CENTRALE - 2004 - PC - MATH 1 : corrigé.

Mai 2004

Convergence de séries entières sur le cercle de convergence.

Partie I : Calculs préliminaires

- I-A) La première inégalité est standard; la seconde tient à la concavité de la fonction sinus sur $[0..\pi/2]$.
- I-B) La restriction sur x permet de sommer comme suite géométrique :

$$\left| \sum_{k=p}^{q} e^{ikx} \right| = \left| \frac{e^{ipx} \cdot (1 - e^{i(q-p+1)x})}{1 - e^{ix}} \right|$$

I-C) Cette question porte sur la transformation d'Abel

$$1) \sum_{k=p+1}^{q-1} (u_k - u_{k+1}) \cdot V_k = \sum_{k=p+1}^{q-1} (u_k \cdot V_k) - \sum_{k=p+2}^{q} (u_k \cdot V_{k-1})$$

$$= u_{p+1} \cdot V_{p+1} + \sum_{k=p+2}^{q-1} u_k v_k - (u_q \cdot V_q - u_q \cdot v_q) \quad car \quad V_k - V_{k-1} = v_k$$

$$= u_{p+1} \cdot V_p + \sum_{k=p+1}^{q} u_k \cdot v_k - u_q \cdot V_q \quad car \quad V_{p+1} = V_p + v_p$$

 $\sum_{k=n+1}^{q} (u_k \cdot v_k) = \sum_{k=n+1}^{q-1} (u_k - u_{k+1}) \cdot V_k + u_q \cdot V_q - u_{p+1} \cdot V_p$ d'où:

2) Erreur grossière dans le texte : il faut ajouter l'hypothèse : $u_n \to 0$!

Montrer que $\sum_{n\geq 1} u_n v_n$ converge revient à prouver que $|\sum_{k=p+1}^q u_k v_k| \to 0 \quad (p,q\to\infty)$.

Les hypothèses de l'énoncé entrainent par majoration élémentaire que $|\sum_{k=p+1}^{q-1}(u_k-u_{k+1}).V_k|\to 0$ et , si $u_n\to 0$ alors $u_q.V_q-u_{p+1}.V_p\to 0$ $(p\to\infty)$. La convergence de $\sum u_n.v_n$ est alors conséquence de l'égalité obtenue dans la question précédente.

- 3) Si (u_n) est décroissante et convergente, alors $\sum_{k=1}^n |u_k u_{k+1}| = u_1 u_{n+1} \to u_1 \lim(u_n)$, et $u_n \to 0$ permet de conclure, comme au-dessus, à la convergence de $\sum_{k\geq 1} |u_k u_{k+1}|$.
- $\sum_{k>1} \frac{e^{ikx}}{k}$; posant $u_k = 1/k$ et $v_k = e^{ikx}$, les I-D) Les séries proposées sont les parties réelle et imaginaire de conditions d'application de I-C-3) sont réunies (au vu de la majoration I-B)), donc la série $\sum_{k\geq 1} \frac{e^{ikx}}{k}$ converge $sans \ utiliser \ I-C)-2)$.

Si $x \in 2\pi \mathbb{Z}$, alors $\sum_{k>1} \frac{\cos(kx)}{k} = \sum_{k>1} \frac{1}{k}$ qui diverge.

Partie II : quelques exemples d'ensembles C_a

- II-A) Si |z| < 1 alors $|z.R_a| < R_a$ donc $\sum b_n z^n = \sum a_n (z.R_a)^n$ est absolument convergente Si |z| > 1 alors $|z.R_a| > R_a$ donc $\sum b_n z^n = \sum a_n (zR_a)^n$ diverge grossièrement . $z \in C_a \Leftrightarrow (|z| = R_a \text{ et } \sum a_n z^n \text{ converge}) \Leftrightarrow (|z/R_a| = 1 \text{ et } \sum b_n (z/R_a)^n \text{ converge}) \Leftrightarrow \frac{z}{R_a} \in C_b$
- II-B) 1) Si $|z|=R_a=1$ alors $|a_nz^n|=|a_n|$ donc $z\in C_a:C_a$ est le cercle unité .
- 2) $\forall x \in I$, $|e^{inx}| = 1$ donc $|f_n(x)| = a_n$ et $\sum |f_n(x)| = \sum |a_n|$ qui converge : il y a convergence normale donc uniforme de $\sum f_n$ sur I, et la fonction somme est par conséquent continue sur I.

- 3) On prend $a_n = 1/n^2$.
 - II-C) Prendre $a_n = 1$.
- II-D) 1) $R_a > 1 \Rightarrow \sum a_n z^n$ est absolument convergente pour $|z| < R_a$ donc en particulier pour z_0 , ce qui est
- $R_a < 1 \Rightarrow \sum a_n z^n$ diverge grossièrement pour $|z| > R_a$, donc en particulier pour z_0 , ce qui est faux : $R_a \ge 1$. On conclut $R_a = 1$.
- 2) Si $z = \xi$, alors $\sum a_n z^n = \sum 1/n$ est divergente. Si |z| = 1 et $z \neq \xi$ alors $\frac{z}{\xi} = e^{ix}$ avec $x \notin 2k\pi\mathbb{Z}$ et $\sum a_n(\frac{z}{\xi})^n$ converge par application de I-C-3) et I-B).

- On conclut : C_a est le cercle unité privé de ξ . 3) $a_n = \frac{1}{n} \cdot \sum_{k=1}^p \frac{1}{\xi_k^n}$ convient évidemment.
- 4) Prenant $\xi = e^{-i}$ dans II-D-2) on trouve $\frac{\cos(n)}{n}$ comme partie réelle du facteur $\frac{1}{n.\xi^n}$ considéré, donc, dans II-D-4), $R_a = 1$, C_a est le cercle unité privé de e^i (invariance par conjugaison par parité de cos), et $\sum |a_n|$ diverge car dans le cas contraire C_a serait le cercle unité complet.

Partie III : C_a est le cercle unité et $\sum |a_n|$ diverge

Les questions III-A) et III-B) sont des variations sur le critère spécial de séries alternées et la sommation par paquets.

III-A) Il est clair que $|a_n| \sim 1/n$ donc $\sum |a_n|$ diverge.

III-B)1)
$$|R_N| \le \sum_{k=p^2}^N \frac{1}{p^2} \le \sum_{k=p^2}^{(p+1)^2 - 1} \frac{1}{p^2} = \frac{2 \cdot p + 1}{p^2}$$

- 2) On pose $b_p = \sum_{p^2 \le n \le (p+1)^2 1} a_n$; alors $b_p = \sum (-1)^p . K_p$ avec $K_p > 0$ et $K_p \le \frac{2p+1}{n^2}$ vu la question précédente. La série $\sum b_p$ est convergente d'après le critère spécial des séries alternées. Les sommes partielles de cette série forment une suite convergente et la différence entre une somme partielle de la série $\sum a_n$ et la somme partielle correspondante suivant l'encadrement de l'énoncé de la série $\sum b_p$ est (III-B1)) inférieure à $\frac{2p+1}{p^2}$, qui tend vers zéro . On conclut que la suite des sommes partielles de $\sum a_n$ converge, i.e. que la série $\sum a_n$ converge.
- III-C) 1) Dans le cas d'indice n
 le plus général, $a_{n+1}-a_n=0$. Le cas "particulier" se produit lorsque $n=(p+1)^2-1$ et $n+1=(p+1)^2$. Dans ce cas : $|a_{n+1}-a_n|=\frac{1}{p^2}-\frac{1}{(p+1)^2}=\frac{2p+1}{p^2.(p+1)^2}\leq \frac{3}{p^3}$, donc $\sum_{n\geq 1} |a_{n+1}-a_n|$ converge.
- 2) $\operatorname{Si} x \in I \setminus \{0\} =]-\pi, 0[\bigcup]0, \pi[$, posant $(u_n) = (a_n)$ et $(v_n) = (e^{inx}) = (z^n)$, on peut appliquer (I-B)) et (I-C-2)), donc $\sum a_n z^n$ converge.

Partie IV: Un dernier exemple

Comme dans la partie III, la série entière considérée converge sur le cercle unité, mais cette fois $\sum a_n$ est grossièrement divergente, alors que dans III elle était semi-convergente.

IV-A) 1) La somme est par définition de k_x à termes ≥ 0 , donc $\sum_{k=1}^n \frac{\sin(k.x)}{k} \geq 0$.

Par ailleurs $\frac{sin(k.x)}{k} \le x.\frac{sin(k.x)}{k.x} \le x$ donc $\sum_{k=1}^{n} \frac{sin(k.x)}{k} \le n.x \le k_x.x \le \pi$. 2) On utilise I-C-1) avec $u_k = \frac{1}{k}$ et $v_k = e^{ikx}$; avec I-B) : $|V_k|$, $|V_p|$ et $|V_q|$ sont majorées par $\frac{1}{sin(x/2)}$.

Or (cf I-A)) $sin(x/2) \ge \frac{2}{\pi} \cdot \frac{x}{2} = \frac{x}{\pi}$ d'où $\frac{1}{sin(x/2)} \le \frac{\pi}{x}$. En utilisant l'inégalité triangulaire dans I-C-1) on obtient :

$$\left| \sum_{k=k_x+1}^n \frac{e^{ikx}}{k} \right| \le \frac{\pi}{x} \left(\sum_{k=k_x+1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) + \frac{1}{n} + \frac{1}{k_x+1} \right) = \frac{2\pi}{x \cdot (k_x+1)}$$

Or, par définition de k_x : $x.(k_x+1) \ge \pi$ d'où : $|\sum_{k=k_x+1}^n \frac{e^{ikx}}{k}| < 2$.

Il reste à prendre la partie imaginaire pour obtenir : $|\sum_{k=k_x+1}^n \frac{\sin(k.x)}{k}| < 2$.

3) $|\sum_{k=1}^n \frac{\sin(k.x)}{k}| \le |\sum_{k=1}^{k_x} \frac{\sin(k.x)}{k}| + |\sum_{k=k_x+1}^n \frac{\sin(k.x)}{k}| < \pi+2 = C_1$ (ceci lorsque $n > k_x$; cette inégalité est évidemment vraie si $n \le k_x$).

Remarque: on a supposé ici $x \in]0,\pi[$ mais, pour x=0, tous les termes sont nuls et on peut toujours se ramener au cas $x \in [0, \pi[$ par périodicité de |sin(k.x)|.

IV-B) 1) En mettant
$$X^N$$
 en facteur et en remplaçant X par e^{ix} on obtient : $Q_{n,N}(e^{ix})=e^{iNx}.(\sum_{k=1}^n\frac{-e^{ikx}+e^{-ikx}}{k})=-2ie^{iNx}.\sum_{k=1}^n\frac{sin(kx)}{k}$. 2) Trivialement $C_2=2.C_1=2\pi+4$ convient, vu IV-A-3).

IV-C) Notons que $N_j = 2.n_j$ d'où $I_j = ||2^{j^3}, 3.2^{j^3}||$. Il suffit alors de vérifier que $2^{(j+1)^3} > 3.2^{j^3}$.

IV-D) D'après IV-B-2) , $|P_j(e^{i(x+1/j)})| \leq C_2$. $(B_n(x))$ est donc la suite des sommes partielles d'une série de fonctions majorée en module par $\sum \frac{C_2}{i^2}$, par conséquent normalement convergente. Il en résulte que la suite $(B_n(x))$ est une suite de fonctions continues uniformément convergente sur I, donc de limite F(x) continue sur I.

IV-E) Les intervalles I_j sont disjoints (cf IV-C)) et le plus "grand" d'entre eux, obtenu pour j=n, a comme entier maximal 3.2^{n^3} . On ne récupère donc dans $B_n(x)$ des termes en e^{ikx} que pour $k \leq 3.2^{n^3}$. Si un tel k appartient à un intervalle I_j donné, il est obtenu dans P_j avec le coefficient $\frac{1}{N_i - k} e^{i \cdot k/j}$ (cf calcul de IV-B-1) et le fait que la variable dans P_j est $e^{i(x+1/j)}$ et non e^{ix}).

On obtient donc e^{ikx} avec le coefficient $a_k = \frac{1}{i^2} \cdot \frac{1}{N_i - k} \cdot e^{i \cdot k/j}$, d'où, globalement, $B_n(x) = A_{3 \cdot 2^{n^3}}(x)$.

IV-F) 1) N_j-k par
court les entiers de $(-n_j)$ à (-1) et de 1 à n_j , en excluant 0 .
On a donc : $\sum_{k=p}^{q-1} |\alpha_k-\alpha_{k+1}| \leq 2.(1+\sum_{i=1}^{n_j-1}(\frac{1}{i}-\frac{1}{i+1})) < 4$ (par télescopage).

2) A l'aide de I-C-1) , on procède exactement comme dans IV-A-2) , avec ici $u_k=\alpha_k$ et $v_k=e^{ikx}$.

On obtient ainsi la majoration : $|\sum_{k=p}^{q} \alpha_k e^{ikx}| \le (4+1+1) \cdot \frac{\pi}{|x|} = \frac{C_3}{|x|}$ avec $C_3 = 6\pi$.

- 3) Si x=0, $j \ge 1$ convient; si $x = \pm \frac{1}{n}$, j > n convient; sinon on prend $j \ge E(\frac{1}{|\pi x|}) + 1$.
- Vu IV-E) , $|A_n(x) B_j(x)| = |\sum_{k=p}^q a_k e^{ikx}|$ avec $2^{j^3} \le p \le q = 3.2^{j^3}$

soit: $|A_n(x) - B_j(x)| = \frac{1}{j^2} \cdot |\sum_{k=p}^q \alpha_k e^{i \cdot k/j} \cdot e^{ikx}| = \frac{1}{j^2} \cdot |\sum_{k=p}^q \alpha_k e^{ik(x+1/j)}|$.

Pour j (donc n) suffisamment grand on a $x + \frac{1}{j} \in I \setminus \{0\}$ et on applique IV-F-2) : $|A_n(x) - B_j(x)| \le \frac{C_2}{j^2 \cdot |x + 1/j|}$.

•Si $x = \pi$ alors, $\forall j \ge 1$, $x - \frac{1}{j} \ne 0$ et $x - \frac{1}{j} \in I$; on peut ainsi reprendre le même calcul sous la forme :

$$|A_n(x) - B_n(x)| = |\overline{A_n(x)} - \overline{B_n(x)}| = \frac{1}{i^2} \cdot |\sum_{k=p}^q \alpha_k e^{-i.k/j} e^{-ikx}|$$

Or
$$x = \pi$$
 donc $e^{-ikx} = e^{ikx}$ et on obtient comme au-dessus : $|A_n(x) - B_n(x)| = \frac{1}{j^2} . |\sum_{k=p}^q \alpha_k e^{-ik(x-1/j)}| \le \frac{C_3}{j^2 . |\pi - 1/j|}$.

4) $\forall \varepsilon > 0$, $\forall x \in I$, $|A_n(x) - F(x)| \leq |A_n(x) - B_i(x)| + |B_i(x) - F(x)| \leq \varepsilon$, ceci pour n assez grand, et donc j assez grand pour respecter IV-D), j étant lié à n par les conventions de IV-F-3).

Noter qu'on perd la convergence uniforme sur I mais qu'on peut la conserver sur les segments inclus dans] — $\pi, 0[\bigcup]0, \pi[$.

IV-G) On montre effectivement dans cette question qu'il n'y a pas convergence uniforme au voisinage de 0. 1) La différence à effectuer permet de ne conserver que les termes de la somme correspondant à la "moitié gauche"

de l'intervalle I_i , soit :

 $A_{N_j}(-\frac{1}{j}) - A_{N_j - n_j - 1}(-\frac{1}{j}) = \sum_{k=N_j - n_j}^{N_j} a_k e^{-i \cdot k/j} = \frac{1}{i^2} \cdot \sum_{k=N_j - n_j}^{N_j} \frac{1}{N_j - k} = \frac{1}{i^2} \cdot \sum_{k=1}^{2^{j^3}} \frac{1}{k} \quad \text{(en changeant)}$ d'indice).

2) $\sum_{k=1}^{2^{j^3}} \frac{1}{k} \sim \ln(2^{j^3}) = j^3 \cdot \ln(2)$ donc l'expression précédente équivaut à j.ln(2); en particulier elle ne tend pas vers 0 lorsque $j \to +\infty$, ce qui contredit le critère de Cauchy uniforme au voisinage de 0 : il n'y a pas convergence uniforme de $\sum f_n$ au voisinage de 0.

IV-H) Si $k_a > 1$, il y a convergence uniforme de $\sum f_n$ sur le cercle unité, ce qui est faux par IV-G-2) (pas de convergence uniforme sur le cercle au voisinage de z=1). Donc $R_a \leq 1$. Or on a vu en IV-F-4) que $\sum f_n$ converge simplement sur le cercle unité , donc $R_a \ge 1$ et C_a est extérieur -au sens large- au cercle unté .

Conclusion : $R_a = 1$ et C_a est le cercle unité .