Année 2009-2010	DS01			
1°S ₄	NOM:	Prénom		

L'USAGE DE LA CALCULATRICE N'EST PAS AUTORISE

VALEURS NUMERIQUES: 1 ou 2 CHIFFRES SIGNIFICATIFS seulement.

Données:

Masse d'un proton, $m_N = 1,7.10^{-27} \text{ kg}$	Masse d'un électron : $m_e = 9,1. 10^{-31} \text{kg}$
Constante de gravitation universelle,	Masse volumique du butane liquide (à -1°C):
$G = 6.7. 10^{-11}(SI)$	$\mu = 600 \text{ kg.m}^{-3}$
Charge élémentaire, $e = 1,6.10^{-19}$ C.	

Interactions fondamentales: microscopique (4 pts)

- 1: Quelle(s) interaction(s) fondamentale(s) est(sont) responsable(s) de la cohésion du noyau atomique ?
- 2: Décrire précisément la valeur des forces modélisant l'interaction gravitationnelle entre 2 billes d'acier sphériques de rayons 5 mm, de masses identiques et égales à 20 g, distantes de 1,0 m.
- 3: Une sphère métallique est mise au contact d'un des bras d'une machine de Winshurst. On mesure que la charge sur la sphère métallique est de Q = -3,2 mC.

 Déterminer alors le nombre d'électrons apportés à la sphère métallique, N_e.

Interactions fondamentales: macroscopique (3 pts)

On frotte une baguette en verre avec une peau de chat.

La baguette en verre est alors chargée positivement.

- 4: Quelle est l'origine et la nature des charges électriques positives de la baguette ?
- **5:** Décrire et expliquer ce qui se passe lorsque l'on approche la baguette en verre ainsi chargée d'un pendule constitué d'un fil isolant et d'une boule mobile métallique très légère.

La classification périodique (3 pts)

6: Compléter le tableau pour les éléments des deux premières périodes.(Cases blanches uniquement)

Z	1	2	3	4	5
Symbole					
Nom					
Masse molaire (g.mol ⁻¹)					
Z	6	7	8	9	10
Symbole					
Nom					
Masse molaire (g.mol ⁻¹)					

DS: DS01 - 1/2 -

Butane (5 pts)

On remplit comme en TP une éprouvette de volume 100 m L à l'aide du butane (formule brute C_4H_{10} :) gazeux contenu dans un briquet.

- 7: Montrer que le volume molaire d'un G.P à une température de 20°C à la pression atmosphérique est $V_m = 22 L$.
- **8:** Déterminer la masse molaire du butane.
- **9:** Déterminer la masse de gaz contenue dans l'éprouvette.
- **10:** Déterminer le nombre de molécules de butane contenues dans l'éprouvette.

A la pression atmosphérique et à la température de -1,0 °C, le butane est à l'état liquide.

11: Calculer alors la quantité de matière de butane contenu à l'état liquide dans 100mL d'une éprouvette graduée.

Dilution (2 pts)

12: Donner le protocole permettant de réaliser 100,0 mL d'une solution de sulfate de cuivre de concentration 2,0.10⁻²mol.L⁻¹ (S2) à partir d'une solution de sulfate de cuivre de concentration 1,0.10⁻¹mol.L⁻¹ (S1).

Interactions fondamentales: culture générale (3 pts)

- **13:** Expliquer ce qu'Hubert Reeves veut dire lorsqu'il affirme que nous sommes tous des « poussières d'étoiles ».
- **14:** Citer un moyen d'étudier la structure interne du noyau atomique et de ses constituants.

*** FIN ***

DS: DS01 - 2/2 -