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a b s t r a c t 

The development of post-processing reconstruction techniques has opened new possibilities for the study 

of in-utero fetal brain MRI data. Recent cortical surface analysis have led to the computation of quantita- 

tive maps characterizing brain folding of the developing brain. 

In this paper, we describe a novel feature selection-based approach that is used to extract the most 

discriminative and sparse set of features of a given dataset. The proposed method is used to sparsely 

characterize cortical folding patterns of an in-utero fetal MR dataset, labeled with heterogeneous gesta- 

tional age ranging from 26 weeks to 34 weeks. 

The proposed algorithm is validated on a synthetic dataset with both linear and non-linear dynamics, 

supporting its ability to capture deformation patterns across the dataset within only a few features. 

Results on the fetal brain dataset show that the temporal process of cortical folding related to brain 

maturation can be characterized by a very small set of points, located in anatomical regions changing 

across time. Quantitative measurements of growth against time are extracted from the set selected fea- 

tures to compare multiple brain regions (e.g. lobes and hemispheres) during the considered period of 

gestation. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Development of the central nervous system (CNS) is governed

y a complex set of several spatio-temporal mechanisms. Under-

tanding this sequence is fundamental for understanding perina-

al neurology ( Volpe, 2008 ). Many processes are involved in brain

evelopment at fetal and neonatal stages. These are asynchronous

rocesses taking place at different locations in the brain. For in-

tance, the main period of neural migration is 5 to 25 week post-

enstrual age (PMA). Once neurons have been generated, they

igrate through two different mechanisms (passive cell displace-

ent and active cell migration). Axon and dendrite sprouting starts

round 25 weeks PMA and declines around 1 year. The brain is

lso the scene of other major events such as synapse formation,

lial cell proliferation, myelination, etc. (see de Graaf-Peters and

adders-Algra, 2006 for a recent review of the ontogeny of the hu-

an CNS). 
∗ Corresponding author. 
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As highlighted by de Graaf-Peters and Hadders-Algra (2006) ,

he knowledge on the exact timeline of ontogenetic events occur-

ing during human brain development will provide new insights

n the influence of injuries appearing at a specific point in time

uring this important period of brain building. The modeling of

his process timeline from in vivo data is of great importance for

mproving, for instance, neonatal care services. It is clear that fe-

al and neonatal periods are key steps of brain development and a

etter understanding of the involved mechanisms is a corner stone

n perinatal care. 

Recent advances in ultrafast MRI sequences (such as half-

ourier turbo spin echo (HASTE) ( Yamashita et al., 1997 ) or sin-

le shot fast spin echo (SSFSE) Busse et al., 20 0 0 ) associated

ith the development of new techniques of image processing

or retrospective motion correction ( Rousseau et al., 2005 ) en-

bled to study in vivo fetal brain development. Since 2005, sev-

ral registration-based reconstruction techniques have been pro-

osed to estimate a 3D high resolution image from sets of scat-

ered T2-weighted slices ( Rousseau et al., 2006; Jiang et al., 2007;

imperopoulos and Clouchoux, 2009; Kim et al., 2010 ). These

econstruction techniques have been further enhanced by includ-

http://dx.doi.org/10.1016/j.media.2016.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.07.005&domain=pdf
mailto:julien.pontabry@helmholtz-muenchen.de
http://dx.doi.org/10.1016/j.media.2016.07.005


314 J. Pontabry et al. / Medical Image Analysis 35 (2017) 313–326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

2  

a  

n  

T  

i  

w  

r  

i  

a  

i  

i  

l  

t  

i  

c  

m  

w  

(

2

 

e  

m  

i  

c  

a  

p  

p  

r  

t  

d  

n  

c  

f  

r  

o  

b  

v  

a

 

t  

s  

w  

r  

c  

w  

h  

a

 

i  

m  

r  

t  

t  

h  

t

 

r  

g  

t  

t

ing super-resolution framework ( Rousseau et al., 2010; Gholipour

et al., 2010; Kuklisova-Murgasova et al., 2012 ). Following these

works on 3D fetal brain image reconstruction, several dedicated

segmentation methods have been proposed ( Habas et al., 2010b;

Caldairou et al., 2011; Gholipour et al., 2012; Dittrich et al., 2014 ).

See the review of Studholme (2011) for further reading on fetal

MRI reconstruction and segmentation. 

The development of these post-processing techniques had led

to new ways to perform structural development studies of the fe-

tal brain. Based on local volume changes using tensor-based mor-

phometry techniques, maps of fetal brain growth patterns have

been estimated leading to the detection of the emergence of sulci

and gyri by differentiating between the changes in the cortical

plate and the underlying cerebral mantle ( Rajagopalan et al., 2011 ).

This work has been extended to examine not only scalar expan-

sion of tissue but the directional components of that expansion

( Rajagopalan et al., 2012 ). The availability of high resolution 3D im-

ages of the fetal brain with tissue labeling enables also studies of

tissue boundary shape changes. This has led to the computation of

quantitative maps of brain folding further used for statistical detec-

tion of sulci and brain asymmetry emergence ( Habas et al., 2012 ).

Cortical folding analysis has been also used to predict physiologi-

cal age ( Wright et al., 2014 ). Such brain folding studies are of great

importance to improve our understanding of malformation of the

cortex. 

In this work, we focus on the study of the evolution of brain

folding during later stages of intrauterine life (third semester). In-

stead of computing local scalar features (e.g. cortical surface cur-

vature), we have chosen to investigate a data-driven dimensional-

ity reduction approach, allowing the extraction of global biomark-

ers of the brain development. The underlying question is: what

is the smallest most discriminative set of features reflecting fetal

brain folding? Following the work of Rajagopalan et al. (2012) , a

deformation based morphometry approach is adopted to capture

directional growth information on the white matter / cortex inter-

face. However, the voxel-based statistical testing method applied

in Rajagopalan et al. (2012) does not lead to easily interpretable

results of growth patterns. In this study, we have considered the

use of feature selection techniques in order to extract the spars-

est set of deformation fields describing the brain folding process.

By studying brain development as a shape modeling problem, we

are able to extract the most discriminative set of points related to

brain folding during in-utero development. 

2. Materials and methods 

2.1. Subjects and fetal MRI acquisition 

This study has been conducted on a population of 22 healthy

fetus aged from 26 to 34 weeks of gestational age at scan time

(normal MRI appearance checked by a radiologist, no issue dur-

ing the first days after delivery). The data set includes 23 MRI

T2 weighted images. Fetal MRI images have been obtained on a

1.5 T Siemens Avanto MRI Scanner (SIEMENS, Erlangen, Germany)

using a 6-channel phased array coil combined to the spine array

positioned around the mother abdomen. The resolution of the T2

weighted HASTE sequence (TE/TR = 147/3190 ms) is: 0.74 × 0.74

× 3.45 mm. Every image acquisition took about 1 min; at least

3 min in total for each subject (acquisition of multiple orthogonal

images). 

2.2. Image reconstruction and segmentation 

Raw dataset has been preprocessed using the “Baby Brain

Toolkit” (BTK) in order to increase image quality without mod-
fying the acquisition protocol used in routine ( Rousseau et al.,

013 ). The retrospective motion correction method is based on

 registration refined compounding of multiple sets of orthogo-

al fast 2D MRI slices to address the problem of fetal motion.

his is achieved by first globally registering the low resolution

mages, and then applying an iterative slice alignment scheme

hich seeks to refine the 3D positioning of each slice to the cur-

ent combined high resolution volume. This is driven by normal-

zed mutual information to provide robustness to contrast vari-

tion induced by motion of the fetal brain with respect to the

maging coil in the magnet. Moreover, a super-resolution technique

s applied in order to remove the effects of the blurring convo-

ution and to increase the voxel grid density. The resolution of

he reconstructed images is: 0.74 × 0.74 × 0.74 mm. A topolog-

cal based clustering technique is then applied on the motion-

ompensated high-resolution images to provide segmentation

aps (ventricles, CSF, cortical plate, non-cortical plate –including

hite matter, subplate, intermediate zone and deep gray nuclei)

 Caldairou et al., 2011 ). 

.3. Brain image normalization 

Adopting a standard approach for deformation based morphom-

try to compare anatomies at different stages of brain develop-

ent, a mapping is estimated to bring every subject’s anatomy

nto correspondence within a common coordinate system. This

ommon space corresponds to the average space of the subjects’

natomies. For this purpose, an iterative registration approach pro-

osed by Guimond et al. (20 0 0) has been used in this work. The

rocedure to estimate a common space is as following. First, a

eference image is chosen among the dataset and the non linear

ransformations from this reference to the remaining images of the

ataset are estimated using ANTS diffeomorphic registration tech-

ique ( Avants and Gee, 2004 ). Then, the bias introduced by the

hoice of a reference is corrected by using the average of all trans-

ormations. Finally, this average transformation maps the chosen

eference to a new space which corresponds to the average space

f the subject’s anatomies. The reference for the next iteration will

e this new space. These steps are repeated iteratively, until con-

ergence of the algorithm, which usually occurs within a few iter-

tions ( Guimond et al., 20 0 0 ). 

The choice of the first reference may impact the convergence of

he normalization algorithm. A good option is to choose the closest

ubject to the average space, that is the subject sharing anatomy

ith any subject in the population. A natural choice for the first

eference appears to be a middle age subject sharing all of the

onsidered structures with both younger and older subjects. In this

ork, since the population age ranges from 26 to 34 (see the age

istogram of population in Fig. 1 ), we empirically chose a subject

ged of 30 weeks. 

Parameters for ANTS registration are: cross correlation as sim-

larity measure, Gaussian regularization with a symmetric diffeo-

orphic transformation model. To avoid any possibility of mis-

egistration due to brain tissue contrast changes, the similarity cri-

erion used during the registration process is a weighted combina-

ion of image intensities and tissue label maps (a similar strategy

as been proposed by Habas et al. (2010a )). Weights have been set

o 0.5 for both features. 

To assess the quality of the atlas building step based on image

egistration, we have computed the average DICE coefficient of the

ray matter maps between the estimated template and the popula-

ion. This average DICE coefficient is equal to 0.85 ± 0.11, showing

he validity of the approach. 
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Fig. 1. Age histogram of the considered population. 
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Fig. 3. Dynamic of the two simulated sulci. A sigmoid function has been used to 

simulate a non-linear growth with parameters ( A, λ, T ) equal to (1.0, 1.0, 14.0) (red) 

and (0.7, 0.8, 7.0) (blue). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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.4. Feature selection 

Our objective concerns the selection of the most discrimina-

ive deformation-based features reflecting fetal brain development.

ere we assume that the fetal brain development process implies

eterogeneous deformation fields across the population (subjects

ave different gestational age). Please note that although we focus

n this work on brain folding, the proposed approach is versatile

nd it could be used with any other kind of relevant features ded-

cated to brain anatomy study. 

Let be P = { I 1 , I 2 , . . . , I N } a se t of N images. Theses images are

ormalized in an average space I computed as described previously

n Section 2.3 and that allows to capture shape changes across the

opulation. The transformation T i that maps the average space I to

he image I i is a composition of an affine transform and a non-

inear deformation field. In order to capture local shape changes

nly and following the previous work of Aljabar et al. (2011) ,

e only consider the non linear components of the mappings

 

T i } i =1 , ... ,N . Indeed, since the volume change is captured by the

ffine component, we expect the deformation fields to be repre-

entative of the local deformation, such as the sulcal formation. 

Each of the N non linear deformation fields that maps voxels

rom average space to population space consists of M vectors of

 

3 (where M is the number of voxels considered in the region of 
ig. 2. Dataset used in the synthetic experiment, composed of 20 images of size 128 × 1

rder to simulate the folding cortical surface. 
nterest). These 3D vectors are further arranged in a matrix Y ∈
 M×N (R 

3 ) where the rows and columns correspond respectively

o the features and the samples: 

 = 

⎛ 

⎝ 

�
 p 1 , 1 · · · �

 p 1 ,N 
. . . 

. . . 
. . . 

�
 p M, 1 · · · �

 p M,N 

⎞ 

⎠ , (1) 

here � p i, j is the 3D displacement vector of the voxel i in the de-

ormation field of subject j . Since we focus in this study on brain

olding, the analysis is restricted to the displacement vectors be-

onging to the cortical plate. The matrix Y is the full set of features

rom which a sparse representation of brain folding is estimated.

nstead of adopting a voxel-based approach, that is to say applying

 statistical testing method to detect the most significant folding

atterns locally, we propose a dimensionality reduction approach

iming at extracting from the matrix Y a small set of discrimina-

ive features. 

Such a dimension reduction issue can be tackled with either

eature extraction or feature selection techniques. Feature extrac-

ion methods transform the high-dimensional data into a space

f fewer dimensions. The main linear technique is the princi-

al component analysis (PCA) which performs a linear mapping
28 pixels. The 2D shapes have been created using a time-varying B-spline curve in 
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(a) 0 % noise (b) 5 % noise

(c) 10 % noise (d) 25 % noise

Fig. 4. Points selected by the proposed algorithm on the synthetic dataset with 50 

points to select ( M 

′ = 50 ) for four different noise levels. The location of selected 

points, inside sulci, is not much affected by noise level. 
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Fig. 5. Cost function evolution of the proposed algorithm on the synthetic dataset wit

decrease dramatically when selecting the first points and are almost constant after two se
f the data to a lower-dimensional space in such a way that

he variance in the low-dimensional representation is maximized

nd the co-variance is minimized. Although PCA may be applied

o study affine deformation, the linear assumption makes it less

dapted for non linear deformations. Non-linear feature extrac-

ion techniques have been proposed to preserve local data struc-

ures. An important example of such non linear techniques is

somap ( Tenenbaum et al., 20 0 0 ) (see Gerber et al., 2010 for an ex-

mple of Isomap application to manifold modeling for MRI dataset

nalysis). However, the lower-dimensional space may not be easily

nterpretable, meaning that in our context, the extracted patterns

o not correspond to displacement fields anymore. 

In this work, we investigate an alternate method by relying

n a feature selection approach, aiming at computing a subset of

he original variables. A general review of feature selection can be

ound in the paper of Guyon and Elisseeff (2003) and related selec-

ion techniques can be found in statistical learning books ( Hastie

t al., 2009; Elad, 2010 ). Within such framework, the sparsity prob-

em is written as an optimization problem, described in the follow-

ng paragraphs. 

Let Y j be the j th column of the matrix Y and X j a subset vec-

or of Y j ( X j ⊂ Y j ) of size M 

′ ≤ M . The key assumption here is that

he entire set of non-linear deformations can be reconstructed us-

ng only a very small set of 3D displacement vectors. Within such

 sparse framework, Y j and X j are linked by a reconstruction func-

ion f : 

 j = f (X j ) . (2)

In this work, we chose to formulate the reconstruction func-

ion f as a regression function because it is appropriate for a dis-

rimination criterion. Since we do not want to put any prior on the

hape or degree of freedom, we chose the Nadarya–Watson kernel
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h 50 points to select ( M 

′ = 50 ) for four different noise levels. The cost functions 

lected points. As the noise level increases, the cost function becomes more smooth. 
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(a) No selected points (b) 1 selected point (c) 2 selected points

Fig. 6. Residuals of the reconstruction function with the considered synthetic dataset for 0, 1 and 2 selected parameter. From top to bottom: dataset with noise level of 0 %, 

5 %, 10 % and 25 %. Each selected parameter allows to decrease dramatically the residuals in its area of influence. As the noise level increases, this observation becomes less 

clear. 

f

 

w

w  

T  

s  

b  

i  

r  

S  

t

{  

w  

t  

l

J  

 

p  

i  

l  

r  

t  
unction ( Nadaraya, 1964 ): 

ˆ f (X, h ) = 

N ∑ 

j=1 

w j (X, h ) Y j (3)

here the weighting function w j is written as 

 j (X, h ) = 

K h (X − X j ) ∑ N 
k =1 K h (X − X k ) 

. (4)

he parameter h is the bandwidth of the kernel K h acting on the

ubset X , which could be any of the X j . The proposed sparsity-

ased approach relies on the assumption of redundant information

n the original sample Y . Therefore, the relevant information is car-

ied by a subset of parameters, i.e. a subset of rows in matrix Y .

uch a subset of M 

′ parameters should minimize the following cri-
 T  
erion: 

 ̂  γ , ̂  h } = arg min 

γ ,h 

J(γ , h ) s.t. ‖ γ ‖ 0 ≤ M 

′ , (5)

here γ ∈ M M×1 ({ 0 , 1 } ) is a binary vector used to define the ac-

ivated parameters and J is the reconstruction error defined as fol-

ows: 

(γ , h ) = 

N ∑ 

j=1 

∥∥∥Y j − ˆ f ( diag (γ ) · Y j , h ) 

∥∥∥
2 
. (6)

Optimization problems such as defined by Eq. (5) are NP-hard

roblems because of the use of L0 norm ( Elad, 2010 ). An approx-

mated solution of such problems can be obtained either by re-

axing the L0 norm to the L1 norm or by using a heuristic algo-

ithm. In this work, we used an alternate optimization scheme, i.e.

he two parameters of interest { γ , h } are estimated alternatively.

he estimation of the bandwidth parameter h is performed using a
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Algorithm 1: Feature selection algorithm. 

Input : 
Y Set of deformation fields 

M 

′ Maximum number of parameters to select 

E Error threshold 

Output : 

X Selected features 

γ := (0 · · · 0) T 

Estimate parameter h 

J 0 := J(γ , ̂  h ) 

k := 1 

while k ≤ M 

′ and Ē (γ , h ) ≤ E do 

J k := J k −1 

foreach feature i such that γ (i ) = 0 do 

γ (i ) := 1 

if J(γ , ̂  h ) < J k then 

J k := J(γ , ̂  h ) 

i (+) 
k 

:= i 

end 

γ (i ) := 0 

end 

if one parameter to add is found then 

γ
(

i (+) 
k 

)
:= 1 

Estimate parameter h 

k := k + 1 
else 

Stop the loop 

end 

end 

X := diag (γ ) · Y 
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Fig. 7. Assessment of the proposed method to predict meta-data with synthetic 

dataset. The plots show time labels against predicted ones for the training dataset 

and a randomly generated dataset. On average, the prediction error is about 1 time 

unit. Even with 25 % of noise, the prediction error for randomly generated dataset 

is limited (1.67 ± 1.36 time unit). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

a  

g  

m  

p

v  

w  

h

3

 

d  

a  

t

 

c  

p  

i  

t  

t  

t  

a  

t  

a  

a  

d

3

 

s  

d  
gradient descent technique within a leave-one-out strategy ( Wand

and Jones, 1995 ). The estimation of the activation vector γ is ob-

tained using a greedy algorithm ( Pudil et al., 1994 ) with a com-

plexity of O(M 

′ M) cost function evaluations in the worst case,

also within a leave-one-out strategy. The vector γ is first initialized

to the null vector. Then, M 

′ features at most are added iteratively.

At each step, the feature added is the feature that maximizes the

decrease of the reconstruction error. This procedure is detailed in

Algorithm 1 . 

The following convergence criterion have been defined for the

proposed algorithm: 

1. The maximal number of parameter to select M 

′ is reached; 

2. No parameter can be added without increasing the cost func-

tion; 

3. The reconstruction error is lower than a predefined error

threshold E . 

Eq. (6) provides the global reconstruction error for which it

could be difficult to set a convergence criterion. Therefore, we in-

troduce the mean reconstruction error of parameters expressed in

mm as: 

Ē (γ , h ) = 

1 

NM 

N ∑ 

j=1 

M ∑ 

i =1 

∥∥∥Y i, j − ˆ f ( diag (γ ) · Y j , h ) i 

∥∥∥
2 

, (7)

where ˆ f ( diag (γ ) · Y j , h ) i is the reconstruction of the i th displace-

ment vector of the j th subject. This last equation provides the av-

erage error in mm considering one parameter. Eq. (6) is used for

the optimization process, whereas Eq. (7) is used as a convergence

criterion only. 
Once a discriminative subset of features is sparsely selected,

 quick and natural way to predict meta-data variables, such as

estational age for instance, is to take advantage of the weighted

ean formulation of the reconstruction function (see Eq. (3) ), re-

lacing Y j by meta-data variable v j corresponding to subject j : 

ˆ 
 (X, h ) = 

N ∑ 

j=1 

w j (X, h ) v j , (8)

here X is the selected features of an eventually new subject and

 is estimated as previously. 

. Results 

Experiments have been conducted on both synthetic and real

atasets. In the first part, the behavior and the performance of the

lgorithm are studied on synthetic datasets. Then, in a second part,

he proposed method is applied on in vivo fetal brain dataset. 

In each experiment, a Gaussian kernel is used within the re-

onstruction function (see Eq. (3) ) and the maximum number of

arameter is set to M 

′ = 50 . The mean parameter error threshold

s set to E = 0 . 1 mm for experiments on brain MR images. For syn-

hetic experiment only, this threshold is set to 0 in order to study

he convergence of the algorithm. Each cost function plot shows

he full cost function up to M 

′ iterations with a blue plain line

nd the iteration reached by the algorithm with the stopping cri-

erion with a vertical dashed red line. Meta-data predictions (time

nd gestational age for synthetic and real datasets respectively)

re provided for both training (initial) and randomly generated

atasets. 

.1. Synthetic dataset experiments 

The proposed algorithm has been tested on a synthetic dataset

imulating the simultaneous growth of two sulci with non-linear

ynamics. The images of the dataset have been processed in the
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Fig. 8. Four randomly chosen deformation fields of the dataset displayed in the reference space. The color code corresponds to the magnitude of the vectors from blue (low 

magnitude) to red (high magnitude). The selection algorithm is applied on the cortical deformation fields mapping the reference space to population. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

(a) h = 0.5 (b) h = 1 (c) h = 1.5 (d) h = 2 (e) h = 3

Fig. 9. Study of the influence of the choice of the bandwidth parameter of the proposed algorithm. As the bandwidth increases, the number of selected parameters increases 

as well. An important property is the location stability of the solution with various bandwidth values. For display purpose, the selected parameters are depicted on a surface 

reconstruction of the reference space. 
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Fig. 10. Mean distances between clouds of selected points for several bandwidths 

(see Fig. 9 ). For two sets of selected points, the mean distance is computed as the 

mean distance of each point in the first set to the closest point in the second set. 

Since the measured error is about 1.5 mm on average (i.e. one voxel and a half), this 

quantification shows the anatomical stability of the selection with different band- 

widths. 
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ame way as the fetal brain dataset (see the procedure described in

ection 2.3 ). All the fitting procedures have been performed within

atLab’s curve fitting application (non-linear least square function,

ith the Levenberg-Marquardt algorithm and the LAR robustness

ethod). 

.1.1. Data generation 

The synthetic dataset is composed of 20 two-dimensional im-

ges of size 128 × 128 pixels simulating the formation of two sulci

see Fig. 2 ). The first image of this dataset represents a flat cortical

late while the last one represents two sulci with different depth.

he shapes have been created using a time-varying B-Spline curve

o simulate the folding cortical surface (see Fig. 3 ). The growth dy-

amics have been modeled by a sigmoid function x �→ 

A 
1+ e −λ(x −T ) 

ith parameters ( A, λ, T ) equal to (0.7, 0.8, 7.0) for the first sulcus

right on Fig. 2 and blue curve on Fig. 3 ) and (1.0, 1.0, 14.0) for the

econd sulcus (left on Fig. 2 and red curve on Fig. 3 ). 

In order to simulate a more realistic dataset, additive white

aussian noise has been added to images. The noise level is de-

cribed by the ratio between the standard deviation of the noise

nd the standard deviation of the image and is expressed as a per-

entage. Within this work, 5%, 10% and 25% of noise have been

dded to the clean dataset. 

.1.2. Selection 

The results of the proposed algorithm on the synthetic dataset

re depicted in Fig. 4 . The algorithm allows to select only two

oints, which is consistent with the simulated dataset (two sulci).

oreover, as expected, the selected points are located inside the

rtificial sulci. As shown on the figure, the locations of the selected

oints are quite stable across noise level. 

The evolution of cost functions are plotted in Fig. 5 . Conver-

ence is reached when only two features have been selected. In-

eed, the cost functions decrease dramatically with the selection

f the first features and are almost constant after the second itera-

ion. The evolutions of the cost functions suggest that two selected

oints capture the main variability of the dataset. 

While the locations of the selected are barely affected by the

oise level, the cost function exhibits a smoother decrease as the

oise level increases. It can be explained by the reconstruction er-

or minimization used by the algorithm (see Section 2.4 ): the nois-

er the dataset is, the more points the proposed algorithm needs
o select in order to achieve a proper reconstruction of the dataset.

oreover, it is interesting to note that the selected points are not

ecessarily located at the deepest points of the artificial sulci. 

The residual errors (displayed in Fig. 6 ) decrease dramatically

fter the selection of the first and the second parameter and are

ainly located inside the simulated sulci. Each selected parame-

er allows to decrease the residuals in its area of influence. As the

oise level increases, the residuals increase as well. 

.1.3. Temporal pattern analysis 

In this section, we study the ability of the proposed approach

o estimate growth dynamic based on the selected points. 

Sulci formation has been simulated using a sigmoid growth

odel using three parameter ( A, λ, T ). A is related to the maxi-

um amplitude of each sulcus and then depends on selected point

ocation. However, the dynamic of the growth change can be cap-

ure by estimating λ and T . The first sulcus has been simulated

sing λ = 0 . 8 and T = 7 . Using a fitting procedure based on the ex-

racted points, the estimated parameters (lambda,T) for noise level

 %, 5 %, 10 % and 25 % are respectively (0.80, 6.80), (0.90, 6.64),

0.82, 6.38) and (0.90, 7.86). Concerning the second sulcus simu-

ated using λ = 1 and T = 14 , the estimated parameters ( λ, T ) for

oise level 0 %, 5 %, 10 % and 25 % are respectively (1.27, 13.15),

1.80, 11.66), (1.59, 11.02) and (2.05, 11.64). In order to assess the
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Fig. 11. The regions of interest used with the feature selection algorithm and de- 

picted on a surface reconstruction of the reference space. These regions corresponds 

approximately to the frontal (red), temporal (blue), parietal (green) and occipital 

(yellow) lobes. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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quality of these estimates, we used the selected points for predic-

tion. 

Prediction error of time labels using Eq. (8) for the training and

a randomly generated datasets are plotted in Fig. 7 . The mean pre-

diction errors of the training (random) dataset for noise level 0 %,
(a) h = 2 (b) Optimal h

Fig. 12. Selection of cortical points on four lobe regions of the left hemisphere using the 

display purpose only). The left column shows the solution for a fixed bandwidth ( h = 2 )

lobe; second row: temporal lobe; third row: parietal lobe; last row: occipital lobe. The sel

maps the curvature of the cortical plate from blue color (positive curvature) to red colo

reached by the algorithm when using stopping criterion (see Section 2.4 ). (For interpreta

web version of this article.) 
 %, 10 % and 25 % are respectively 0.40 ± 0.48 (0.58 ± 0.40), 0.27

0.26 (1.09 ± 1.03), 1.01 ± 1.35 (1.16 ± 1.04) and 0.35 ± 0.53 (1.67

1.36). On average, the prediction error is about 1 time unit. As

oise level increases, the prediction error increases as well but is

imited: even with 25 % of noise, the prediction error for randomly

enerated dataset is smaller than 2 time unit. 

.2. Application on fetal brain MRI dataset 

Since our first objective is to study the geometrical changes of

he cortical folding through in-utero brain maturation, we define

s region of interest the cortical gray matter. Moreover, average

eformation fields (computed in the orthogonal direction of brain

urface) along the cortical gray matter have been used in order to

educe the initial parameter set to a smaller set of 3D displace-

ent vectors ( Rajagopalan et al., 2012 ). Fig. 8 shows five examples

f deformation fields considered in this study. 

.2.1. Influence of the bandwidth parameter h 

In this experiment, we evaluate the influence of the bandwidth

arameter h over the selected points. Here, we applied the selec-

ion algorithm by setting manually this parameter h ∈ {0.5, 1, 1.5,

, 3}. The results obtained applying the algorithm on the tempo-

al lobe for different values for h are displayed in Fig. 9 . First, it
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. The other columns show the results for the optimal bandwidth. Top row: frontal 

ected cortical points are depicted as red spheres. The color code in 3D mesh views 

r (negative curvature). The red dashed line in (d) locates the number of iterations 

tion of the references to colour in this figure legend, the reader is referred to the 
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Fig. 13. Selection of cortical points of four lobe regions of the right hemisphere using the proposed algorithm depicted on a surface reconstruction of the reference space 

(for display purpose only). The left column shows the solution for a fixed bandwidth ( h = 2 ). The other columns show the results for the optimal bandwidth. Top row: frontal 

lobe; second row: temporal lobe; third row: parietal lobe; last row: occipital lobe. The selected cortical points are depicted as red spheres. The color code in 3D mesh views 

maps the curvature of the cortical plate from blue color (positive curvature) to red color (negative curvature). The red dashed line in (d) locates the number of iterations 

reached by the algorithm when using stopping criterion (see Section 2.4 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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an be easily seen that increasing the value of h makes the num-

er of selected points increase. Please note that h is a parameter

hat controls the smoothness of the non parametric regression and

herefore the value of h is related to the sparsity of the solution. 

Second, this experiment also shows the anatomical stability of

he selected features. For instance, see the distance error between

ets of selected points for different bandwidths in Fig. 10 . This er-

or is computed as the mean distance of each point in the first set

o the closest point in the second set. It is used as an indicator of

natomical stability of selected points across bandwidths. On av-

rage, this error is about 1.5 mm. Therefore, the average error be-

ween selected points across bandwidths is only about two pixels.

t appears that the selected points are located in the main sulci

superior temporal sulcus, inferior temporal sulcus, lateral sulcus)

n this region of interest, appearing during the considered period

f age. This is a key point since it means that modifications of the

andwidth only influence the number of selected points, not their

natomical locations (i.e. the estimated growth pattern). In other

ords, while the value of the bandwidth h modifies the sparsity

f the solution, it does not modify the spatial pattern of the most

iscriminative selected points. 

Third, the experiment, restricted on the temporal lobe area,

hows that growth variability can be captured by few points in the

ulci of interest. 

Please note that in the proposed algorithm, the bandwidth

arameter h is estimated at each iteration using a leave-one-
 p  
ut strategy in order to minimize the variance of the regres-

ion function. For the next experiments, h is then computed

utomatically. 

.2.2. Points selection on fetal brain lobes 

In this section, we propose to apply the feature selection algo-

ithm onto 8 regions of interest (ROI) corresponding approximately

o the frontal, temporal, parietal and occipital lobes of each hemi-

phere (see Fig. 11 ) in order to characterize spatial pattern of cor-

ical folding for the considered period of age (26 to 34 weeks).

he purpose is 1) to reduce the computation time of the algo-

ithm by pre-selecting ROI (common strategy for feature selection

echniques) and 2) to provide statistics on the selected set of cor-

ical points for each lobe separately. The cortical parcellation of

he template has been obtained using a patch-based segmenta-

ion technique ( Rousseau et al., 2011, 2013 ). Each of these ROI have

een considered independently. 

Experiments previously described have shown that the selected

oints tend to be in sulci valleys. Thus, the ROI defined here do not

xactly match the anatomical lobes to avoid any bias of selected

ulci. For instance, the central sulcus should define the boundary

etween the frontal and parietal lobes. However, we chose to as-

ociate the central sulcus with the parietal lobe, in order to give a

hance to the algorithm to select cortical points of this sulcus. 

The results of the selection algorithm on brain lobes are dis-

layed in Figs. 12 and 13 respectively for lobes in left and right



322 J. Pontabry et al. / Medical Image Analysis 35 (2017) 313–326 

(a) initial (b) after selection

Fig. 14. Residuals of the cost function (6) before and after selection with automatic stopping criterion projected on population’s average space. All lobes are displayed at the 

same time. This reconstruction experiment shows that within a few selected features (see Figs. 12 and 13 ), most of the variability of the dataset is captured. 
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hemispheres. For each considered ROI, four types of results are

provided : (a) selected points when the bandwidth h is set to 2,

(b) selected points when h is automatically estimated, (c) a coronal

view showing the location of selected points and (d) the evolution

of the cost function. While the first visualization (using h = 2 ) pro-

vides the main patterns of selected features, the second visualiza-

tion (using automatic bandwidth computation) shows the sparsity

of the reached solution of the algorithm. Only few features (up to

6) are required to discriminate the sets of images for each ROI. The

coronal view confirms previous experiments (see Section 3.2.1 ):

the selected points are located into sulci valleys. 

The residuals of the reconstruction error (6) before ( M 

′ = 0 ) and

after automatic selection ( M 

′ is found automatically using the stop-

ping criterion described in Section 2.4 ) projected on population’s

average space are displayed in Fig. 14 . While the initial residuals

highlight regions with high variability across the population, the

residuals after selection exhibit in comparison the ability of the

proposed method to capture most of variability within a few se-

lected features (less than 6 for each lobe). 

As described in Section 2.4 , it is possible to predict meta-data

variables with Eq. (8) once a subset of cortical points has been se-

lected with the proposed method. Predictions have been made for

fetal brain dataset using this equation with a leave-one-out scheme

in order to prevent overfitting. Fig. 15 shows the gestational age

prediction errors for the lobe regions used independently as ROI

within the proposed method. The average error for frontal, tem-

poral, parietal and occipital left (respectively right) lobe regions

are 0.74, 0.90, 0.75 and 1.10 (respectively 0.84, 0.87, 0.82 and 0.91)

weeks. By merging all this predictions, the global prediction error

is on average about 0.83 weeks. 

3.2.3. Evolution of deformation vector magnitude 

We examine in this section the temporal evolution of magni-

tudes of selected deformation vectors. Once the most discriminant
oints are selected for each region of interest, we compute the set

of deformation fields between each subject and the mean im-

ge estimated at 26 weeks: V = { � v x (t i ) } where x is the location

f each selected point and t i is the time difference between the

ge of the subject i and 26 weeks. The evolution of the magni-

udes of computed deformation fields at selected point locations is

stimated using a temporal polynomial of degree 3 regression ap-

roach (see Fig. 16 for an instance of regression over time for one

ector). We chose a polynomial regression model for the growth

easurements because we want to make our quantifications com-

arable with previous work that often used such methods (see for

nstance the work of Habas et al. (2010a ) and Habas et al. (2012) ).

ig. 17 shows (a) the time evolution of the mean magnitude for the

ight considered ROI (corresponding to the left-right lobes), (b) the

ean magnitude for the four ROI by fusing data from left and right

emispheres, and (c) the mean magnitude by considering only left

s right. It can be seen that mean magnitude at occipital lobe has

 different tem poral evolution from the three other anatomical re-

ions. Moreover, temporal differences in left and right temporal

volution are also observed. Statistical testing on larger dataset (i.e.

sing more fetal brain MRI images) has to be conducted in order

o verify the significance of these observations. 

. Discussion 

In this paper, we have shown that early cortical folding pat-

erns occurring during fetal brain development can be expressed

y a sparse representation using a discriminative feature selec-

ion approach. By using sparse non linear deformation fields, we

ave highlighted major cortical surface changes in the consid-

red age interval. Such information extraction is important since

ulci can be used to discriminate brain development stages. The

eriod of age considered in this work (26 to 34 weeks) corre-

ponds to a linear evolution of the surface curvature observed
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Fig. 15. Gestational age prediction error for each lobe region. The average error for frontal, temporal, parietal and occipital left (respectively right) lobe regions are 0.74, 

0.90, 0.75 and 1.10 (respectively 0.84, 0.87, 0.82 and 0.91) weeks. By merging all this predictions, the global prediction error is on average about 0.83 weeks. 
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y Wright et al. (2014) (middle part of the sigmoid model used by

right et al.)). Our experiments performed on mean magnitudes

f deformation vectors tend to show the same trend. 

In this work, we have considered non linear deformation fields

roviding voxel correspondence between each subject. Feature se-

ection technique has been applied on these dense deformation

elds in order to compute the smallest discriminative set of fea-

ures characterizing the cortical folding process during fetal brain

evelopment. We found sparse fields by minimizing a reconstruc-

ion error subject to L0 norm regularization. An approximate so-

ution has been estimated with a greedy algorithm. An alterna-
ive approach could have been to use an other sparsity inspired

ariable selection techniques like Lasso or Elastic-net methods. The

ain difference is the norm used in the regularization: L1 for the

asso and weighted sum of L1 and L2 for the Elastic-net. While

1 and L2 norms take into account magnitudes of components, L0

orm does not. Indeed, L0 norm relates only the number of null

ector, L1 norm penalizes vectors with non-null magnitudes and

2 norm penalizes mostly vectors with high magnitude. Often, L1

orm is regarded as a good approximation of L0 norm. Because of

ts convexity, the optimization problem would be easier to solve

ithout resort to heuristic algorithm. A further work would be to
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(b) Second component (ante-
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(c) Third component (inferior

to superior)

Fig. 16. Example of polynomial regression over time (degree 3) for a randomly selected vector from the right temporal lobe. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 17. Mean magnitude of selected deformation vectors of lobes over time. 
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compare the accuracy of the solutions provided by Lasso technique

and the proposed method. 

In order to be able to select features, the proposed method

need to normalize the brain population in a common reference

space. Usually, average space of the brain population is used as

reference space. This normalization raises the question of how it

will impact the selection output. In this work, we chose an it-
rative and unbiased method that is widely used in the commu-

ity ( Guimond et al., 20 0 0 ). The principle is to initialize the nor-

alization procedure with an empirically chosen image among the

opulation and then correct for the bias iteratively by taking the

verage of deformations, until convergence of the algorithm to the

verage space of the population. The proposed method relies only

n the deformation fields, mapping non-linearly a structure (e.g.

ulci) in one subject to the same structure in the common ref-

rence space. Therefore, the output solution is dependent on the

uality of the registration process that occur during the brain nor-

alization. 

It is a standard approach in morphometry to define an unbi-

sed average anatomy as reference space. However, the specific

ase of fetal brain development analysis may imply to use alterna-

ive strategies. Indeed, thinking the brain development as a grow-

ng process with a beginning and an end, an average space might

ot be appropriate. A natural alternative would be to use for in-

tance a smooth surface as the beginning of the developmental

rocess and an adult brain as the end. 

In this study, the registration step and the feature selection are

ndependent. An alternative approach could have been to develop

 registration technique incorporating a sparsity prior on the de-

ormation fields. This kind of generative approach is related to the

ork of Durrleman et al. (2012) in which a new parametrization of

eformations is proposed in order to capture the variability in im-

ge ensembles. The key idea in their work is to select the most rel-

vant control points and to estimate their positions in a template

omain. A major difference between these two works is that con-

rol points may not belong to the shape under study. Thus, measur-

ng the variability through the distribution of control points may

ot be easily interpretable with respect to the studied temporal

rocess. By separating the registration step and the shape variabil-

ty study, we can focus on shape deformation locally related to cor-

ical folding. 

Our work is also related to the recent study of growth seeds

erformed by Lefèvre et al. (2009), where an analysis of depth

aps of cortical surface based on the Helmholtz decomposition

f the deformation fields. In the work of Lefèvre et al. (2009),

hich is also related to the works of Cuzol et al. (2005) and

renander et al. (2007) , the main idea relies in that a decomposi-

ion is used to make the physical interpretation of the deformation

elds (capturing the brain maturation process) easier. Such decom-

osition has been recently investigated to discover critical regions

f volume changes in Alzheimer disease ( Lorenzi et al., 2015 ). Our

pproach is complementary to these techniques in the sense that

he relevant (i.e. most discriminative) displacement vectors are se-

ected using a non-parametric approach. Further work would con-

ist in analyzing the impact of the deformation model on the se-

ected features. 
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Due to the type of acquired data (i.e. fetal MR images of

everal subjects at different time points), the global variability

f the dataset comes from both cross-subject and longitudinal

ariabilities. A strategy to disambiguate this limitation is to ac-

uired longitudinal dataset (several subjects at multiple and dif-

erent time points) and use an appropriate longitudinal trajectory

stimation algorithm (see for instance the work of Hart et al.,

010 or Durrleman et al., 2009 ). So far, there is actually no lon-

itudinal studies on fetal brain development with MRI data due

o the difficulty of such data acquisition. In our work, despite we

re not able to clearly differentiate both variabilities, we took the

dvantage of the discriminative property of the proposed method.

ndeed, it will enforce the selected features to be the most differ-

nt across the population, and therefore to locate anatomical areas

ith the most changing pattern across the population. 

As shown in our experiments, the most discriminative points

ie in deep sulcal regions. These specific locations could be used

s consistent shape features (or biomarkers) in further studies. Fu-

ure work will consist in analyzing these patterns with regard to

revious related works on sulcal root ( Régis et al., 2005 ) and sul-

al pit ( Lohmann et al., 2008 ). It has been shown that deepest

arts of sulci generally show less inter-individual variability than

uperficial parts ( Lohmann et al., 2008 ). The study of local fluctu-

tions of these cortical patterns using a clustering approach such

s in ( Sun et al., 2009 ) could provide complementary insights on

rain folding to gyrification index measurements ( Clouchoux et al.,

011 ). The spatial distribution of deep sulcal landmarks ( Im et al.,

010 ), especially over time ( Meng et al., 2014 ), may help to set up

ew early markers of later functional development ( Dubois et al.,

008 ) or particular cortical malformation (such as polymicrogyria)

hat might be difficult to detect and quantify visually. In this con-

ext, the proposed approach could be adapted to surface-based

ethodology that have been recently applied for the study of fetal

ortex ( Lefèvre et al., 2015; Auzias et al., 2015 ). 

The stability of sparse solutions is a critical point within vari-

ble selection algorithms, especially when the number of features

s greater than the number of subjects and when features ex-

ibit strong correlations. Being related to the general issue of

electing a proper amount of regularization, this stability prob-

em can be tackled using for instance a generic subsampling ap-

roach ( Meinshausen and Buhlmann, 2010 ). In this work, we chose

o use a greedy algorithm instead of a regularized estimator. More-

ver, we chose to focus on anatomical stability, i.e. if the selected

oints are located in a same narrow area where changes across

opulation take place. On one hand, the method is not stable in

he sense that we won’t have exactly the same set of selected fea-

ures depending on the parameter h . On the other hand, the se-

ected features are located in a relatively narrow anatomical area

nd are raised by the same phenomenon (apparition of the tem-

oral sulcus). This effect sounds because the proposed method is

eeking discriminative points. The voxel stability is related to sul-

al roots and pits and could be a topic of further work. 

. Conclusion 

In this paper, we have used a feature selection approach to

haracterize cortical folding patterns occurring during fetal brain

evelopment with a sparse representation. 

The use of such a feature selection technique is not restricted

o only fetal brain development studies. It could be used to define

iomarkers, shape representation, diffusion / fiber tracts, etc. 
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