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1. Context

Micro-array of expression from n = 64 cells

and p = 6830 genes

MRI images of n = 23 heterogeneous fetal

brain with p ⇡ 106 voxels

⌘what are the patterns that may explain variability across data?

⌘ issues of high-dimensional and low-samples datasets

2. Seeking for patterns in high-dimensional data

2.1. Feature extraction vs. feature selection

feature extraction creates a new space from original data space

feature selection select a subspace of original data space

⌘with extraction, dimensions loose their physical meanings (harder interpretation)

2.2. Feature selection approaches

wrapper scores features with a predictive model

filter ranks features by their ability to capture tendencies (e.g. correlation)

embed scores features with a predictive model built during selection

⌘ e.g. lasso/elastic-net are embed linear methods based on reconstruction error

3. Methodology

3.1. Discriminative non-parametric model
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Function f is approximated by kernel smoothing:
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⌘ data-driven approach with no a-priori on f

⌘ discriminative because of the kernel weighting

3.2. Sparse selection as an optimization problem

Find activation vector � and smoothing parameter h such that:
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⌘ sparse because of the L0-norm constraint

⌘ discriminative because minimal reconstruction error pushes maximal separation

between samples

⌘ particular case of dictionnary learning methods (here the data is the dictionnary)

3.3. Solving the optimization problem

⌘NP-hard problem

⌘ solve by L0 relaxation (similar to Lasso) but sparsity not guaranted (shrinkage)

⌘ solve by heuristic, e.g. a greedy forward algorithm

5. Synthesis

⌘ patterns that may explain dataset variability have been highlighted for two kind of
biomedical datasets (micro-array of genes expression and MRI fetal brain images)

⌘ interpretation of results is facilitated because of the physical meaning conserveation

6. Perspectives

⌘ relationships between features could be taken into account (e.g. spatial relationship of
cortical points) within a framework similar as the fused Lasso technique

⌘ computation speed can be improved with for instance genetic algorithm or by multi-
resolution scheme when features have relationships

4. Results

4.1. Micro-array of genes expression

We seek for significant/discriminant genes involved in variability of expression level
in a micro-array dataset of n = 64 samples and p = 6830 genes. The micro-array is
directely used as data matrix Y .
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4.2. Cortical plate of fetal brain

We seek for significant/discriminant cortical folding patterns characterizing fetal brain
development in a population of n = 23 subjects. Prior to cortical point selection,
the population is normalized into a reference space. The Y data matrix corresponds
to the p ⇡ 106 mapping vectors of cortical plates.
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