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Abstract

Noise is one the first artefact caused by acquisition sys-
tem. The non-local means (NLM) denoising plug-in for
ImageJ is designed to remove the noise component from
images and this document aims to be a guide for users.
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1 Introduction

With any measurement provided by any acquisition system comes
a noise component. By restoring original signal, i.e. detecting
and removing noise component (denoising), further processing and
analysis tasks on that signal might be simplified and/or more rel-
evant. The same applies to images.

There are many ways to denoise images. The easiest one is
to acquire multiple images of the same object at the same time
and average them. The idea is to take advantage of the statistical
fluctuation of the noise to attenuate it. Nevertheless, it assumes
the object under study is not moving, at least for an instant. If
only one image is available, one can then use denoising algorithms.
The literature about such algorithms is huge but here is a quick
overview of methods: 1) local smoothing, such as the Gaussian
smoothing model (Lindenbaum et al. 1994); 2) frequency domain
filtering, such as the Wiener filter (Yaroslavsky 1985) (this filter
can also be used for deconvolution) and 3) statistical neighbour-
hood approaches such as the DUDE algorithm (Ordentlich et al.
2003). For a more detailed review of denoising methods, please
refer to Buades et al. (2005).

During the last decade, new methods have increased the de-
noising efficiency. For instance, the non-local means (NLM) de-
noising method is one the most powerful and the most used tech-
nique to denoise images (e.g. see Buades et al. (2005) for general
images, Coupé et al. (2008) for medical images and Boulanger et al.
(2010) for biological images). This document is meant to describe
the use the NLM denoising plug-in for ImageJ. Despite it can be
applied to any images, the main purpose of this implementation
was about confocal microscopy image denoising.

The rest of this document is subdivided into five sections.
First, the origin of noise and its modelling in images are defined.
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Then, the mathematics principles of the NLM denoising technique
are briefly explained. Later, the graphical user interface (GUI) of
the plug-in is described. Finally, four use cases are demonstrated.

2 Noise model

Noise is inherent to the image acquisition process. The main
source of noise is caused by the quantum nature of light and is
called shot noise. When the number of particles that carry energy
(photons or electrons) is small enough, statistical fluctuations be-
come detectable in a measurement. In addition, the sensor causes
two sources of noise: lecture noise (susceptibility of the sensor;
negligible in comparison with other noises) and thermal noise (due
to the increase of sensor’s temperature with the exposure-time).
Other sources of noise could be due to dust on sample, air fluc-
tuation, biological markers, etc. Here we are interested in only
denoising the acquisition noise, i.e. the shot and thermal noises.
However, if the other noises can be modelled by similar statistics
as acquisition noises, this plug-in can still be useful.

A standard noise model of the acquisition noise is the Pois-
son/Gaussian model. It is a mixture of a Poisson process and a
Gaussian process describing the shot and the thermal noises:

u = g × Z + ǫ , (1)

where u is the measured intensity, g is the gain, Z ∼ P(I) is
the Poisson component with I the intensity without noise and
ǫ ∼ N (µ, σ2) is the Gaussian component.

According to central limit theorem, when the number of photon
reaching the sensor is high, the Poisson/Gaussian model can be
well approximated by a Gaussian model. Indeed, for large num-
bers, the Poisson distribution approaches a normal distribution.
Then, the noise equation model becomes:

u = g × I + ε , (2)
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where u is the measured intensity, g is the gain, I is the intensity
without noise and ε ∼ N (µ, σ2) is the noise component.

3 Denoising images: seeking for redun-

dancy

Since the acquisition noise can be described by a stochastic pro-
cess, acquiring multiple times an image is efficient for denoising.
Indeed, only the noise component is different in each image (ran-
dom process) and therefore the noised intensities can be averaged
in order to estimate the denoised intensities. This method is work-
ing because advantage is taken from redundant information in the
images, i.e. regions that are similar except for the noise compo-
nent.

Sometimes, the accumulation of multiple images is not feasible
(e.g. acquisition of a living sample time-lapse). Instead, the NLM
denoising principle is to seek for redundant information in only
one image and use it to denoise this image (Buades et al. 2005).
Indeed, there is a high degree of redundancy in natural images
(here natural means real and not simulated by a random process):
for every small patch in a natural image, it is possible to find many
similar patches in the same image (stationary assumption).

Formally, the NLM denoising method is defined as the follow-
ing. Let Ω ⊂ N

N be an image domain and I : Ω → R the image to
denoise. Then, let ωi(p) be a similarity function between patches
centred on pixels i, p ∈ Ω and defined as

ωi(p) =
Kh(Vi − Vp)∑
j∈ΩKh(Vj − Vp)

, (3)

where Kh is a kernel with a bandwidth h and Vi is the patch (or
neighbourhood) centred on pixel i. Assuming a Gaussian model
of the acquisition noise, the NLM denoising method is to look for
similar patches in an image and weight them depending on their
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similarity, and then to estimate the intensity value of the central
pixel as the weighted sum of other pixels:

NLMD(p) =
∑

i∈Ω

ωi(p)u(i) . (4)

In the Gaussian model, the variance ε2 is an unknown param-
eter and represent the noise level. It can be set by the user or
it can be estimated automatically by using the pseudo-residuals
method (Gasser et al. 1986).

The stationary assumption1 is not true everywhere, as each im-
age may contain exceptional and non repeated structures. These
structures may be smoothed by the NLM algorithm. To prevent
this behaviour, the local noise variance can be estimated and com-
pared to the global noise variance. If the local variance is larger
than the global one, it means that the current part of the image
reflects a structure and should not be smoothed (Buades et al.
2005).

When the image is acquired in low light condition, the Gaus-
sian assumption does not hold any more. Therefore, a pre-step
should executed to stabilise the variance, i.e. to change the statis-
tics of the image from Poisson/Gaussian to Gaussian model. De-
spite it is not straightforward, it can be done using the Anscombe
transform (Murtagh et al. 1995).

4 Graphical user interface

Once installed, the plug-in can be found in menu Plugins > Restora-
tion > NLM Denoising. As shown in figure 1, the graphical user
interface (GUI) of the plug-in is subdivided into four parts to
control: the smoothness, the speediness, the neighbourhood pa-
rameters and the other options of the algorithm.

1i.e. as the size of image grows, we are able to find in image many similar
patches for all of the details of the image
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Figure 1: Graphical user interface (GUI) of the plug-in.
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Smoothness This part is used to control the smoothness of the
denoising algorithm and contains two parameters:

• the decay parameter allows the user to have a control on
the smoothness of the denoising (default is 0.3 and range is
[0, 1]);

• the “keep details” option is used to force the algorithm to
preserve small details that are smoothed otherwise (default
is activated).

Speediness The reduction factor allows the user to control the
speediness: it increases the speed of the algorithm as the reduction
factor increases (default is 2 and range is [1,∞[).

Neighbourhood This part is used to control the neighbourhood
options of the algorithm and contains two parameters:

• the patch size parameter controls the size of patches used to
match similar regions in image (default is 5 pixels);

• the window size parameter controls the size of the search
window used to find similar regions in image (default is
11 pixels).

These parameters are optimized for best results and should not be
changed, unless you know what you are doing.

Other options The last part contains three miscellaneous op-
tions or parameters:

• the noise variance that can be set by the user or automati-
cally estimated when 0 (default is 0);

• the “true 3D” option can be used to consider image as real
3D image and not a 2D image or a stack of slices; non-
recommended for 3D images with non-isotropic voxels (de-
fault is deactivated);
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• the Poisson/Gaussian model can be used when activating
the low light condition option; a variance stabilisation step is
then performed before the denoising (default is deactivated).

5 Implementation details

The main algorithm is implemented using a multi-scale block-wise
scheme (see Buades et al. (2005) for more details). The underlying
idea is to consider overlapping blocks of pixels instead of pixels
alone. The size of these blocks is controlled by the speediness
parameter (see section 4). Within this optimisation, the speed of
the algorithm is decreased by approximately s2, where s is the
speediness parameter set by user. Setting this parameter to 1 will
run the naïve implementation (pixel-by-pixel).

The noise variance is automatically estimated using the pseudo-
residuals method (Gasser et al. 1986). For the low light conditions
option, the variance is stabilised in the input image using the gen-
eral Anscombe transform and the parameters of this transform are
estimated using a quad-tree algorithm (see Boulanger et al. (2010)
for more details).

The plug-in is implemented in Java with the plug-in interface
of ImageJ and its source code is available on demand. The plug-in
is working fine with the version 1.49r of ImageJ and Fiji.

6 Use cases

6.1 Example 1: classical denoising

Within this first example, the denoising process and the use of
the noise variance option are demonstrated (see the results in fig-
ure 2). By leaving the noise variance to 0, it will be estimated
automatically by the plug-in.

If the results of the automatic estimation are not satisfactory,
you can set manually this option by a simple procedure. First,

8



(a) Original (b) Denoised - auto. (c) Denoised - manual

(d) Zoom original (e) Zoom denoised -
auto.

(f) Zoom denoised -
manual

Figure 2: Classical example of image denoising with both automatic and
manual setting for the noise variance.

find a homogeneous area (i.e. without any structure variation; see
in figure 3(a)). Then, compute the histogram of this area (use the
histogram command of ImageJ; see figure 3(b)). If the chosen area
is appropriate, the histogram should look like a Gaussian distribu-
tion (assuming a Gaussian model for the noise component). The
noise variance is then indicated by the statistics of this histogram
(the variance is the square of the standard deviation).

6.2 Example 2: keeping image details

A useful functionality of the plug-in is the “keeping details” option.
By using it, you can denoise an image while preserving parts of
the image that can be statistically considered as details of the
acquired structure and not as noise.
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(a) Original (b) Histogram

Figure 3: Histogram of the homogeneous area delimited by the red ROI.
This histogram is used to estimate the noise variance (indicated on the bottom
right).

In figure 4, the denoising is shown with and without using
this option. While using it, you can clearly see a gain on this
image where small structures (e.g. actin filaments) should not be
considered as a normal statistical fluctuation of the area (noise).

6.3 Example 3: low light conditions

Confocal images are often acquired in low light conditions, i.e.
the amount of photons emitted from the sample is small (e.g. if
you need to put the microscope in the photon counting mode).
In these particular conditions, the Gaussian approximation of the
noise (see equation (2)) is not valid any more. Therefore, before
applying the denoising algorithm described in section 3, a variance
stabilisation is required first. This is achieved using a dedicated
algorithm (see section 5). Then, the statistics of the noise are
“converted” from Poisson/Gaussian to Gaussian.

By using the low light conditions option, a variance stabilisa-
tion is applied prior to image denoising. In figure 5, the denoising
is shown with and without using this option. You can see a clear
gain on 1) overall denoising and 2) denoising accuracy at different
intensity level (the Poisson/Gaussian model is a signal-dependent
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(a) Original (b) Denoised (c) Keeping details

(d) Zoom original (e) Zoom denoised (f) Zoom keeping de-
tails

Figure 4: Effect example of the “keeping details” option. By activating this
option, the small structures are better preserved on this example.
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(a) Original (b) Denoised (c) Low light

(d) Zoom original (e) Zoom denoised (f) Zoom low light

Figure 5: Effect of the low light conditions option. By activating this option,
the noise component is correctly modeled and as a consequence, the denoising
is more efficient.

model, i.e. the noise variance depends on the signal level).

6.4 Example 4: other source of noise

This plug-in can be used not only to denoise acquisition noise,
but also to denoise any noise having Poisson/Gaussian (see equa-
tion (1)) or Gaussian (see equation (2)) statistics.

In figure 6, you can see an example of such denoising. The noise
in the cytoplasm is due to the experiment itself and not to the
acquisition process. Anyway, depending on the noise properties,
the plug-in may still be applicable. The first step is to check if
the noise component has one of the two statistics managed by
the plug-in. This is achieved by drawing a ROI in the cytoplasm
(red circle in figure 6(a)), and then computing the histogram (see
figure 6(c)). Since the histogram curve shows a Gaussian bell curve
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(a) Original (b) Denoised (c) Histogram

Figure 6: Denoising example of noise not due to acquisition. Here the noise is
due to the experiment itself. The histogram shows the statistics for the part of
the image surrounded by a red circle and that should be homogeneous. With
this histogram, we are able to see that the statistics look like a Gaussian with
a standard deviation of 28.4. Therefore, we can try to remove this noise with
the plug-in.

with standard deviation of 28.4, we can use the plug-in to denoise
the image (eventually by specifying 28.42 as noise variance in the
GUI).
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