The last few years have seen important advances in the understanding of 5-HT and its mechanisms of action in modulating responses to stress. Findings in a variety of animal models suggest that selective 5-HT$_{1A}$ receptor antagonists/inverse agonists may have therapeutic effects in anxiety- or stress-related disorders.

5-HT$_{1A}$ Receptor Blockers as Potential Drug Candidates for the Treatment of Anxiety Disorders

Summary

Serotonin (5-HT) is an important neurotransmitter which regulates various physiological responses, some of which are potentially important in the pathogenesis of stress-related diseases such as generalized anxiety. 5-HT produces its biological effects by stimulating specific 5-HT receptors. Among these, the 5-HT$_{1A}$ receptor has been the focus of considerable research since the early 1980s. This receptor subtype is widely distributed in the central nervous system and is located both presynaptically, on 5-HT cell bodies in the raphe nuclei of the brainstem, and postsynaptically, in particular, in limbic structures. A considerable body of evidence indicates that the activation of presynaptic 5-HT$_{1A}$ receptors yields anxiolytic activity. The recent availability of compounds that selectively block 5-HT$_{1A}$ receptors has prompted speculation about their potential to modulate emotional behaviors. Studies in animals show that 5-HT$_{1A}$ receptor antagonists display anxiolytic-like actions, but the magnitude of these effects is generally smaller than that of benzodiazepine anxiolytics. However, comparisons with 5-HT$_{1A}$ receptor agonists such as buspirone, a compound currently used in the treatment of generalized anxiety disorders, suggest that the anxiety-reducing potential of 5-HT$_{1A}$ receptor antagonists may be superior to that of full or partial agonists for this receptor. Clinical trials with 5-HT$_{1A}$ receptor antagonists in patients with anxiety disorders will eventually determine whether such compounds may be useful in the treatment of these conditions. © 1999 Prous Science. All rights reserved.
have been recognized: 5-HT_{1A}, 5-HT_{1B} (formerly also termed 5-HT_{1D\beta}), 5-HT_{1D} (formerly 5-HT_{1D\alpha}), 5-HT_{1E} and 5-HT_{1F}.

The 5-HT_{1A} receptor has been the focus of considerable research effort since the early 1980s. This receptor subtype is widely distributed in the central nervous system. It is located both presynaptically (somatodendritic autoreceptors), on the 5-HT cell bodies in the raphe nuclei of the brainstem which innervate the forebrain, and postsynaptically, in particular, in limbic structures, such as the hippocampus, septum and amygdala. 6–8 Stimulation of the postsynaptic 5-HT_{1A} receptor in rats produces a variety of physiological, biochemical and behavioral effects, including hypothermia, elevations in plasma corticosterone and a characteristic 5-HT syndrome consisting of flat body posture, forepaw treading and headweaving.

The activation of presynaptic 5-HT_{1A} receptors induces hyperphagia and anxiolytic-like activity in a variety of rodent models of emotional behavior. 6–8 This latter action is claimed to account for the clinical anxiolytic efficacy of the 5-HT_{1A} receptor agonists buspirone, gepirone and ipsapirone. 9–14

5-HT_{1A} receptor agonists also demonstrated efficacy in the treatment of depressive disorders. 15–22 Although the development of selective agonists for 5-HT_{1A} receptors has facilitated investigations of their functional role in these pathophysiological states, full characterization of this involvement has been hampered by the lack of selective antagonists for these sites. In addition to their utility as research tools, it has been suggested that selective 5-HT_{1A} receptor antagonists may themselves have anxiolytic potential. 23 This article briefly reviews the evidence suggesting that selective 5-HT_{1A} receptor antagonists may have the potential to become effective anxiolytic agents.

Search for selective 5-HT_{1A} receptor antagonists

Until recently, only nonselective 5-HT_{1A} receptor antagonists had been described. These include (−)-pindolol and (−)-propranolol, which have greater affinity for \(\beta \)-adrenoceptors than for 5-HT_{1A} receptors, 24–26 and spiperone, which displays high affinity for 5-HT_{2} and dopamine D_{2} receptors. 24,27 A number of compounds were initially designated selective 5-HT_{1A} receptor antagonists, for example, BMY-7378, 24 NAN-190 28 and MM-77, 29 but while demonstrating antagonistic-like activity in postsynaptic 5-HT_{1A} receptor models, these compounds showed partial agonist-like activity at presynaptic somatodendritic 5-HT_{1A} receptors. 24,29–31

The first ligands that displayed consistent 5-HT_{1A} receptor antagonist properties were the (S)-enantiomer of 5-fluoro-8-OH-DPAT, (S)-UH-301, 32 the phenylpiperazine derivative WAY-100135 33 and the pindolol derivative pindobind-5-HT_{1A}. 26 However, (S)-UH-301 and pindobind-5-HT_{1A} have only eight- and ninefold selectivity for 5-HT_{1A} relative to D_{2} receptors and \(\alpha_{1} \)-adrenoceptors, respectively. 26,32 Furthermore, (S)-UH-301 was found to display D_{2} agonist-like activity, 34 while WAY-100135 has demonstrated both 5-HT_{1A} receptor partial agonist activity 35,36 and \(\alpha_{1} \)-adrenoceptor antagonism. 37

It is only within the last few years that selective 5-HT_{1A} receptor antagonists have become available. These include the phenylpiperazine derivative WAY-100635 38–40 and its close structural analogue \(p \)-MPPI, 41–44 the pindolol analogue LY-297996 (also known as (−)-LY-206130), 45 the aminomethylpiperidine SL-88.0338, 46 DU-125530 47 and NAD-299 (Fig. 1). As shown in Table I, WAY-100635, SL-88.0338 and NAD-299 are the most selective. They display at least one hundred-fold selectivity for 5-HT_{1A} relative to other neurotransmitter receptors. LY-297996, DU-125530 and \(p \)-MPPI are moderately selective for

![Fig. 1. Structures of several selective 5-HT_{1A} receptor blockers.](image-url)
the 5-HT₁₄ receptor and display high affinity for β, α₁ and D₂ receptors.

Functional characterization of selective 5-HT₁₄ receptor antagonists

The 5-HT₁₄ receptor antagonistic properties of drugs that interact with this binding site can be demonstrated in a variety of in vitro and in vivo models of both pre- and postsynaptic 5-HT₁₄ receptor function. The activation of 5-HT₁₄ autoreceptors attenuates the rate of firing of raphe 5-HT neurons and, consequently, the release of 5-HT from axonal terminals. The former effect can be monitored electrophysiologically using raphe brain slices. Endogenous 5-HT release in forebrain regions is measured by microdialysis. In the hippocampus, postsynaptic 5-HT₁₄ receptors are linked to potassium channels and to adenylyl cyclase providing biochemical (inhibition of forskolin-stimulated cAMP synthesis) and electrophysiological models of postsynaptic function. Several in vivo responses are employed as functional models of presynaptic (hyperphagia) and postsynaptic (induction of 5-HT syndrome, hypothermia, elevation of plasma corticosterone or ACTH) 5-HT₁₄ receptors.

In vitro electrophysiological studies demonstrated that WAY-100635 blocked the effects of agonists at both the postsynaptic 5-HT₁₄ receptor in the CA1 region of the hippocampus and the somatodendritic 5-HT₁₄ receptor located on dorsal raphe 5-HT neurons. In vivo, WAY-100635 also blocked the ability of 8-OH-DPAT to inhibit the firing of dorsal raphe 5-HT neurons, to induce the 5-HT syndrome, hypothermia and hyperphagia, and to elevate plasma ACTH levels.

In the forskolin-stimulated adenyl cyclase assay using rat hippocampus, p-MPPI showed no intrinsic agonist activity, but completely antagonized the inhibition of 5-HT turnover induced by the 5-HT₁₄ receptor full agonist 8-OH-DPAT. Furthermore, in the absence of intrinsic effects, p-MPPI antagonized the hypothermia, 5-HT syndrome and inhibition of 5-HT turnover induced by 8-OH-DPAT.

LY-297996 was found to block 8-OH-DPAT–induced inhibition of forskolin-stimulated adenylyl cyclase in rat hippocampus and to prevent 8-OH-DPAT–induced elevations in serum corticosterone. In addition, the drug antagonized the 8-OH-DPAT–induced hyperphagia.

In models of presynaptic activity, SL-88.0338 blocked 8-OH-DPAT–induced inhibition of dorsal raphe firing, reversed 8-OH-DPAT–induced reduction of 5-HTP levels in the rat hypothalamus, hippocampus and cortex, and antagonized 8-OH-DPAT–induced hyperthermia in mice. In addition, SL-88.0338 potentiated 5-HTP–induced head twitches in mice, suggesting that it can enhance the effects of 5-HTP on 5-HT overflow via inhibition of presynaptic 5-HT₁₄ receptors. In models of postsynaptic activity, SL-88.0338 antagonized 8-OH-DPAT–induced inhibition of forskolin-stimulated cAMP production in rat hippocampus and blocked 8-OH-DPAT–induced forepaw treading in rats. SL-88.0338 also antagonized the discriminative stimulus effects and the rate-decreasing effects of 8-OH-DPAT in an operant discrimination procedure in rats. Interestingly, SL-88.0338 exhibited inverse agonist effects, as it inhibited basal 5-HT₁₄ receptor-mediated [35S]GTPγS binding in CHO-h5-HT₁₄ membranes, unlike WAY-100635, which exhibited antagonist activity without any detectable agonist or inverse agonist effects in this model.

DU-125530 was shown to act as a full antagonist on cloned human 5-HT₁₄ receptor. In vivo, it antagonized the discriminative stimulus effects of the 5-HT₁₄ receptor full agonist flesinoxan.

NAD-299 behaved as a postsynaptic 5-HT₁₄ receptor antagonist in both in vitro and in vivo experiments. It blocked 5-HT–induced inhibition of vasoactive intestinal peptide-stimulated cAMP production in GH4ZD10 cells and had no intrinsic activity. Moreover, NAD-299 antagonized the 8-OH-DPAT–induced 5-HT syndrome effects, hypothermia and corticosterone secretion.

Effects of selective 5-HT₁₄ receptor antagonists in animal models of emotional behaviors

A bewildering diversity of animal procedures claim to model anxiety. Most of them involve exposure of animals to external (e.g., cues previously paired with footshock) or internal (e.g., drug states) stimuli that are assumed to be capable of inducing anxiety in humans. The first of these categories can be grouped into two subclasses: the first subclass includes...

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>5-HT₁₄</th>
<th>5-HT₂A</th>
<th>AFFINITY (Kᵢ, nM)</th>
<th>D₁</th>
<th>D₂</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAY-100635</td>
<td>1</td>
<td>>100</td>
<td>229</td>
<td>100</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>p-MPPI</td>
<td>1</td>
<td>270</td>
<td>35</td>
<td>742</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>LY-297996</td>
<td>3.4</td>
<td></td>
<td></td>
<td>19</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>SL-88.0338</td>
<td>3.9</td>
<td>>1000</td>
<td>650</td>
<td>100</td>
<td>520</td>
<td>46</td>
</tr>
<tr>
<td>DU-125530*</td>
<td>0.7</td>
<td>240</td>
<td>6.4</td>
<td>5.2</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>NAD-299*</td>
<td>0.59</td>
<td></td>
<td>260</td>
<td>>1000</td>
<td>1000</td>
<td>48</td>
</tr>
</tbody>
</table>
ethologically based paradigms and involves animals’ spontaneous or natural reactions to stressful stimuli that do not explicitly involve pain or discomfort (e.g., elevated plus-maze, light/dark, social interaction, defensive behaviors); the second subclass involves animals’ conditioned or unconditioned responses to stressful and often painful events (e.g., exposure to electric footshock conflict tests).

WAY-100635 is the most studied 5-HT₁A receptor antagonist in anxiety models. As shown in Table II, results obtained with this compound have been highly variable. In the elevated plus-maze test in mice, WAY-100635 has been shown to produce robust anxiolytic-like effects on both conventional (open arm activity) and ethological (risk assessment) measures. Similarly, in a mouse defense test battery, where animals are directly confronted with a natural threat (i.e., a rat) as well as situations associated with this threat, WAY-100635 was found to modify defensive behaviors in much the same way as the benzodiazepine anxiolytic diazepam. Furthermore, evidence for an anxiolytic-like action of WAY-100635 has also been reported in certain rat models of anxiety, such as the fear-potentiated startle, the Vogel conflict, and light/dark exploration tests. However, there are a significant number of reports indicating that WAY-100635 is inactive in anxiety models. Thus, negative findings have been obtained in rat and pigeon conflict, ultrasonic vocalization, rat conditioned emotional response, mouse stress-induced hyperthermia, mouse light/dark, rat social interaction and rat elevated plus-maze tests.

Studies with p-MPPI and SL-88.0338 have also yielded differential profiles. Both drugs were found active in the elevated plus-maze and Vogel conflict tests and reduced defensive behaviors of mice confronted with a rat. However, they failed to alter punished responses in a modified Geller-Seifter procedure. In addition, SL-88.0338 did not change avoidance behavior of a brightly illuminated area in the light/dark test in mice. The few studies with LY-297996 and DU-125530 showed that the former produced variable effects in the elevated plus-maze test whereas the latter was active in the fear-potentiated startle test in rats but without effect against stress-induced hyperthermia in mice.

While some of these negative data may be due to the use of limited dose ranges, the general pattern of inconsistency has yet to be adequately explained. On the basis of the finding that LY-297996 produces anxiolytic-like activity in the murine elevated plus-maze in the mid-dark, but not the mid-light phase, it has been suggested that circadian factors may be important in the detection of 5-HT₁A receptor antagonist anxiolysis. Interestingly, when the 5-HT₁A receptor antagonists displayed anxiolytic-like effects, the magnitude of their effects was generally smaller than that of the benzodiazepine diazepam. However, comparisons with the 5-HT₁A receptor agonist buspirone, a compound currently used in the treatment of generalized anxiety disorders, suggest that the anxiety-reducing potential of 5-HT₁A receptor antagonists may be superior to that of full or partial agonists for this receptor. Clinical trials with 5-HT₁A receptor antagonists in patients with anxiety disorders will eventually determine whether such compounds may be useful in the treatment of these disorders.

The precise mechanisms underlying the positive effects of 5-HT₁A receptor antagonists in anxiety models remain to be determined. These compounds have all demonstrated antagonistic-like activity on pre- and postsynaptic 5-HT₁A receptors. As a result of findings that exposure to aversive stimuli like those used in the above studies increases 5-HT release, we would expect a 5-HT₁A receptor antagonist to attenuate this effect and thus display anxiolytic activity; however, further studies on this issue are clearly warranted.

Conclusion

In conclusion, the last few years have seen important advances in the understanding of 5-HT and its mechanisms of action in modulating responses to stress. Particularly, the findings that the blockade of 5-HT₁A receptors may decrease anxiety-related behaviors in a variety of animal models suggest that selective 5-HT₁A receptor antagonists/inverse agonists may have therapeutic effects in anxiety- or stress-related disorders. The development of such compounds as novel anxiolytics is
being actively pursued by a number of major pharmaceutical companies and data on the therapeutic potential of these compounds should become available soon.

Acknowledgments
The author would like to thank Dr. David J. Sanger and Dr. Ghislaine Perrault for critically reading the manuscript and making several useful remarks.

References

44. Thielen, R.J., Fangon, N.B. and Frazer, R.J. The effects of compounds varying in selectivity as 5-HT\textsubscript{1A} receptor antagonists on plus-maze behaviour in mice. I. Pirindolol enantiomers and pindobind 5-HT\textsubscript{1A} Pharmacol Biochem Behav 1997, 58: 583–91.

45. Cao, B.J. and Rodgers, R.J. Influence of 5-HT\textsubscript{1A} receptor antagonist on plus-maze behaviour in mice. II. WAY 100635, SDZ 216-525 and NAN-190. Pharmacol Biochem Behav 1997, 58: 593–603.

47. Griebel, G., Rodgers, R.J., Perrault, G. and Sanger, D.J. Behavioural profiles in the Mouse Defense Test Battery suggest anxiolytic potential of 5-HT\textsubscript{1A} receptor antagonists. Psychopharmacology 1999, 144: 121–30.

49. Griebel, G., Rodgers, R.J., Perrault, G. and Sanger, D.J. The effects of compounds varying in selectivity as 5-HT\textsubscript{1A} receptor antagonists in three rat models of anxiety. Neuropharmacology 2000: in press.

50. Sanchez, C. 5-HT\textsubscript{1A} receptors play an important role in modulation of behavior of rats in a two-compartment black and white box. Behaviour Pharmacol 1996, 7: 788–97.

63. Olivier, B., Zethof, T.J.J., Ronken, E. and Vanderheyden, J.A.M. Anxiolytic effects of flesinoxan in the stress-induced hyperthermia paradigm in singly-housed mice are 5-

75. File, S.E., Gonzalez, L.E. and Andrews, N. Registration dossiers for verteporfin Ciba Vision subsidiary in collaboration by the company’s related macular degeneration in dysentisizing agent since March 1999. Projects have entered development of seven investigational products has been terminated and four new development of seven investigational candidates reported to be in active projects going on, with 33 preclinical extensions) in clinical trials or under regulatory review. The company also has been submitted in the United States, Europe and Switzerland and priority review status has been granted by the FDA. The first approvals of the drug are expected to be received in the United States and Switzerland early next year, with product launches anticipated soon thereafter. Verteporfin will most likely be the first drug ever to reach the market for this indication.

Another significant near-term product is the insulin secretagogue nateglinide (Starlix™), an antidiabetic agent with a unique dual mechanism of action and excellent tolerability. Novartis has completed registration studies with nateglinide and expects to submit a New Drug Application (NDA) in December.

The company also has high hopes for the 5-HT4 agonist tegaserod maleate (Zelmac®), a promising new treatment for irritable bowel syndrome. Three pivotal trials have been completed, and filing is slated for January 2000. Tegaserod is also in phase II testing for the indication of gastroesophageal reflux disease (GERD).

E25, an anti-IgE monoclonal antibody, represents a unique approach to the treatment of allergic asthma and rhinitis. In collaboration with development partner Tanox, Novartis has completed registration studies of E25 in allergic rhinitis and is nearing completion of registration studies in asthma. Filings will be made in mid-2000.

Four new products were mentioned for the first time during the presentation:

The COX-2 (cyclooxygenase type 2) inhibitor COX-189 represents a new generation of compounds with a structure differing from those of celecoxib and rofecoxib. It is highly selective for COX-2 and has a quick onset of action, high potency, a broad spectrum of activity and an excellent tolerability profile.

KCO-912 is a potent and selective potassium KATP channel opener in development for asthma. It reduces the excitability of smooth muscle cells, neurons and secretory cells and decreases airways hyperreactivity, without producing the cardiovascular side effects seen with compounds such as cromakalim or bimakalim. KCO-912 demonstrated a wide therapeutic window in volunteer studies, and is now being evaluated in proof-of-concept studies in exercise-induced asthma.

ICL-670, a novel treatment for chronic iron overload, is in phase I testing. The appearance of this new product coincides with termination of ICL-749, a depot formulation of deferoxamine that was being developed for the same indication.

Finally, the company’s CNS pipeline has been enhanced with the addition of TCH-346, a candidate antiparkinsonian that is in phase I testing.

NOVARTIS R&D DAY 1999: INNOVATION DRIVES FUTURE GROWTH

Novartis has a rich R&D portfolio focused on seven key therapeutic areas and is in a position to launch three new products per year through 2003, according to company executives presenting September 21, 1999, at the Novartis R&D Investor Seminar in New York. The seven therapeutic areas being targeted by Novartis are transplantation and immunology; CNS; dermatology; cardiovascular/metabolic/endocrinology; respiratory diseases; oncology; and arthritis/inflammation/bone metabolism, with a total of 53 products (both new molecular entities and line extensions) in clinical trials or under regulatory review. The company also has a continuous stream of long-term projects going on, with 33 preclinical candidates reported to be in active development. In an ongoing process of portfolio prioritization, the development of seven investigational products has been terminated and four new projects have entered development since March 1999.

Near-term projects highlighted during R&D day include the photosensitizing agent verteporfin (Visudyne™), a novel treatment for age-related macular degeneration in development by the company’s Ciba Vision subsidiary in collaboration with QLT PhotoTherapeutics. Registration dossiers for verteporfin have been submitted in the United States, Europe and Switzerland and priority review status has been granted by the FDA. The first approvals of the drug are expected to be received in the United States and Switzerland early next year, with product launches anticipated soon thereafter. Verteporfin will most likely be the first drug ever to reach the market for this indication.

Another significant near-term product is the insulin secretagogue nateglinide (Starlix™), an antidiabetic agent with a unique dual mechanism of action and excellent tolerability. Novartis has completed registration studies with nateglinide and expects to submit a New Drug Application (NDA) in December.

The company also has high hopes for the 5-HT4 agonist tegaserod maleate (Zelmac®), a promising new treatment for irritable bowel syndrome. Three pivotal trials have been completed, and filing is slated for January 2000. Tegaserod is also in phase II testing for the indication of gastroesophageal reflux disease (GERD).

E25, an anti-IgE monoclonal antibody, represents a unique approach to the treatment of allergic asthma and rhinitis. In collaboration with development partner Tanox, Novartis has completed registration studies of E25 in allergic rhinitis and is nearing completion of registration studies in asthma. Filings will be made in mid-2000.

Four new products were mentioned for the first time during the presentation:

The COX-2 (cyclooxygenase type 2) inhibitor COX-189 represents a new generation of compounds with a structure differing from those of celecoxib and rofecoxib. It is highly selective for COX-2 and has a quick onset of action, high potency, a broad spectrum of activity and an excellent tolerability profile.

KCO-912 is a potent and selective potassium KATP channel opener in development for asthma. It reduces the excitability of smooth muscle cells, neurons and secretory cells and decreases airways hyperreactivity, without producing the cardiovascular side effects seen with compounds such as cromakalim or bimakalim. KCO-912 demonstrated a wide therapeutic window in volunteer studies, and is now being evaluated in proof-of-concept studies in exercise-induced asthma.

ICL-670, a novel treatment for chronic iron overload, is in phase I testing. The appearance of this new product coincides with termination of ICL-749, a depot formulation of deferoxamine that was being developed for the same indication.

Finally, the company’s CNS pipeline has been enhanced with the addition of TCH-346, a candidate antiparkinsonian that is in phase I testing.