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Maize plants (Zea mays) attacked by caterpillars release a mixture of odorous compounds that attract parasitic wasps, natural
enemies of the herbivores. We assessed the genetic variability of these induced volatile emissions among 31 maize inbred lines
representing a broad range of genetic diversity used by breeders in Europe and North America. Odors were collected from
young plants that had been induced by injecting them with caterpillar regurgitant. Significant variation among lines was found
for all 23 volatile compounds included in the analysis: the lines differed enormously in the total amount of volatiles emitted
and showed highly variable odor profiles distinctive of each genotype. Principal component analysis performed on the relative
quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which may share common
metabolic pathways. European and American lines belonging to established heterotic groups were loosely separated from each
other, with the most clear-cut difference in the typical release of (E)-b-caryophyllene by European lines. There was no cor-
relation between the distances among the lines based on their odor profiles and their respective genetic distances previously
assessed by neutral RFLP markers. This most comprehensive study to date on intraspecific variation in induced odor emission
by maize plants provides a further example of the remarkably high genetic diversity conserved within this important crop
plant. A better understanding of the genetic control of induced odor emissions may help in the development of maize varieties
particularly attractive to parasitoids and other biological control agents and perhaps more repellent for herbivores.

The release of odorous compounds by plants in
response to herbivore attack and the subsequent use of
these odorous signals by natural enemies to locate the
herbivores is a widespread phenomenon observed in
various tritrophic systems, e.g. predatory mites and
spider mites on Lima bean (Dicke and Sabelis, 1988),
parasitic wasps and lepidopteran caterpillars on cab-
bage (Mattiacci et al., 1994) and cotton (Loughrin et al.,
1995), and anthocorid predators and psyllids on pear
trees (Scutareanu et al., 1997). We are currently study-
ing this kind of interaction in a system that comprises
maize (Zea mays), folivorous caterpillars in the genus
Spodoptera, and the associated endoparasitic wasps
(Turlings et al., 1990). Odor release by maize plants is
a rapid systemic response (Turlings and Tumlinson,
1992) induced by elicitors present in the oral secretions
of the herbivores, such as volicitin, a compound iso-
lated from regurgitant of Spodoptera exigua Hübner
caterpillars (Alborn et al., 1997; Turlings et al., 2000).

Plants belonging to various species and families differ
in their odor profiles (Turlings et al., 1993b). Nonethe-
less, the odor patterns of different plant taxa exhibit
considerable overlap, and certain compounds like
the terpenoids linalool, (3E)-4,8-dimethyl-1,3,7-nona-
triene, and (E)-b-ocimene seem to be quite common or
ubiquitous components of herbivore-induced odor
emissions (Dicke, 1994; Paré and Tumlinson, 1999).
Varietal or genotypic differences in herbivore-induced
volatile emission have been recorded for several plant
species as well (Takabayashi et al., 1991; Loughrin et al.,
1995; Halitschke et al., 2000). Studies on different maize
varieties revealed intraspecific variation both in quan-
tity and quality of the odors released (Turlings et al.,
1998b; Gouinguené et al., 2001). However, in all cases
only a restricted range of genotypes was considered.
Here, we present the results of a more comprehensive
study on the genetic variability of herbivore-induced
volatile emission within maize cultivated in temperate
regions. The examined inbred lines represent a large
spectrum of genetic diversity, and their genetic re-
latedness has already been established by means of
molecular markers (Burstin et al., 1994; Dubreuil et al.,
1996). The objectives of this investigation were (1) to
assess the amount of genetic variability for herbivore-
induced volatile emission present among maize inbred
lines, (2) to study the pattern of correlations between
the various volatile compounds, and (3) to screen for
genotypes that could be used either to identify genes
involved in quantitative variation of induced odor
release or to elucidate the ecological role played by
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these chemical signals in the tritrophic system. Such
knowledge may eventually help us develop methods
to enhance the attractiveness of herbivore-injured
maize plants to beneficial arthropods.

RESULTS

Identity of Volatiles

Of the volatiles detected in the odor samples from
maize plants injected with caterpillar regurgitant, the
23 most prominent compounds were selected for

quantification. The majority of these compounds were
derived from the isoprenoid pathway: 3 monoterpe-
noids, 2 homoterpenes, and 12 sesquiterpenoids. The
remaining compounds were four acetate esters and
two nitrogen-containing aromatics. Along with the 23
selected compounds, gas chromatography-mass spec-
troscopy analysis revealed the presence, mostly in
minute amounts, of green leaf odors ((E)-2-hexenal,
(Z)-3-hexen-1-ol), additional monoterpenes (limonene,
cis-ocimene), esters (neryl acetate), aromatics (methyl
salicylate, methyl eugenol (MS)), cis-jasmone (MS),
and at least 15 additional sesquiterpenes, e.g. a-co-
paene, various bisabolenes (MS), and cadinenes (MS).

Variation in Total Emission

The 31 maize inbred lines varied largely in the mean
total amount of volatiles emitted, i.e. the sum of the 23
compounds chosen for analysis. There was an about
70-fold difference between the two extreme lines,
W401 and F1852 (Table I). The total quantity of odors
emitted was not related to the geographical origin of
the lines. The line effect was highly significant in the
ANOVA (Table I), and with a broad-sense heritability
of H2 5 0.84, most of the variation proved to be genetic
(Table II). The repeatability was r2 5 0.97, which
indicates that the residual variation was extremely
well controlled with our experimental design. The
differences in total emission observed with plants
damaged by caterpillars (Table III) were somewhat
less pronounced, only 20-fold between the two ex-
treme lines F7 and F476, but the values obtained with
both induction methods were correlated, albeit the
relationship was not linear (Spearman rank correlation
coefficient r 5 0.76; P 5 0.01; n 5 12). Lines with high
constitutive odor production tended also to release
higher amounts of induced odors (r 5 0.59; P 5 0.05;
n 5 12). Undamaged plants of line F476 emitted
the same or higher total quantities of volatiles than
attacked plants of some other lines (e.g. F7).

Variation in the Odor Profiles

In addition to the pronounced quantitative variation,
we found substantial qualitative variation among the
lines in the relative proportion of particular com-
pounds within the odor blend (Fig. 1). Some lines were
characterized by very low amounts or the complete
absence of whole compound groups. Line F1852 was
deficient in the four esters, including the green leaf
volatile (Z)-3-hexen-1-yl acetate, which was found in all
the other lines. Lines F113 and W401 released only trace
amounts of the two homoterpenes (3E)-4,8-dimethyl-
1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-
decatetraene. By contrast, these homoterpenes were the
dominant components in the odor blends of line A188,
which was in turn characterized by extremely low
levels of sesquiterpenes. Another highly variable
trait was the ratio of (E)-b-caryophyllene to the
two other quantitatively important sesquiterpenes,

Table I. Total amount of volatiles, i.e. the sum of 23 selected
odorous compounds (see Table II), emitted by seedlings of 31
maize inbred lines and the variety Delprim (laboratory standard)
in response to injection of caterpillar regurgitant

Lines with the same letter are not significantly different at the 1%
level according to the Bonferroni/Dunn posthoc test (ANOVA with
ln-transformed values: F5 30.3; degrees of freedom5 31; P, 0.0001).
Classes and clusters defined according to a dendrogram obtained by
cluster analysis of RFLP markers (Dubreuil et al., 1996): EAD, Early
Dent; EUF, European Flint; LSC, Lancaster Sure Crop; M13, Minnesota
13 complex; RYD, Reid Yellow Dent.

Line Class (Cluster)
Amount

Mean 6 SE N

mg h21 g21 shoot dry weight

W401 EAD (7) 0.7 6 0.2 a 6
F7 EUF (10) 0.9 6 0.2 ab 9
MIS3a LSC (5) 1.9 6 0.5 abc 6
F113 EAD (7) 2.9 6 0.2 bcd 6
F752 EUF (12) 3.4 6 0.9 bcd 6
MIS4ab M13 (3) 5.0 6 0.7 cdef 6
F584 RYD (9) 5.7 6 1.6 cdef 5
F284 M13 (3) 6.0 6 2.5 cde 6
F292 EAD (7) 8.8 6 2.1 defg 6
F591 M13 (3) 10.3 6 1.1 defgh 5
CM174 RYD (9) 11.4 6 3.7 defg 6
Co158 M13 (3) 11.4 6 1.6 defghi 6
F618 RYD (9) 11.9 6 2.6 defgh 6
F608 M13 (3) 12.3 6 2.6 defgh 6
F670 M13 (1) 15.6 6 4.6 efghij 6
A188 M13 (3) 15.8 6 3.7 efghij 6
F252 EAD (6) 20.8 6 3.7 fghij 6
F268 EUF (11) 21.0 6 5.9 efghij 6
RYD2a RYD (9) 21.4 6 3.4 ghij 5
F283 EUF (10) 23.4 6 5.3 ghij 5
Ia5pop 24.6 6 7.3 fghij 6
F2 EUF (11) 27.7 6 3.9 ghij 6
F7001 EUF (10) 28.8 6 8.2 ghij 5
Co255b EUF (10) 29.5 6 5.4 ghij 6
A654 M13 (1) 38.6 6 5.8 hij 5
C6 39.2 6 3.4 hij 6
Delprim 42.5 6 10.8 hij 6
Io3a M13 (2) 44.9 6 4.1 ij 6
Du101 EUF (10) 48.0 6 4.9 j 6
F476 RYD (9) 50.2 6 4.1 j 6
Io4a M13 (2) 51.1 6 8.9 j 6
F1852 M13 (1) 54.2 6 7.3 j 6

aPrivate lines, names changed. bLines derived from crosses
between lines tracing back to two different heterotic groups.
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trans-a-bergamotene and (E)-b-farnesene. While
some lines that produced high quantities of trans-a-
bergamotene and (E)-b-farnesene almost completely
lacked (E)-b-caryophyllene (e.g. A654, F584, F7001, and
Io3), this compound was the prominent sesquiterpene
in other lines (e.g. MIS3, F268, F283, and Co255). Two
sesquiterpenes, eluting almost simultaneously and
tentatively identified from their mass spectra as
cycloisosativene and a-ylangene, were only detected
in significant amounts in four lines belonging to the
Minnesota 13 complex (MIS4, Co158, Io4, and F1852).
A further sesquiterpene, tentatively identified as
germacrene-D (MS), was produced in moderate
quantities by some lines, notably by F752, where it
was one of the dominant compounds of the odor
blend. In six lines, one single compound made up
more than 50% of total emission: linalool in F2; (3E)-
4,8-dimethyl-1,3,7-nonatriene in MIS4, F584, and
F670; indole in F618; and (E)-b-caryophyllene in
MIS3.

Odor profiles recorded from plants damaged by
caterpillar feeding (Table III) proved very similar to
those of plants induced by injection (Fig. 1). In all but
three lines (F618, F2, and F7), the log-transformed
mean amounts (in mg h21 g21 dry weight) for the 23
compounds were more strongly correlated between

the same line induced with the two different methods
(mean correlation coefficient 6 SD 5 0.84 6 0.18; n 5
12) than between different lines induced with the same
(0.50 6 0.25; n 5 132) or with a different method
(0.46 6 0.26; n 5 132). The only conspicuous devia-
tions were observed in the lines F618 and F2: indole
and linalool, respectively, were no longer as dominant
in the odor bouquets as with the injection method.

In general, caterpillar damage caused an increase in
the release of all 23 volatile compounds, but some of
these were set free in non-negligible amounts by intact
plants as well, and their levels did not increase as dra-
matically as those of the other compounds upon plant
injury (Table III). The most notable of these already
constitutively emitted compounds were the monoter-
penes b-myrcene, b-ocimene, linalool, and the sesqui-
terpenes cycloisosativene (MS), a-ylangene (MS),
germacrene-D (MS), and a-farnesene. Linalool is
the most frequently occurring constitutive com-
pound, present in moderate to high amounts in all
lines in which it makes up an important part of the
induced odor profile, with the interesting exception
of line F7, in which it increases much steeper in
response to herbivore injury.

For all the 23 included compounds, we found
a highly significant effect of the line on both the

Table II. Broad-sense heritabilities H2 of absolute and relative amounts of odorous compounds emitted

Values were calculated from the results of an ANCOVA with ln-transformed amounts (in ng/h) as dependent variable, line (L) and replicate (r) as
independent variables, and shoot dry weight (m) and total emission (z; for relative amounts) as covariates. Abbreviations for probability levels: *,
,0.05; y, ,0.01; z, ,0.001; §, ,0.0001; s2, genetic variance; CV, coefficient of variation; Rt, retention time; MS, mass spectrum; 1,
monoterpenoids; 2, esters (acetates); 3, homoterpenes; 4, N-aromatics; 5, sesquiterpenoids.

Absolute Quantities Relative Quantities

Group Compound Identification PL Pr Pm s2 H2 CV PL Pr Pm Pz s2 H2 CV

1 a b-Myrcene Rt/MS § § 1.08 0.90 13.2 § y § § 0.88 0.91 10.9
b (E)-b-Ocimene Rt/MS § § 1.19 0.84 16.3 § § § 0.84 0.85 12.8
c Linalool Rt/MS § * § 3.48 0.89 10.8 § § 1.46 0.88 7.5

2 d (Z)-3-Hexen-1-yl acetate Rt/MS § * § 0.99 0.64 20.1 § * § § 0.79 0.61 19.1
e Benzyl acetate Rt/MS § § 1.20 0.65 49.3 § § 0.72 0.62 40.9
f Phenethyl acetate Rt/MS § * § 4.77 0.88 23.6 § § § 3.36 0.91 16.9
g Geranyl acetate Rt/MS § y § 3.30 0.83 26.4 § * § 2.35 0.88 18.6

3 h (3E)-4,8-Dimethyl-1,3,7-nonatriene Rt/MS § * § 3.34 0.90 9.6 § * * § 1.09 0.91 5.2
i (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene Rt/MS § § § 1.42 0.90 9.1 § § § § 0.30 0.79 6.4

4 j 1-H-indole Rt/MS § y § 3.67 0.76 19.5 § z § 0.97 0.57 15.5
k Methyl anthranilate Rt/MS § y § 1.39 0.66 35.8 § § § 0.51 0.50 30.4

5 l Cyclosisosativene MS § § § 1.58 0.75 73.5 § § z 1.46 0.74 73.5
m a-Ylangene MS § § * 1.61 0.73 77.2 § § 1.56 0.72 77.5
n Unknowna MS § § § 1.08 0.85 35.6 § § § 0.58 0.80 30.3
o (E)-b-Caryophyllene Rt/MS § y § 5.65 0.91 20.3 § z § 4.52 0.93 16.3
p (E)-a-Bergamotene Rt/MS § y § 3.73 0.85 18.9 § y § 2.13 0.88 12.6
q (E)-b-Farnesene Rt/MS § z § 3.30 0.85 14.5 § § * § 1.33 0.89 7.8
r Germacrene-D MS § § § 1.96 0.89 23.8 § § § 1.49 0.89 20.4
s Unknownb MS § § y 1.40 0.78 38.2 § § § 0.95 0.76 33.4
t (E,E)-a-Farnesene Rt/MS § y 2.12 0.82 33.4 § * y 2.19 0.83 32.6
u b-Bisabolene Rt/MS § * 1.52 0.68 47.0 § 1.26 0.64 46.9
v Unknownc MS § § § 2.53 0.92 18.3 § § § 1.51 0.94 12.2
w (E)-Nerolidol Rt/MS § § § 2.26 0.80 25.0 § § § 0.97 0.77 17.5
Total (sum of all compounds) § * § 1.51 0.84 6.6

aMS similar to that of a-zingiberene, in some cases (e.g. Delprim, F2) coelution of another sesquiterpene, most probably b-elemene (MS). bMS
similar to that of a-zingiberene. cMS similar to that of b-sesquiphellandrene, in several cases (e.g. Du101, F476) coelution of another
sesquiterpene, most probably d-cadinene (MS).
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Table III. Odor emission (in mg h21 g21 shoot dry weight) of intact maize plants (und) and plants damaged by caterpillar feeding (dam)

Significant differences (P, 0.05; Mann-Whitney U-test) between the treatments are indicated by bold letters.1, Trace amounts (,0.01 mg h21 g21);
2, Below detection threshold. Increase factors were calculated for all cases where volatile amounts of damaged plants were above 0.01 mg h21 g21

and amounts of undamaged plants above detection threshold.

Line F7 F752 F7001 F618 W401 F113 A188 F2

Replicates 7 7 6 6 7 7 7 7 7 7 6 6 7 7 7 7

Compound/Treatment und dam und dam und dam und dam und dam und dam und dam und dam

a Myrcene 0.03 0.05 2 1 2 1 1 0.03 0.02 0.03 2 0.02 0.04 0.05 2 1

b Ocimene 1 1 1 1 0.02 0.02 1 0.02 0.02 0.04 1 1 1 1 1 0.02
c Linalool 0.16 0.34 1 0.04 1 0.03 0.02 0.17 0.16 0.24 0.04 0.15 0.31 0.45 1 1.17
d Hexenyl acetate 0.08 0.15 1 0.09 0.15 0.26 0.02 0.17 0.13 0.36 0.04 0.23 0.07 0.45 0.01 0.17
e Benzyl acetate 1 0.01 1 1 2 1 1 1 1 0.06 2 0.02 1 0.06 1 1

f Phenethyl acetate 1 1 2 1 2 1 2 0.11 1 0.26 2 0.43 1 0.64 2 0.02
g Geranyl acetate 1 0.01 2 2 1 0.01 2 0.01 2 1 1 0.10 1 0.05 2 1
h Dimethyl nonatriene 1 0.15 0.02 0.21 1 0.16 1 0.13 1 0.02 1 1 0.07 0.76 1 0.47
i Trimethyl tridecatetraene 0.02 0.11 0.01 0.06 0.01 0.03 0.05 0.17 0.01 0.02 1 1 0.04 0.51 0.02 0.80
j 1-H-indole 2 1 0.32 0.24 2 1 0.14 0.36 1 0.05 1 0.61 1 0.02 1 0.14
k Methyl anthranilate 1 1 2 1 1 1 2 0.01 1 1 2 2 1 1 2 0.09
l Cyclosisosativene 2 2 2 2 2 2 2 2 1 0.01 2 2 2 2 1 0.02
m a-Ylangene 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 1

n Unknown 2 1 2 0.02 1 1 2 1 2 1 2 1 2 0.01 2 1
o Caryophyllene 0.02 0.11 0.03 0.13 1 0.01 1 0.03 0.01 0.03 2 0.04 1 0.02 0.05 1.18
p Bergamotene 1 0.01 2 0.37 1 0.73 1 0.26 1 0.28 2 0.15 1 0.02 1 0.29
q b-Farnesene 0.02 0.05 1 0.36 1 0.82 1 0.94 1 1.03 1 0.77 0.01 0.03 1 0.58
r Germacrene-D 2 2 0.18 0.36 0.01 0.03 1 0.01 1 0.01 2 1 1 0.02 1 0.02
s Unknown 1 1 1 1 1 0.03 1 0.02 1 0.02 1 1 2 2 1 0.03
t a-Farnesene 1 0.02 2 2 2 2 2 2 2 2 2 2 2 2 0.11 0.34
u b-Bisabolene 2 2 1 0.02 2 1 2 2 2 2 2 2 2 2 2 2

v Unknown 1 1 2 0.06 1 0.14 1 0.03 1 0.01 2 2 1 0.02 1 0.06
w Nerolidol 2 2 1 0.01 2 2 2 1 2 2 1 1 2 1 1 0.04
Total emission 0.35 1.07 0.59 2.00 0.24 2.32 0.26 2.52 0.42 2.52 0.11 2.54 0.58 3.20 0.24 5.45

Line F1852 Delprim Du101 F476 Factor of Increase of Emission by

Caterpillar-Damaged Plants

versus Intact Plants
Replicates 7 7 6 12 6 6 7 7

Compound/Treatment und dam und dam und dam und dam Median Mean SD Min Max n

a Myrcene 0.02 0.07 0.09 0.17 0.02 0.08 0.13 0.25 2 3 3 1.3 9 9
b Ocimene 0.02 0.06 1 0.03 1 0.02 0.02 0.02 3 5 4 1.0 13 8
c Linalool 0.17 1.01 1.19 2.30 0.50 4.08 1.76 5.80 5 23 55 1.5 195 12
d Hexenyl acetate 2 2 0.07 0.29 1 0.49 0.15 1.05 7 12 19 1.7 67 11
e Benzyl acetate 2 2 1 0.04 1 0.02 0.02 0.23 10 15 19 1.6 54 6
f Henethyl acetate 2 2 1 0.52 2 0.91 1 0.54 1,147 1,459 1,210 436 3,105 4
g Geranyl acetate 2 2 1 0.53 2 2 0.02 1.25 45 40 34 4.1 72 6
h Dimethyl nonatriene 0.03 0.47 0.01 0.91 0.02 1.29 0.09 1.93 61 84 106 9.2 362 11
i Trimethyl tridecatetraene 0.02 0.34 0.02 0.21 0.04 0.91 0.07 0.99 13 13 11 1.7 38 11
j 1-H-indole 1 0.20 1 0.57 1 4.32 0.23 2.48 107 262 545 0.7 1,794 10
k Methyl anthranilate 0.01 0.02 1 1 1 0.15 0.01 0.03 2 17 25 2.2 46 3
l Cyclosisosativene 0.09 0.17 2 2 2 2 0.03 0.05 3 4 4 1.6 11 4
m a-Ylangene 0.07 0.14 2 2 2 2 0.03 0.06 2 2 0 1.8 1.8 2
n Unknown 1 0.02 2 0.01 2 1 1 0.03 8 8 4 5.1 10 2
o Caryophyllene 0.04 0.35 0.02 2.40 0.02 3.26 0.16 2.29 7 29 47 1.3 133 11
p Bergamotene 0.01 1.20 2 1.69 2 0.72 0.01 0.89 71 65 49 1.4 125 8
q b-Farnesene 0.02 2.30 0.01 3.00 1 3.18 0.07 1.77 112 422 759 2.8 2,210 12
r Germacrene-D 0.03 0.10 2 1 0.08 0.28 0.08 0.35 3 5 5 1.8 18 9
s Unknown 1 0.04 2 0.03 2 1 1 0.03 17 45 54 2.8 126 6
t a-Farnesene 2 2 2 2 2 2 2 2 3 3 0 3.1 3.2 2
u b-Bisabolene 1 0.06 1 0.09 1 0.01 2 0.01 12 21 25 4.0 57 4
v Unknown 0.02 0.25 1 0.22 2 1 0.02 0.21 11 29 53 2.7 159 8
w Nerolidol 1 0.01 1 0.02 1 0.03 0.04 0.09 5 18 28 2.6 74 6
Total emission 0.60 6.85 1.46 13.03 0.71 19.79 3.09 20.67 9 12 8 3.1 28 12
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Figure 1. Odor profiles of 31 maize inbred lines and of the hybrid Delprim. The amount of each compound is expressed in
percent of the total emission, i.e. the sum of all 23 compounds.
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absolute and the relative amounts (Table II). Absolute
quantities of particular compounds and total emission
were correlated for almost all individual compounds,
except for three minor ones, which were either not
expressed or expressed in very small quantities,
namely bisabolene and cycloisosativene/a-ylangene,
the two also constitutively occurring compounds.
Shoot dry weight as a measure of plant size and
physiological state generally influenced the absolute
quantities, but its effect was generally no more signif-
icant on relative amounts. Hence, the physiological
state of the plants mostly affected the total amount of
volatile emission but not the odor profile.

For almost all compounds, there was a minor but
significant block effect. Repeatability was remarkably
high for all compounds, ranging from 0.91 to 0.98 for
absolute amounts and from 0.85 to 0.99 for relative
amounts. Hence, our experimental design allowed us
to characterize the inbred lines by their odor profiles
with a very good confidence. Accordingly, the residual
coefficients of variation (CVs) ranged between 10%
and 50%. The two sesquiterpenes with a residual CV
higher than 70% were detected in significant amounts
in four lines only. So their high CV values are due to
very low average quantities in the whole genotype set.
Like for the total volatile emission, most of the
phenotypic variation in the release of individual com-
pounds is due to genetic differences among the lines;
values for broad-sense heritability ranged from 0.50
to 0.94. They were similar for absolute and relative
amounts, except for 4,8,12-trimethyl-1,3,7,11-tridecate-
traene and the two aromatic compounds 1-H-indole
and methyl anthranilate.

Multivariate Analyses

The first axis of a principal component analysis
(PCA) on least square means of absolute amounts
accounted for 40% of the total variation. It was
positively correlated with the quantity of all com-
pounds and hence separated the lines according to
total volatile emission. Therefore, we focused rather on
the proportions of the compounds in the blend, the
chemical signature, as this characteristic may better
distinguish between lines from different geographic
origins. Plots of the factor loadings from a PCA on
relative amounts show clusters of compounds whose
proportions in the blend were correlated: six sesqui-
terpenes, including trans-a-bergamotene, (E)-b-farne-
sene, and b-bisabolene, form an aggregation separated
from the remaining sesquiterpenes, germacrene-D
(MS), and two pairs of associated compounds, namely
(E)-b-caryophyllene/(E,E)-a-farnesene and cycloiso-
sativene (MS)/a-ylangene (MS; Fig. 2). Interestingly,
the first group consists of fully inducible compounds,
while the latter, with the exception of (E)-b-caryophyl-
lene, are also produced constitutively by many lines.
The two homoterpenes along with the two alcohols
nerolidol and linalool, the acetate esters, and the two
nitrogen-containing aromatics, respectively, represent

other examples of chemically related compounds that
grouped relatively close together.

The first principal component axis (27% of the
variation) is highly positively correlated with the
proportions of the above-mentioned six sesquiter-
penes, and the second axis (18% of the variation) is
positively correlated to acetate esters and negatively
correlated to homoterpenes and the two sesquiter-
penes cycloisosativene (MS)/a-ylangene (MS). Lines
from different origins were not clearly separated along
these two axes. Only axis 3 (11% of the variation),
which is highly positively correlated to (E)-b-caryo-
phyllene and to a lesser degree to germacrene-D (MS)
and (E,E)-a-farnesene, splits the European Flint lines
from the American Dent lines of the Minnesota 13
complex (Fig. 2). The two apparent outliers F7001
and F1852 are actually of mixed origin. European
Flint lines were characterized by on average higher
release rates of (E)-b-caryophyllene as compared to
Minnesota 13 complex and Early Dent lines.

Relationship with Neutral Variation

The distances among the lines according to the vola-
tile profiles and the corresponding genetic distances
based on RFLP markers were not in agreement (r 5
20.009): closely related lines exhibit similar volatile
profiles, while genetically distant lines may release
qualitatively either similar or very distinct odor blends
(Fig. 3).

DISCUSSION

Our study revealed an impressive variability among
the lines in the absolute quantity of odors emitted as
well as in the qualitative composition of the blend, both
characters that are to a large degree genetically de-
termined. Maternal effects could not be estimated by
this experiment but are expected to have had little
impact on the differences between the lines because
they were obtained by sexual reproduction (controlled
selfing) and seeds were produced the same year in the
same location. The extent of variation observed in this
study by far surpasses what was recorded in previous
studies with European maize hybrids (Gouinguené
et al., 2001) and Mexican germlines (Fritzsche-Hoballah
et al., 2002). This may be due to the wider range of
origins but also due to the fact that inbred lines carry
only one allele of the genes encoding for the en-
zymes that are involved in the biosynthesis of the
odor compounds, which could result in greater polar-
ization of the volatile blends between plants. As
suggested by the scarce information available, poly-
morphism in the odor profiles observed among teo-
sintes, i.e. wild Zea species and subspecies, seems to be
comparable or less pronounced than within cultivated
maize (Gouinguené et al., 2001). Clearly, maize has
retained a high degree of genetic variability during the
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process of domestication (Wang et al., 1999), of which
our findings provide another example.

Injection of caterpillar regurgitate proved a powerful
method to induce the emission of considerable
amounts of volatiles. With few exceptions, the charac-
teristic odor pattern of each line observed with the
injection method was remarkably similar to that ob-
tained by exposing plants to caterpillar damage for
1 d. A perfect match cannot be expected because the pro-
portion of a specific compound in the blend depends
to some degree on the overall strength of the elicita-
tion, as different compounds show different dose-

response curves to elicitors (T. Degen, unpublished
data). If the induction is only weak, for example, al-
ready constitutively present compounds are expected
to be more dominant in the odor blend. Differences in
the time course of induction among the compounds
(Turlings et al., 1998b) may further contribute to
divergence of odor profiles obtained with different
induction methods.

While PCA based on RFLP markers showed a clear-
cut separation between European flint lines and U.S.
dent lines (Dubreuil et al., 1996), our PCA data on
induced odors revealed only a comparatively loose

Figure 2. Factor loadings and factor scores representing the association among the 31 maize inbred lines as revealed by PCA on
relative amounts of odors emitted (least squaremeans obtained by ANCOVA; see Table II). The first three axes account for 26.6%,
18.4%, and 10.8% of the total variation, respectively.
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association among lines belonging to the same classi-
fied heterotic group. Nevertheless, European flint lines
form a relatively homogeneous group, most notably
distinguished by a high proportion of (E)-b-caryo-
phyllene in the odor bouquet. The outlying Yugosla-
vian line F7001 with very low levels of (E)-b-
caryophyllene has U.S. pop corn and Iowa Stiff Stalk
Synthetic parents in its pedigree. It also showed a di-
verging protein content (Burstin et al., 1994). The same
applies to the other aberrant line, F1852, which is
classified with the dent line of the Minnesota 13
complex according to RFLP markers (Dubreuil et al.,
1996) but in fact is derived from Eastern European flint
germ plasm.

Strong correlations among the variable compounds
as illustrated by the clusters for the factor loadings of
the PCA may mostly reflect shared biosynthetic path-
ways of the volatiles concerned. For example, common
genetic factors, terpene synthases, may be involved
in the formation of the terpene alcohols linalool,
(E)-nerolidol, and geranyllinalool from the respective
universal mono-, sesqui-, and diterpene precursors
geranyl-, farnesyl-, and geranylgeranyldiphosphates.
The two homoterpenes (3E)-4,8-dimethyl-1,3,7-nona-
triene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-decate-
traene are oxidative degradation products of (E)-
nerolidol and geranyllinalool, respectively (Boland
et al., 1999). This may explain the relatively close
association of linalool and (E)-nerolidol with the
homoterpenes. However, a recently demonstrated
and characterized (E)-nerolidol synthase from maize
did not seem to be capable of converting geranyl-
diphosphate to linalool in detectable amount
(Degenhardt and Gershenzon, 2000). The acetate esters
represent another interesting cluster of compounds
with correlated proportions in the blend. Apart from
the shared acetyl group, the moieties of these com-
pounds are of different biosynthetic origin: (Z)-3-

hexenyl acetate is a product of the lipoxygenase
pathway leading to green leaf volatiles, benzyl and
phenethyl acetate are aromatics, and geranyl acetate
originates from the isoprenoid pathway. We may
speculate that a common acetyl-transferring enzyme
participates in the formation of these four compounds.

Quantitative protein data were reported to give
a picture of relationships between lines clearly differ-
ent from that obtained by RFLP markers (Burstin et al.,
1994). Since the quantity of volatiles emitted can be ex-
pected to reflect among others variation in the amounts
of enzymes, it is not surprising that we recorded
analogous results, i.e. no obvious correspondence of
distances based on odor profiles with those based on
monogenic molecular markers, whose variation is to
a large extent selectively and phenotypically neutral.

For some tritrophic systems, recent studies pointed
at an intriguing degree of sophistication in the com-
munication between plants and the third trophic level,
inasmuch as the odor blends released by the plants
may provide specific information on the identity of the
attacking herbivore and, hence, on its suitability for
the prey-seeking carnivores (De Moraes et al., 1998; Du
et al., 1998). By contrast, our extensive experience with
chemical analyses of induced maize volatiles indicates
that differences in the induced odor blends between
different genotypes attacked by the same herbivore
exceed the differences between plants belonging to the
same genotype but fed upon by different herbivores
(Turlings et al., 1993a, 1998a, 1998b; Gouinguené et al.,
2001, 2003). It appears that the enormous intraspe-
cific variability may compromise the reliability of
herbivore-specific signals across a wide range of plant
genotypes, at least for naive wasps. By relying on their
ability to learn and associate successful foraging and
egg-laying experiences with the encountered odor
pattern (Turlings et al., 1993b; Vet et al., 1995), female
parasitoids may in part overcome this problem.

One of the major unsolved problems to be ad-
dressed in future studies is the identification of the
behaviorally active components in herbivore-induced
odor blends and of optimal combinations of such
semiochemicals for attraction of predators and para-
sitoids (Dicke and van Loon, 2000). The highly variable
maize inbred lines screened here lend themselves for
further behavioral studies with parasitoids and to
verify whether parasitism rates of caterpillars under
field conditions differ in response to the variable
amounts of induced volatiles released by their host
plants. Several studies have demonstrated the impor-
tance of herbivore-induced odor emissions outside the
laboratory (Scutareanu et al., 1997; De Moraes et al.,
1998; Thaler, 1999; Bernasconi Ockroy et al., 2001;
Kessler and Baldwin, 2001). These findings and the
observed genetic variability in induced maize volatiles
open the possibility to exploit the phenomenon of
herbivore-induced volatile emissions in biological con-
trol of caterpillars by breeding varieties with enhanced
attractiveness to the natural enemies (Bottrell et al.,
1998). Such an approach may also be applicable to

Figure 3. Comparison of genetic distances among the maize inbred
lines based on RFLP markers (Rogers distances obtained from Dubreuil
et al., 1996) and the correspondingMahalanobis distances based on the
odor profiles (least square means obtained by ANCOVA; see Table II).

Variability of Induced Volatile Emission in Maize

Plant Physiol. Vol. 135, 2004 1935



increase the repellent effect of induced volatiles to
herbivores (De Moraes et al., 2001). It should, however,
be considered that the observed differences in odor
emissions for plants of different geographic origin may
imply that insects from different regions have adapted
differently to optimize their use of plant-provided
volatile signals.

MATERIAL AND METHODS

Plant Sources

Thirty-one maize (Zea mays) inbred lines were chosen from the collection of

the Station de Génétique Végétale, Ferme du Moulon, INRA Gif-sur-Yvette,

France, in order to cover as much of the genetic diversity as possible from lines

used by breeders in Europe and North America. In a previous RFLP study

(Dubreuil et al., 1996), 116 maize inbred lines were assigned on the basis of

their molecular genetic distances to classes that roughly corresponded to 5

well-known heterotic groups in maize, named after the geographical origin of

the lines with known pedigree. The lines included in this study (Table I) were

selected from clusters within each of these heterotic groups to represent the

original set of 116 lines. They were tested together with the commercial hybrid

Delprim, which was already well studied with respect to odor emission and

served as a reference in an earlier investigation (Gouinguené et al., 2001). The

inbred lines have undergone more than 10 generations of controlled selfing, so

that they can be considered as completely homozygous. No heterozygosity

was found at any of the 43 RFLP loci (data not shown; P. Dubreuil,

unpublished data). All the seed were produced in 1995 at a single location

near Toulouse, France.

Plant Rearing

Seeds were kept in petri dishes lined with moist filter paper until germi-

nation and then transferred individually into plastic pots (volume 360 mL)

filled with a mixture of regular potting soil and vermiculite. The seedlings

were grown in a climate chamber under the following conditions: 23�C, 60%

relative humidity, and 40,000 lm/m2 with a photoperiod of 16-h-light/8-h-

dark and light phase starting at 1 AM. They were used for the experiments

about 10 d after germination, when they had developed on average four leaves

and the fifth leaf started to show (mean shoot dry weight 6 SD 5 0.26 6 0.08 g).

Plant Treatments

Regurgitant for odor induction was collected from third- to fifth-instar

larvae of Spodoptera littoralis Boisd. (Turlings et al., 1993a), which before had

been fed with maize leaves for at least 1 d. All samples were taken from the

same stock solution stored at 276�C. Odor emission by the plants was induced

by injecting twice 10 mL of undiluted regurgitant with a 10-mL syringe into the

base of the stem, about 2 to 5 mm above the first lateral roots. The needle was

inserted in such a way as to avoid perforating the stem on the opposite side of

the injection and thereby avoiding leaking of regurgitant as much as possible.

Injections were done about 9 h after the onset of the light period. Afterward,

the plants were kept in the laboratory under three fluorescent tubes (Standard

F 36 W/133-T8; Sylvania, Erlangen, Germany) at 26 6 1�C, 35 6 5% relative

humidity, and 10,000 lm/m2. The induction period, i.e. the interval between

the injection and the start of the odor collections, lasted 5 to 5.5 h. To verify

whether a more natural induction method leads to comparable results, plants

of 12 lines representing the extremes in total emission and/or profile were

subjected to caterpillar attack. To this end, 20 second- or third-instar larvae of

S. littoralis were allowed to feed on the plants for a duration of 22 h, starting 5 h

before the onset of the dark period. They were prevented from escaping by

covering the plants with a cellophane bag and then removed 1 h before the

start of the odor collection. This experiment also included undamaged plants

to assess constitutive odor emission. Shoot dry weight was determined after

the odor collections and introduced as a factor in the statistical analyses in

order to account for differences in size at the time of the odor collections due to

variable growth rates of the plants.

Odor Collection

The seedlings were cut off at the stem base with a razor blade and placed

with the severed end in a small glass vial filled with water and sealed with

cotton wool, before being introduced into a previously described (Turlings

et al., 1991) closed push-and-pull odor collection system. Compressed air

purified over a charcoal filter and humidified in a gas dispersion tube entered

five parallel collection chambers consisting of Pyrex glass tubes (approxi-

mately 30 cm long, 6.5 cm in diameter) assembled from two detachable

sections connected by ground glass joints. Air was blown into each glass

cylinder and pulled out by a vacuum pump at a rate of 0.6 L/min. Volatile

compounds carried by the air flow were adsorbed at the outlet of the collection

chamber on a trap consisting of a glass tube (4 mm i.d., length 8 cm) packed

with 25 mg Super-Q polymer (80-100 mesh; Alltech, Deerfield, IL; Heath and

Manukian, 1992). During the collection, which lasted 2 h, the plants were

illuminated by eight fluorescent tubes (Osram [Munich] L 20 W/25 S; 9,000 6

1,000 lm/m2), and the temperature measured outside the glass chambers was

31 6 1�C. Afterward, the Super-Q filters were extracted with 150 mL of

dichloromethane (Lichrosolv; Merck, Darmstadt, Germany), and 200 ng of n-

octane and n-nonyl acetate (Sigma, St. Louis) in 10 mL of dichloromethane

were added to the samples as internal standards. The solutions were stored at

276�C until analysis.

Chemical Analysis: Identification and Quantification

Chemical analyses were performed with a Hewlett-Packard HP 6890 series

gas chromatograph (Palo Alto, CA) equipped with an automated on-column

injection system and a flame ionization detector. A 3-mL aliquot of each

sample was injected into an apolar EC-1 capillary column (30 m, 0.25 mm i.d.,

0.25 mm film thickness; Alltech Associates) preceded by a deactivated re-

tention gap (10 m, 0.25 mm i.d.; Connex; Agilent, Palo Alto, CA) and

a deactivated pre-column (30 cm, 0.53 mm ID, Connex). Helium at 24 cm/s

was used as carrier gas. Following injection, column temperature was

maintained at 50�C for 3 min, raised to 230�C at 8�C/min, and held at

230�C for 9.5 min. The detected volatiles were quantified based on comparison

of their peak area with those of the internal standards and identified by

comparison of retention times with those observed in previous analyses

(Turlings et al., 1998b). To confirm these identities, we analyzed one sample

per line using a gas chromatograph (Agilent 6890 Series GC system G1530A),

with the same kind of apolar column (HP-1) and an identical temperature

program, coupled to a mass spectrometer operated in electron impact mode

(Agilent 5973 Network Mass Selective Detector; transfer line 230�C, source

230�C, quadrupole 150�C, ionization potential 70 eV, scan range 50–400 atomic

mass units). Volatiles were identified by comparison of their mass spectra with

those of the Wiley275 and NIST98 libraries and by comparison of their

retention times with those of authentic standards. The few compounds for

which no pure standards were available to determine retention times are

marked with (MS) in the text, and their identification should be considered

tentative. In certain lines, mass spectra obtained for some sesquiterpenes

hinted at coelution with additional compounds, mostly other sesquiterpenes.

When present in trace amounts only, the identity of the compounds could not

always be confirmed by gas chromatography-mass spectrometry.

Experimental Design

The 32 different genotypes, 31 inbred lines, and the commercial hybrid

Delprim were analyzed in a randomized block design. Each block consisted of

one plant of each genotype raised together in the growth chamber. The

collection system allowed the simultaneous testing of five individual plants

a day, which corresponded to one plot. Accordingly, seven plots (days) were

necessary for the analysis of one block of the entire genotype set along with

a blank, i.e. an empty glass cylinder containing a vial and moist cotton. Within

each block, the plants and the blank were randomly assigned to the seven

plots, and the experiment was repeated six times. A few missing data from

plants that did not grow were replaced by blanks in the odor collection

system. A total of 189 plants and 9 blanks were analyzed. For the second

experiment with only 12 lines, 2 units with 5 collection chambers were

available, and the lines were tested in 3 groups, each block including 4 plants

belonging to different lines induced by caterpillar feeding, the 4 correspond-

ing intact plants, a blank, and a Delprim hybrid as a reference. No significant

differences in total odor emission were detected among induced Delprim
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plants belonging to the three different groups. The treatments, i.e. herbivore-

damaged versus intact plants, were replicated six or seven times for each line.

Statistical Analysis

Fifty prominent peaks in the chromatogram were integrated. Peaks for

which no significant differences were found between the system blanks and

the plant extracts were considered impurities and discarded from the analysis.

For each compound, the odor quantities exhibited log-normal distributions.

Consequently, for each selected compound k, the raw data xkij (ng/h) were

transformed according to ykij5Ln½Maxf0; xkij2mk
blankg11�, where mk

blank is the

average quantity of compound k found in the blank, i indices the inbred line,

and j the repetition. Among the remaining substances, only those for which

the average log-transformed amount (in ng h21 g21 dry weight) exceeded

a value of 2 in at least one inbred line were retained. In quantity, the 23 thus

selected compounds (Table II) typically accounted for approximately 98% of

the constituents of plant origin. Highly volatile alcohols and aldehydes

derived from the lipoxygenase pathway (green leaf volatiles) and immedi-

ately set free by the plants upon mechanical damage were only very

sporadically recorded in substantial amounts and were not included. Due to

variable growth rates among the lines, there were some differences in plant

size at the time of the odor collections. To eliminate the influence of size and

physiological state on volatile emission, shoot dry weight was introduced as

a covariate in the statistical analysis. So, ANCOVAs were performed on the

data using the following model ykij5mk1Li1rj1eij1mij, where Li is the random

line effect, rj (j 5 1..n, n5 6) the repetition, eij the residual variation, and mij the

shoot dry weight of the plant. We estimated the residual variance se
2 and the

genetic variance among the inbred lines s2
L . As the inbred lines are completely

homozygous and can be considered as clones, s2
L estimates the total genetic

variance of the line collection, and the broad-sense heritability can be

calculated as H25s2
L=ðs2

L1s2
e Þ (Lynch and Walsh, 1998). We also computed

the following parameters: the residual coefficient of variation for compound

k CV5se=m
k, and the repeatability r25s2

L=ðs2
L1

1
ns

2
e Þ. The repeatability mea-

sures how precisely the amount of volatile compound emitted by one inbred

line is estimated in this experiment. The broad-sense heritability measures the

part of the phenotypic variation that is due to genetic differences between the

inbred lines. The analyses were also performed on relative quantities of the

odors in the blend by introducing the total amount of volatile emission (ln-

transformed sum of the quantities of all 23 compounds; zij) as covariate:

ykij5mk1Li1rj1eij1mij1zij. This was done to check whether significant differ-

ences among lines for emission of a given compound were not only due to

genetic differences for the total amount of volatile emission. Least square

means computed for each inbred line by using this model were used to

perform a PCA on the relative volatile amounts and to calculate Mahalanobis

distances between the lines. For each pair of inbred lines, the Mahalanobis

distances were compared to the molecular Rogers’ distances based on 39 to 43

RFLP markers, which were available from an earlier study (Dubreuil et al.,

1996), except for lines Ia5pop and C6.
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