike over a large spike. This
source of errors may be of less concern when neurons
discharge indistinguishable spikes. However, values of ∆ less
than the duration of the spikes studied should be avoided.

For large values of ∆, the difference on the right side
comes from the fact that the selected ∆ is greater than the
silent period. Therefore some doublets come from the same
neuron, which violates one of the assumptions of the model.
The values of ∆ must be smaller than the minimum ISI of the
fastest firing neuron and thus significantly smaller than the
mean ISI (inverse of the firing rate, which is not known) to
take into account statistical fluctuations. We observed this
difference only for the stimulation with sucrose which elicits
a strong response of the taste neurons, f = 86 spikes/s, which
is the upper limit of fA (the other neuron being silent, fB = 0).
In this case, experimental and estimated values start to
diverge at ∆ = 9 ms, i.e. at 75% of the mean ISI of the pooled
process. We can generalize this observation to set a
maximum value of ∆, ∆max for a mean frequency f at

∆max = 0.75/f (10)

On Figure 3A this limit is indicated on the right-hand side of
the sucrose line. For glucose and fructose, it does not appear
on the graph because f is too small. Those left and right
limits are only ‘rules of thumb’ to investigate a range of
potentially good values of ∆. When frequency increases, this
range narrows down and reaches a limit of 4 ms for spike
duration of 3 ms. According to equation (10), this limit
corresponds to an overall frequency f of 190 spikes/s. Thus
the method should not be applied to estimate the firing rate
of neurons with an overall frequency higher than that.

In summary, the choice of ∆ is a compromise between the
number of doublets counted, which must be as large as
possible (and this calls for ∆ as long as possible), and the
number of doublets coming from the same neuron, which
must be negligible. Doublets obtained with a long ∆ mini-
mize the inherent error coming from superposition of spikes
and the corresponding failure to detect some doublets. The
optimal value of ∆ will thus be close to the shortest silent
period of the two neurons considered. For neurons firing at
a much lower rate than the maximum, this value will be
longer than the refractory period. It will be close to the rela-
tive refractory period (the time interval following a spike
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that require an electrical stimulation to evoke another spike
from the same neuron) only for neurons firing at very high
rate. But in that case it would be better not to use our
method, since ∆ would be probably to small to minimize the
error coming from superposition of spikes.

Estimation of the respective frequency of L1 and L2 cells 
on response to salts

Whereas sensilla on the proboscis respond to NaCl at a
threshold of 1 mM (Fujishiro et al., 1984), we found that
tarsal sensilla are not activated below 100 mM. On the
proboscis, the L1 neuron was defined on the proboscis as
responding to low concentrations of salts (Singh, 1997); it
reaches a maximal response at around 100 mM with a
frequency of 70 Hz. At this concentration, the L2 neuron
starts being activated and reaches 30 Hz for 1 M NaCl
(Siddiqi and Rodrigues, 1980). Our estimations of the
respective frequencies of the two neurons activated by salts
on tarsae are consistent with those values. Even if the range
of salts concentration activating both types of sensilla are
different, we can assign the most active neuron on tarsae to
L1 (Figure 5). The least active neuron can be assigned to L2.
This result is coherent with previous data because, the level
of activation of L2 neuron by salts on tarsae is (i) very
similar to the level elicited on L2 neurons of the proboscis in
response to salts (Siddiqi and Rodrigues, 1980), and (ii)
consistent with the level of activation of L2 neuron by bitter
compounds on tarsae (Meunier et al., 2003).

Appendix: general proof of equation (1)

The aim of this section is to prove that relation (1) holds true
for any renewal firing process, not only for Poissonian proc-
esses as shown in the Result section. First we determine the
cumulative distribution function (cdf) of the intervals in the
pooled process. Then from the value of this function at D we
deduce the probability to have an interval shorter than ∆,
which is the probability of a doublet. Finally from the rela-
tion between the individual and pooled firing frequencies we
obtain equation (1).

1. Frequency of spikes in the pooled process

For a given value of ∆, which is assumed to be less or equal
to the shortest silent period of both neurons, we can write
for individual frequencies

fi = 1/(µi + ∆) (A1)

where mi + ∆ is the mean ISI of neuron i and i = A, B. Using
equation (2) it can be shown that the frequency of spikes in
the pooled process is

(A1)

2. Distribution of interspike intervals in the pooled process

In this section, we determine the cdf, denoted F(t), of the
ISIs in the pooled process, i.e. the probability of an interval
of length smaller than t.

Let us denote u(t) the probability density function (pdf) of
the time interval, τ, to the next action potential from a
randomly selected instant of time (forward recurrence time)
in the pooled process. The corresponding cdf is denoted by
U(t). The relationship between the forward recurrence time
and the length of intervals between events, i.e. spikes in the
pooled process, is given by the (standard) formula (Cox and
Lewis, 1966)

u(t) = [1 – F(t)]/µ (A3)

where µ is the mean ISI in the pooled process. So, F(t) is
given by

F(t) = 1 – µu(t) (A4)

therefore for evaluation of F we need to know u.
The same definitions and relationships hold for each

of the two superimposed processes. We denote Fi(t) the cdf
of the ISIs in the ith process and ui(t) the pdf of the forward
recurrence time τi, i = A, B. Relation (A3) now reads

(A5)

It follows from these definitions that the probability of
forward recurrence time longer than t is

(A6)

and by using (A5) in (A6) it gives

(A7)

This quantity is used now for evaluating U(t).
The forward recurrence time for the pooled process is the

minimum of the recurrence times of the components, τ =
min(τA,τB) and thus Prob(τ ≥ t) = Prob(τA ≥ t and τB ≥ t). The
cdf of τ is U(t) =1 – Prob(τ ≥ t), therefore

U(t) = 1 – Prob(τA ≥ t) Prob(τB ≥ t) (A8)

where multiplication follows from the independence of the
components. Using (A7), we obtain

(A9)f
µA µB 2∆+ +

µA ∆+( ) µB ∆+( )
--------------------------------------------=

ui t( )
1 Fi t( )–

µi ∆+
---------------------=

Prob τ i t≥( ) ui s( ) sd

t

∞

∫=

Prob τ i t≥( )
1 Fi s( )–

µi ∆+
--------------------- sd

t

∞

∫=

U t( ) 1
1 FA s( )–

µA ∆+
----------------------- s

1 FB s( )–

µB ∆+
----------------------- sd

t

∞

∫d

t

∞

∫–=
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The pdf u(t) is the derivative of U(t),

 (A10)

Finally, utilizing u(t) given by equation (A12), equation
(A6) becomes

(A11)

3. Probability of doublets

Now, we derive the probability F(∆) of having an interval
shorter than ∆ in the pooled process. Because of the silent
period properties, the probability of an interval shorter
than ∆ in the component process i is zero, Fi(∆) = 0. So,
using t = ∆ in (A11) gives

(A12)

which changes by using equation (A3) to

(A13)

From the standard formula for the mean, m, of a positive
random variable

and from the fact that Fi(∆) = 0, we have

(A14)

Thus, using (A14) in (A13) gives

(A15)

Now, replacing the denominator of (A15) by its expression
derived from (A2), we find

F(∆) = 2∆/[f(µA + ∆)(µB + ∆)] (A16)

and using relationship (A1) we obtain

F(∆) = 2fAfB∆/f (A17)

Taking into account that,

F(∆) = Nd/N = d/f (A18)

we obtain equation (1).
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