CORRIGE DE L'EEPREUVE DE MATHS1 MINE 07 proposé par A.NAIMI PROFESSEUR DE MATHS AU LYCEE TECHNIQUE-MOHEMMADIA.

I CAS PARTICULIERS

1. Par C. on a $\chi(1.1) = \chi(1).\chi(1)$, donc $(\chi(1))^2 = \chi(1)$, donc $\chi(1) = 1$ ou $\chi(1) = 0$. Mais toujours par le C. : pour tout a entier relatif $\chi(a.1) = \chi(a).\chi(1)$ et l'application χ n'est pas identiquement nulle, donc $\chi(1) \neq 0$ et par suite $\chi(1) = 1$.

2. Par le D. l'application χ est 2-periodique donc pour tout entier relatif a, on a :

 $\chi(2k) = \chi(0) = 0$ et $\chi(2k+1) = \chi(1) = 1$. d'où l'application χ .

- 3. On a $\chi(1)=1$ et donc moyennant le C. : $(\chi(-1))^2=1$, donc $\chi(-1)=1$ ou $\chi(-1)=-1$. D'autre part χ est 4-periodique et donc $\chi(3) = \chi(3-4) = \chi(-1)$. d'où le resultat.
 - 4. On a pour tout entier naturel p,

$$S_p = \sum_{k=1}^{4p+3} \frac{\chi(k)}{k} = \sum_{k=1}^{p} \frac{\chi(4k)}{4k} + \sum_{k=0}^{p} \frac{\chi(4k+1)}{4k+1} + \sum_{k=0}^{p} \frac{\chi(4k+2)}{4k+2} + \sum_{k=0}^{p} \frac{\chi(4k+3)}{4k+3}$$

 $S_p = \sum_{k=1}^{4p+3} \frac{\chi(k)}{k} = \sum_{k=1}^{p} \frac{\chi(4k)}{4k} + \sum_{k=0}^{p} \frac{\chi(4k+1)}{4k+1} + \sum_{k=0}^{p} \frac{\chi(4k+2)}{4k+2} + \sum_{k=0}^{p} \frac{\chi(4k+3)}{4k+3}.$ D'autre part, comme χ est 4-periodique et $\chi(0) = 0$, $\chi(1) = 1$, $\chi(2) = 0$ car 2 n'est pas premier avec 4 et $\chi(3) = -1$,

alors pour tout entier
$$k$$
, $\chi(4k) = \chi(4k+2) = 0$, $\chi(4k+1) = 1$ et $\chi(4k+3) = -1$.
Alors $S_p = \sum_{k=0}^p \frac{1}{4k+1} - \sum_{k=0}^p \frac{1}{4k+3} = \sum_{k=0}^p \frac{1}{2(2k)+1} - \sum_{k=0}^p \frac{1}{2(2k+1)+1} = \sum_{k=0}^p \frac{(-1)^{2k}}{2(2k)+1} + \sum_{k=0}^p \frac{(-1)^{2k+1}}{2(2k+1)+1}$.

Donc $S_p = \sum_{n=0}^{2p+1} \frac{(-1)^n}{2n+1}$ et compte tenu du rappelle, on conclue que la suite $(S_p)_p$ converge vers arctan $1 = \frac{\pi}{4}$. Or la suite $(\frac{\chi(k)}{k})_k$ converge vers 0, puisque les quatres sous suites $(\frac{\chi(4k)}{4k})_k$, $(\frac{\chi(4k+1)}{4k+1})_k$, $(\frac{\chi(4k+2)}{4k+2})_k$, $(\frac{\chi(4k+3)}{4k+3})_k$ convergent vers 0. On conclue alors que la serie $\sum_{k=0}^{\infty} \frac{\chi(k)}{k}$ converge et que sa somme est $\frac{\pi}{4}$.

II CONVERGENCE DE LA SERIE $\sum \frac{\chi(k)}{k}$.

5. On sait que $(Z/NZ)^* = \{\overline{k} \mid k \in P\}$ et que ce dernier est un groupe multiplicatif.

D'aute par puisque a est premier avec N alors $\overline{a} \in (Z/NZ)^*$ et donc

$$\overline{a} \cdot (Z/NZ)^* = (Z/NZ)^*$$
, par suite $\prod_{k \in P} \overline{a} \cdot \overline{k} = \prod_{k \in P} \overline{k}$, or P est de cardinal $\Phi(N)$, donc cette égalité devient : $(\overline{a})^{\Phi(N)}$.

 $\overline{a} \cdot (Z/NZ)^* = (Z/NZ)^*$, par suite $\prod_{k \in P} \overline{a.k} = \prod_{k \in P} \overline{k}$, or P est de cardinal $\Phi(N)$, donc cette égalité devient : $(\overline{a})^{\Phi(N)}$. $\prod_{k \in P} \overline{k} = \prod_{k \in P} \overline{k}$, mais dans un groupe tout élément est inversible et $\prod_{k \in P} \overline{k}$ est dans le groupe $(Z/NZ)^*$ et par suite $(\overline{a})^{\Phi(N)} = \overline{1}$

ou encore $\overline{a^{\Phi(N)}} = \overline{1}$ d'où $a^{\Phi(N)} - 1$ est multiple de N. 6. D'après le 5) il existe q entier tel que $a^{\Phi(N)} - 1 = qN$ donc $a^{\Phi(N)} = 1 + qN$. Mais χ est N-périodique donc $\chi(a^{\Phi(N)}) = \chi(1)$, d'autre part d'après 1) $\chi(1) = 1$ et puisque l'application χ est multiplicatif, alors $\chi(a^{\Phi(N)}) = (\chi(a))^{\Phi(N)}$ donc $(\chi(a))^{\Phi(N)} = 1$ ou encore

 $|\chi(a)|^{\Phi(N)} = 1$ d'où $|\chi(a)| = 1$.

7. Soient k, s des éléments de $\{1, ..., N-1\}$ tels que $r_k = r_s$, alors $\overline{r_k} = \overline{r_s}$.

Mais $r_k(\text{resp } r_s)$ est le reste de la division euclidienne de ak (resp as) par N et donc $\overline{r_k} = \overline{ak}$ et $\overline{r_s} = \overline{as}$, par suite $\overline{ak} = \overline{as}$ ou encore $\overline{a}.\overline{k} = \overline{a}.\overline{s}$ mais \overline{a} est dans le groupe $(Z/NZ)^*$, en composant à gauche par son inverse, on obtient $\overline{k} = \overline{s}$, donc |k-s| est multiple de N, or ce dernier entier est strictement inferieur à N, il est donc nul et par suite k=s.

On conclue alors que les r_k sont deux à deux disticts.

8. Pour tout k entre 1 et N-1, r_k est le reste de la division de ak par N, il est donc compris entre 0 et N-1, d'autre part r_k ne peut etre nul, car sinon N divisera ak et par le théorème de Guass (N est premier avec a), N divisera k, ce qui est impossible puisque k est entre 1 et N-1. On a donc $\{r_k/\ k\in\{1,...,N-1\}\}\subset\{1,...,N-1\}$ et les r_k sont deux à deux $\text{distincts et par suite le premier ensemble est de cardinal } N-1, \text{ On conclue alors que } \{r_k / \ k \in \{1,...,N-1\}\} = \{1,...,N-1\},$ donc $\sum_{k=1}^{N-1} \chi(r_k) = \sum_{k=1}^{N-1} \chi(k)$.

D'autre part puisque χ est N-périodique et r_k est le reste de la division euclidienne de ak par N, alors $\chi(ak) = \chi(r_k)$. D'où l'égalité demandée.

9. D'une part, on a $\chi(a) = -1$ puisque d'après 6), $|\chi(a)| = 1$ et par hypothèse $\chi(a) \neq 1$

D'autre part compte tenu de l'égalité de question 8) et du fait que χ est multiplicative, il vient : $\sum_{k=1}^{N-1} \chi(a).\chi(k) = \sum_{k=1}^{N-1} \chi(k)$

ou encore
$$\chi(a)$$
. $\sum_{k=1}^{N-1} \chi(k) = \sum_{k=1}^{N-1} \chi(k)$, donc

$$-\sum_{k=1}^{N-1} \chi(k) = \sum_{k=1}^{N-1} \chi(k), \text{ donc } \sum_{k=1}^{N-1} \chi(k) = 0, \text{ mais } \chi(0) = 0 \text{ et par suite } \sum_{k=0}^{N-1} \chi(k) = 0$$

Soit alors n entier naturel et supposons $\sum_{k=0}^{n+N-1} \chi(k) = 0$ alors

 $\sum_{k=n+1}^{n+N} \chi(k) = \sum_{k=n}^{n+N-1} \chi(k) + \chi(n+N) - \chi(n). \text{ Or } \chi \text{ est } N - \text{p\'eriodique donc } \chi(n+N) - \chi(n) = 0, \text{ d'où } \sum_{k=n+1}^{n+N} \chi(k) = 0.$

On donc montré par reccurence que pour tout n entier $\sum_{k=0}^{n+N-1} \chi(k) = 0$.

10. Soit m un entier \rangle 0.

* Si
$$m \leq N-1$$
 alors $\left|\sum_{k=1}^m \chi(k)\right| \leq \sum_{k=1}^m |\chi(k)| \leq \sum_{k=1}^{N-1} |\chi(k)|$. Mais par definition de χ , on a $\chi(k)=0$ pour tout k non premier avec N et par suite

 $\sum_{k=1}^{N-1} |\chi(k)| = \sum_{k \in P} |\chi(k)|$, d'autre part on a vu dans le 6) que pour tout $a \in P$, $|\chi(a)| = 1$ et donc $\sum_{k \in P} |\chi(k)| = card(P) = card(P)$ $\Phi(N),$ d'où l'inégalité demandée.

** Si $m \geq N$. La division euclidienne de m par N donne l'existence de q et de $r \in \{0,...,N-1\}$, tels que m = qN + r

$$\sum_{k=1}^{m} \chi(k) = \sum_{k=0}^{m} \chi(k) = \sum_{k=0}^{qN+r} \chi(k) = \sum_{k=0}^{N-1} \chi(k) + \sum_{k=N}^{N+N-1} \chi(k) + \dots + \sum_{k=(q-1)N}^{(q-1)N+N-1} \chi(k) + \sum_{k=qN}^{qN+r} \chi(k). \text{ Or d'après le 9), tous les termes de cette dernière somme sont nuls sout peut etre le dernière et per suite.}$$

les termes de cette dernière somme sont nuls sauf peut-etre le dernier et par suite
$$\sum_{k=1}^{m} \chi(k) = \sum_{k=qN}^{qN+r} \chi(k). \text{ et puisque } \chi \text{ est } N-\text{périodique alors} : \sum_{k=qN}^{qN+r} \chi(k) = \sum_{k=qN}^{qN+r} \chi(k-qN) \text{ et } \sum_{k=qN}^{qN+r} \chi(k-qN) = \sum_{k=q}^{qN+r} \chi(k)$$
 (après changement d'indice). On donc :

$$\sum_{k=1}^{m} \chi(k) = \sum_{k=0}^{r} \chi(k). \text{ Si } r = 0 \text{ alors cette dernière somme est nulle et si } r \rangle 0, \text{ alors d'après ce qui précède } \left| \sum_{k=0}^{r} \chi(k) \right| \leq \Phi(N).$$
 (c'est la première étape), d'où $\left| \sum_{k=1}^{m} \chi(k) \right| \leq \Phi(N).$

11. On va montrer que cette suite est de cauchy en utilisant la trasformation d'ABEL rappelé au debut de l'enoncé.

Notons alors pour tout k entier ≥ 1 , $\alpha_k = \chi(k)$, $u_k = \frac{1}{k}$ et $T_k = \sum_{k=0}^{k} \alpha_k$.

Alors pour tout n, m entiers tels que $2 \le n \langle m :$

$$\sum_{k=n}^{m} \frac{\chi(k)}{k} = \sum_{k=n}^{m} \alpha_k \cdot u_k = -u_n \cdot T_{n-1} + \sum_{k=n}^{m-1} T_k \cdot (u_k - u_{k-1}) + u_m \cdot T_m \cdot (*)$$

 $\sum_{k=n}^{m} \frac{\chi(k)}{k} = \sum_{k=n}^{m} \alpha_k . u_k = -u_n . T_{n-1} + \sum_{k=n}^{m-1} T_k . (u_k - u_{k-1}) + u_m . T_m. \ (*)$ Or la suite $(u_k)_k$ converge vers 0 et d'après le 10). la suite $(T_k)_k$ est bornée, donc les suites $(u_k . T_{k-1})_k$ et $(u_k . T_k)_k$ convergent vers 0, il existe alors un entier n_1 , tel que pour tout entier $k \ge n_1$, $|u_k . T_{k-1}| \le \frac{\epsilon}{3}$ et $|u_k . T_k| \le \frac{\epsilon}{3}$.

D'autre part, on a pour tout $k \geq 2$, $|T_k.(u_k - u_{k-1})| \leq \varphi(N).(u_{k-1} - u_k) = \frac{\varphi(N)}{k(k-1)}$ et cette dérnière suite est le terme général d'une serie convergente, donc par comparaison des series la serie $\sum |T_k.(u_k-u_{k-1})|$ converge, donc la serie $\sum |T_k.(u_k-u_{k-1})|$ est absolument convergente et donc convergente. Sa suite des sommes partielles est donc de cauchy et par suite il existe un entier $n_0 \geq 2$, tel que pour tout $n \geq n_0$ et pour tout $m \nmid n$, $\left| \sum_{k=n}^{m-1} T_k \cdot (u_k - u_{k-1}) \right| \leq \frac{\epsilon}{3}$. Et donc compte tenue de l'égalité (*) et en utilisant l'inegalité triangulaire, il vient : pour tout $n \geq \max(n_0, n_1)$ et pour tout $m \nmid n$ $\left| \sum_{k=n}^{m} \frac{\chi(k)}{k} \right| \leq |-u_n \cdot T_{n-1}| + \left| \sum_{k=n}^{m-1} T_k \cdot (u_k - u_{k-1}) \right| + |u_m \cdot T_m| \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$.

La suite en question est une suite de nombres réels de cauchy, elle est donc convergente.

III COMPORTEMENT ASYMPTOTIQUE

12. Si l'un des entiers n ou m vaut 1, alors l'égalité est trivial, sinon leurs décompositions en facteurs premiers s'écrit : $n=p_1^{\alpha_1}.....p_k^{\alpha_k}$ et $m=q_1^{\beta_1}.....q_r^{\beta_r}$ avec α_i et β_i des entiers non nuls, $p_1,...,p_k,q_1,...,q_r$ des entiers premiers et distincts deux à deux Alors la décomposition en facteurs premierd du produit mn est :

 $m.n = p_1^{\alpha_1}.....p_k^{\alpha_k}.q_1^{\beta_1}.....q_r^{\beta_r}$ et donc les diviseurs de n s'ecrivent sont de la forme

$$p_1^{x_1}.....p_k^{x_k} \text{ avec } 0 \leq x_i \leq \alpha_i \text{ ; ceux de } m \text{ s'ecrivent sont de la forme } q_1^{y_1}......q_r^{y_r} \text{ avec } 0 \leq y_i \leq \beta_i \text{ et ceux de } m.n \text{ s'ecrivent sont de la forme } p_1^{x_1}......p_k^{x_k}.q_1^{y_1}.......q_r^{y_r} \text{ et par suite : } \sum_{\substack{d/m.n}} \chi(d) = \sum_{\substack{d/m.n}} \chi(p_1^{x_1}.....p_k^{x_k}.q_1^{y_1}......p_k^{y_r}), \text{ or par definition de } \chi, \text{ elle est multiplicative c-à-d verifie le C. et } 0 \leq y_i \leq \beta_i$$

 $\sum_{\substack{0 \leq x_i \leq \alpha_i \\ 0 \leq y_i \leq \beta_i}} \chi(p_1^{x_1}.....p_k^{x_k}).\chi(q_1^{y_1}......q_r^{y_r}) \ \text{donc}$ donc cette dérnière égalité devient

$$0 \le x_i \le \alpha_i 0 \le y_i \le \beta_i$$

$$\sum_{d/m,n} \chi(d) = \sum_{0 \le x_i \le \alpha_i} \sum_{0 \le y_i \le \beta_i} \chi(p_1^{x_1} \dots p_k^{x_k}) \cdot \chi(q_1^{y_1} \dots q_r^{y_r})$$

$$= \sum_{0 \le x_i \le \alpha_i} \chi(p_1^{x_1} \dots p_k^{x_k}) \sum_{0 \le y_i \le \beta_i} \chi(q_1^{y_1} \dots q_r^{y_r})$$

$$= \sum_{d/n} \chi(d) \cdot \sum_{d/n} \chi(d)$$

$$= f_n \cdot f_m.$$

13. Comme p est un entier premier, alors soit il ne figure pas dans la decomposition en facteurs premiers de N et dans ce cas il est premier avec N, soit il figure et dans ce cas il divise N. Dans le premier cas $|\chi(p)| = 1$ (c'est le II.6) et dans le second cas $\chi(p) = 0$ (c'est le B. de la definition de la fonction χ).

D'autre part les diviseurs de p^{α} sont les p^k pour k variant entre 0 et α et donc $f_{p^{\alpha}} = \sum_{d/p^{\alpha}} \chi(d) = \sum_{0 \le k \le \alpha} \chi(p^k)$, mais χ est multiplicative donc pour tout k, $\chi(p^k) = (\chi(p))^k$, par suite $f_{p^{\alpha}} = \sum_{0 \le k \le \alpha} (\chi(p))^k = 1 + \sum_{1 \le k \le \alpha} (\chi(p))^k = 1$

$$\begin{cases} 1+0 & \text{si } \chi(p)=0\\ \alpha+1 & \text{si } \chi(p)=1\\ \sum\limits_{0\leq k\leq \alpha} (-1)^k & \text{si } \chi(p)=-1 \end{cases}, \text{ d'où} \\ \begin{cases} \int\limits_{0\leq k\leq \alpha} (-1)^k & \text{si } \chi(p)=-1\\ 0 & \text{si } \chi(p)=0\\ 0 & \text{si } \chi(p)=-1 \text{ et } \alpha \text{ impaire}\\ 1 & \text{si } \chi(p)=-1 \text{ et } \alpha \text{ paire} \end{cases}$$

14. Si n = 1, alors $0 \le f_1 = 1 \le 1$.

Si $n \geq 2$, on écrit la décomposition de n en facteurs premiers : $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ avec les α_i des entiers non nuls et les p_i des entiers premiers et distincts deux à deux; donc les $p_i^{\alpha_i}$ sont premiers deux à deux et donc d'après le 12. : $f_n = f_{p_i^{\alpha_1}}$ $f_{p_n^{\alpha_k}}$, donc compte tenue de la remarque faite à la dernière question du 13. : $0 \le f_n \le (\alpha_1 + 1)...(\alpha_k + 1)$.

Mais $(\alpha_1 + 1)....(\alpha_k + 1)$ est exactement le nombre de diviseurs de n qui est donc $\leq n$.

D'où $0 \le f_n \le n$.

15. Si n = 1, alors $f_1 = 1 \ge 1$.

Si $n \geq 2$, on écrit la décomposition de n en facteurs premiers : $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ avec les α_i des entiers non nuls et les p_i des entiers premiers et distincts deux à deux; donc $n^2=p_1^{2\alpha_1}......p_k^{2\alpha_k}$ est la decomposition en facteurs premiers de l'entier n^2 et donc par le 12. : $f_{n^2}=f_{p_1^{2\alpha_1}}......f_{p_k^{2\alpha_k}}$, mais d'après le 13. : pour tout α entier non nul $f_{p^{2\alpha}}\in\{1,2\alpha+1\}$, d'où $f_{n^2} \ge 1$.

16. Le rayon demandé est 1, en effet soit x réel.

- Si $|x| \langle 1$, alors d'après le 13. on a pour tout $n \geq 1$, $|f_n.x^n| \leq |n.x^n|$ et la serie $\sum |n.x^n|$ converge puisqu'il s'agit d'une
- serie entiere de rayon de convergence 1 (par dalembert).

 Si |x| > 1, alors d'après le 14. on a pour tout $n \ge 1$, $\left| f_{n^2} . x^{n^2} \right| \ge \left| x^{n^2} \right| = |x|^{n^2}$, mais la suite $(|x|^{n^2})_n$ diverge vers $+\infty$, donc la suite $(|f_{n^2}.x^{n^2}|)_n$ diverge elle aussi vers $+\infty$, donc ne converge pas vers 0 et comme c'est une suite extraite de (
- $f_n.x^n$)_n, alors cette dernière suite aussi ne converge pas vers 0 et donc la serie $\sum f_n.x^n$ divrge grossièrement. 17. Soit $x \in [\frac{1}{2}, 1[$, alors la serie entière $\sum f_n.x^n$ converge et d'autre part, d'après la question 14, elle est à termes positifs, donc la serie $\sum f_{n^2}.x^{n^2}$ converge et

 $\sum\limits_{n=1}^{+\infty}f_n.x^n\geq\sum\limits_{n=1}^{+\infty}f_{n^2}.x^{n^2},$ mais d'après le 15. on a pour tout $n\geq1,\,f_{n^2}\geq1,$ donc

$$\sum_{n=1}^{+\infty} f_{n^2} . x^{n^2} \ge \sum_{n=1}^{+\infty} . x^{n^2}. \text{ On a donc } f(x) \ge \sum_{n=1}^{+\infty} . x^{n^2}.$$

D'autre part, la fonction $t \mapsto x^{t^2}$ est décroissante positive sur $[1, +\infty[$, donc pour tout $k \ge 1, x^{k^2} \ge \int_k^{k+1} x^{t^2} dt$ et donc pour tout $n \geq 1$, $\sum_{k=1}^n x^{k^2} \geq \int_1^{n+1} x^{t^2} dt$ ou encore puisque les deux suites convergent $\sum_{n=1}^{+\infty} x^{n^2} \geq \int_1^{+\infty} x^{t^2} dt$, mais par le cchangement de variable : $u = t \cdot \sqrt{-\ln x}$, cette dernière intégrale devient $\frac{1}{\sqrt{-\ln x}} \int_{\sqrt{-\ln x}}^{+\infty} e^{-u^2} dt$, or la fonction $u \longmapsto e^{-u^2}$ est positive et l'intervalle $[\sqrt{\ln 2}, +\infty[\subset [\sqrt{-\ln x}, +\infty[$, donc $\frac{1}{\sqrt{-\ln x}} \int_{\sqrt{-\ln x}}^{+\infty} e^{-u^2} dt \geq \frac{1}{\sqrt{-\ln x}} \int_{\sqrt{\ln 2}}^{+\infty} e^{-u^2} dt$, d'où linégalité demandée: $f(x) \ge \frac{1}{\sqrt{-\ln x}} \int_{\sqrt{\ln 2}}^{+\infty} e^{-u^2} dt$