Mines-Ponts 1995, Première épreuve, options M&P'

(4 pages)

Première partie

- I-1°) a) $\diamond \mathcal{T}(U) = \{p > 0 \mid \forall n \in \mathbb{N}, \ u_{n+p} = u_n\}$ est non vide et inclus dans \mathbb{N} donc $\underline{p_0} = \operatorname{Min} \mathcal{T}(U)$ existe . $\diamond \operatorname{Montrons}$ que $\mathcal{T}(U) = p_0.\mathbb{N}^* = \{p_0k \mid k \in \mathbb{N}^*\}.$ $\to \operatorname{Soit} \ p \in p_0.\mathbb{N}^*, \ p = p_0k.$ On a $p \neq 0$ et $\forall n \in \mathbb{N}, \ u_{n+p} = u_{n+p_0k} = u_{n+p_0(k-1)} = \cdots = u_n$ donc $p \in \mathcal{T}(U).$ $\to \operatorname{Soit} \ p \in \mathcal{T}(U).$ La division euclidienne par p_0 donne $p = p_0k + r$ avec $r < p_0$ et $\forall n \in \mathbb{N}, \ u_{n+p} = u_{n+p_0k+r} = u_{n+r}, \text{ or } r \notin \mathcal{T}(U)$ puisque $r < p_0$ donc r = 0 et donc $p = p_0k.$ $\diamond \mathcal{T}(\Omega) = \mathbb{N}^*$ est immédiat; $i^4 = 1$ donc $4 \in \mathcal{T}(C)$ et $p_0 \mid 4$ mais $c_1 = -1 \neq c_3 = 1$ donc $p_0 \notin \{1, 2\}$ et donc $\mathcal{T}(C) = 4\mathbb{N}^*$.
 - b) $\mathcal{P} \neq \emptyset$ car, par exemple, $\Omega \in \mathcal{P}$. D'autre part, si $U \in \mathcal{P}$ et $p \in \mathcal{T}(U)$, on a $|u_n| \leq \operatorname{Max}(|u_0|, |u_1|, \dots, |u_{p-1}|)$ donc $\mathcal{P} \subset \mathcal{B}$. Enfin, si $(U, V) \in \mathcal{P}^2$, soit $p \in \mathcal{T}(U)$ et $q \in \mathcal{T}(V)$, posons $r = pq \in \mathcal{T}(U) \cap \mathcal{T}(V)$. On a $u_{n+r} + \lambda v_{n+r} = u_n + \lambda v_n$ donc $U + \lambda V \in \mathcal{P}$. Donc \mathcal{P} sev de \mathcal{B} .
 - c) $\frac{\mathcal{P}}{p}$ n'est pas de dimension finie car la famille $(E_q)_{q \in \mathbf{P}}$, où \mathbf{P} est l'ensemble infini des nombres premiers positifs, définie par : E_q est q-périodique, $E_q(0) = 1$ et, pour $r \in [1, q-1]$, $E_q(r) = 0$, appartient à \mathcal{P} et est libre. En effet, si $\sum_{q \in \mathbf{P}} \lambda_q E_q = 0$, on a $\forall n \in \mathbf{N}$, $\sum_{q \in \mathbf{P}} \lambda_q E_q(n) = 0$ et, en particulier, pour $n = q_0 \in \mathbf{P}$, on obtient $\lambda_{q_0} = 0$ car $E_q(q_0) \neq 0 \Leftrightarrow q \mid q_0$.
- **I-2°) a)** ♦ Soit n = pq + r avec $r \in [0, p 1]$. On a $A(U, p, n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{pq+r+k} = \frac{1}{p} \sum_{k=0}^{p-1} u_{r+k} = \frac{1}{p} \sum_{k=0}^{p-r-1} u_{r+k} + \frac{1}{p} \sum_{k=0}^{p-1} u_{k} = A(U, p, 0)$ donc $A(U, p, n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{k} + \frac{1}{p} \sum_{k=0}^{p-1} u_{k} = A(U, p, 0)$ donc $A(U, p, n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{k} + \frac{1}{p} \sum_{k=0}^{p-1} u_{k} = A(U, p, 0)$ donc $A(U, p, n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{k} + \frac{1}{p} \sum_{k=0}^{p-1} u_{k} = A(U, p, 0)$ donc $A(U, p, n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{k} + \frac{1}{p} \sum_{k=0}^{p-1} u_{k} = \frac{1}{p$
 - **b)** $L(\Omega) = 1$ et $L(C) = \frac{1}{4}(c_0 + c_1 + c_2 + c_3) = \frac{1}{4}(0 + (-1) + 0 + 1)$ soit L(C) = 0.
 - c) Si $U \in \mathcal{P}_0 \cap \mathcal{P}_1$, $U = \lambda \Omega$ alors $0 = L(U) = \lambda L(\Omega) = \lambda$ donc U = 0 et donc $\mathcal{P}_0 \cap \mathcal{P}_1 = \{0\}$. D'autre part, soit $U \in \mathcal{P}$, on peut écrire $U = L(U)\Omega + (U L(U)\Omega)$ et $L(U L(U)\Omega) = L(U) L(U) = 0$ donc $U \in \mathcal{P}_0 + \mathcal{P}_1$. On a donc $\underline{\mathcal{P}} = \mathcal{P}_0 \oplus \mathcal{P}_1$.
- I-3°) a) \diamond Soit $p \in \mathcal{T}(U)$, $u'_{n+p} = u_{n+p+1} u_{n+p} = u_{n+1} u_n = u'_n$ donc $\underline{U' \in \mathcal{P}}$. La linéarité étant immédiate, on a donc $D \in \mathcal{L}(\mathcal{P})$.

$$\diamond \underline{D(\Omega)} = 0 \text{ et } D(C) = C' \text{ avec } \underline{c_0'} = -1, \ c_1' = 1, \ c_2' = 1, \ c_3' = -1 \ .$$

$$\diamond \overline{D(U)} = 0 \Longleftrightarrow \forall n, \ u_{n+1} = u_n \text{ donc } \underline{\operatorname{Ker} D = \mathcal{P}_1} \ .$$

$$\diamond \operatorname{Soit} \ U' = D(U), \text{ on a vu ci-dessus que } p \in \mathcal{T}(U) \Rightarrow p \in \mathcal{T}(U'). \text{ Soit un tel } p, \text{ on a } L(U') = \frac{1}{p} \sum_{k=0}^{p-1} (u_{k+1} - u_k) = u_p - u_0 = 0. \text{ Donc } \operatorname{Im} D \subset \operatorname{Ker} L = \mathcal{P}_0. \text{ Réciproquement, soit } V \in \mathcal{P}_0, \text{ posons } u_0 = 0$$
 et, pour $n \geq 1, \ u_n = \sum_{k=0}^{n-1} v_k. \text{ On a } \forall n, \ v_n = u_{n+1} - u_n \text{ et, de plus, si } p \in \mathcal{T}(V), \text{ on a, pour } n = 0,$
$$u_p = \sum_{k=0}^{p-1} v_k = pL(V) = 0 \text{ et, pour } n \geq 1, \ u_{n+p} = \sum_{k=0}^{n+p-1} v_k = \sum_{k=0}^{n-1} v_k + \sum_{k=n}^{n+p-1} v_k = u_n + pA(V, p, n) = u_n.$$

$$\operatorname{Donc} \ U \in \mathcal{P} \text{ et } V = D(U). \text{ En conclusion, } \underline{\operatorname{Im} D = \mathcal{P}_0}.$$

- **b)** $D(\mathcal{P}_0) \subset \operatorname{Im} D = \mathcal{P}_0$ donc $\underline{\mathcal{P}_0}$ est stable par D. D'autre part, en notant D_0 l'endomorphisme de \mathcal{P}_0 induit par D, $\operatorname{Ker} D_0 = \operatorname{Ker} \overline{D \cap \mathcal{P}_0} = \mathcal{P}_1 \cap \mathcal{P}_0 = \{0\}$ donc $\underline{D_0} \in \operatorname{GL}(\mathcal{P}_0)$.
- c) Pour $U \in \mathcal{P}_0$, $D_0(U) = \lambda U \iff \forall n$, $u_{n+1} u_n = \lambda u_n$ soit $D_0(U) = \lambda U \iff \forall n$, $u_{n+1} = (\lambda + 1)u_n$ soit $\forall n$, $u_n = (\lambda + 1)^n u_0$. La condition $U \in \mathcal{P}$ s'écrit, pour $u_0 \neq 0$ et $\lambda \neq -1$, $\exists p > 0$, $(\lambda + 1)^p = 1$ et, dans ce cas, on a bien $L(U) = \frac{u_0}{p} \sum_{k=0}^{p-1} (\lambda + 1)^k = 0$ sauf si $\lambda + 1 = 1$ où $L(U) = u_0$ qui n'est nul que si U = 0. Le cas $u_0 = 0$ donne U = 0 et le cas $\lambda + 1 = 0$ donne $\forall n \geq 1$, $u_n = 0$ qui n'est périodique que si $u_0 = 0$ soit U = 0. En conclusion, $\operatorname{Sp}(D_0) = \left\{ -1 + \mathrm{e}^{\frac{2ik\pi n}{p}} \;\middle|\; p \in \mathbf{N}^*, \; k \in [1, p-1] \right\}$ et $E_{\lambda} = \mathbf{C} \cdot \left((\lambda + 1)^n\right)_{n \in \mathbf{N}}$.
- **I-4°) a)** Soit $U \in \mathcal{P}_0$, on a, si $p \in \mathcal{T}(U)$, $\forall n$, $u_{n+p}^* = \sum_{k=0}^{n+p} u_k = \sum_{k=0}^n u_k + \sum_{k=n+1}^{n+p} u_k = u_n^* + pA(U, p, n+1) = u_n^*$ donc $U^* \in \mathcal{P}$. La linéarité étant évidente on obtient $\theta \in \mathcal{L}(\mathcal{P}_0, \mathcal{P})$.
 - $\begin{aligned} \mathbf{b}) \diamond & \text{ On a } u_0 = u_0^* \text{ et, pour } n \geq 1, \ u_n = u_n^* u_{n-1}^* \text{ donc } U^* = 0 \Rightarrow U = 0 \text{ et donc } \underline{\text{Ker } \theta = \{0\}} \ . \\ \diamond & \text{ Si } V \in \text{Im } \theta, \ V = \theta(U) \text{ alors } v_{p-1} = \sum_{k=0}^{p-1} u_k = pA(U,p,0) = 0. \text{ Réciproquement, soit } V \in \left\{U \in \mathcal{P} \mid u_{p-1} = 0\right\}, \text{ posons } u_0 = v_0 \text{ et, pour } n \geq 1, \ u_n = v_n v_{n-1}. \text{ On a } \forall n, \ v_n = \sum_{k=0}^n u_k. \text{ De plus, soit } p \in \mathcal{T}(V), \\ \text{ on a } \forall n \geq 1, \ u_{n+p} = v_{n+p} v_{n+p-1} = v_n v_{n-1} = u_n \text{ et, pour } n = 0, \ u_p = v_p v_{p-1} = v_p = v_0 = u_0 \\ \text{ donc } U \in \mathcal{P}. \text{ Donc } \underline{\text{Im } \theta = \left\{U \in \mathcal{P} \mid u_{p-1} = 0\right\}}. \end{aligned}$

Deuxième partie

- II-1°) \diamond Soit $p \in \mathcal{T}(U)$ et $r \in [0, p-1]$. On a $u_{np+r} = u_r \xrightarrow[n \to +\infty]{} u_r$. Donc s'il existe $r \in [0, p-1]$ tel que $u_r \neq 0$ alors u_n ne tend pas vers 0 et la série $(\sum u_k)$ diverge grossièrement. Par contre, si $\forall r \in [0, p-1]$, $u_r = 0$ alors, par périodicité, $\forall n, \ u_n = 0$ et $(\sum u_k)$ converge. Donc $(\sum u_k)$ converge si et seulement si U = 0.
 - $\diamond U$ est borné donc il existe M tel que $\left|\frac{u_n}{n^\alpha}\right| \leq \frac{M}{n^\alpha}$ et donc $(\sum u_k)$ est absolument convergente .

II-2°)a)
$$\frac{1}{kp+j} = \frac{1}{kp(1+\frac{j}{pk})} = \frac{1}{kp} \left(1+\frac{j}{pk}\right)^{-1} = \frac{1}{kp} \left(1-\frac{j}{pk}+o(\frac{1}{k})\right).$$

Donc $\frac{1}{kp+j} = \frac{1}{kp} - \frac{j}{p^2k^2} + o(\frac{1}{k^2})$.

b)
$$w_k = \sum_{j=0}^{p-1} \frac{u_j}{kp+j} = \sum_{j=0}^{p-1} \left(\frac{u_j}{kp} - \frac{ju_j}{p^2k^2} + o\left(\frac{1}{k^2}\right)\right)$$

 $= \frac{1}{k} \left(\frac{1}{p} \sum_{j=0}^{p-1} u_j\right) - \frac{1}{k^2} \left(\frac{1}{p} \sum_{j=0}^{p-1} ju_j\right) + o\left(\frac{1}{k^2}\right)$
 $= \frac{L(U)}{k} - \frac{1}{k^2} \left(\frac{1}{p} \sum_{j=0}^{p-1} ju_j\right) + o\left(\frac{1}{k^2}\right)$

Donc si $U \in \mathcal{P} \setminus \mathcal{P}_0$ on a $L(U) \neq 0$ et donc $w_k \underset{k \to +\infty}{\sim} \frac{L(U)}{k}$. Donc <u>si $U \in \mathcal{P} \setminus \mathcal{P}_0$, $(\sum w_k)$ diverge</u>. Par contre, puisque $(\sum \frac{1}{k^2})$ converge, $(\sum -\frac{1}{k^2} \begin{pmatrix} \frac{1}{p} \sum_{j=0}^{p-1} ju_j \end{pmatrix} + o(\frac{1}{k^2}))$ converge et donc si $U \in \mathcal{P}_0$, $(\sum w_k)$ converge.

- c) Puisque U est borné, $\lim \frac{u_n}{n} = 0$ et $(\sum w_k)$ est obtenue à partir de $(\sum v_n)$ par regroupement par paquets de taille bornée donc ces deux séries sont de même nature. Donc $(\sum v_n)$ converge $\iff U \in \mathcal{P}_0$.
- $\begin{aligned} \textbf{II-3}^{\circ})\textbf{a)} & C \in \mathcal{P}_0 \text{ donc } S(C) \text{ existe et on peut écrire } S(C) = \lim_{n \to +\infty} \left(\sum_{j=1}^{4n} \frac{c_j}{j}\right). \\ \text{Or } & \sum_{j=1}^{4n} \frac{c_j}{j} = \sum_{k=0}^{n-1} \left(\frac{c_{4k+1}}{4k+1} + \frac{c_{4k+2}}{4k+2} + \frac{c_{4k+3}}{4k+3} + \frac{c_{4k+4}}{4k+4}\right) = \sum_{k=0}^{n-1} \left(\frac{-1}{4k+1} + \frac{0}{4k+2} + \frac{1}{4k+3} + \frac{0}{4k+4}\right) \\ & = \sum_{k=0}^{n-1} \left(-\int_0^1 t^{4k} \, dt + \int_0^1 t^{4k+2} \, dt\right) = \sum_{k=0}^{n-1} \int_0^1 (t^2 1) t^{4k} \, dt = \int_0^1 (t^2 1) \sum_{k=0}^{n-1} t^{4k} \, dt \\ \text{Or, pour } t^4 \neq 1, \sum_{k=0}^{n-1} t^{4k} = \frac{t^{4n} 1}{t^4 1}, \text{ en particulier, pour } t \in [0, 1[, (t^2 1) \sum_{k=0}^{n-1} t^{4k} = \frac{t^{4n} 1}{t^2 + 1}, \text{ mais ceci est } \\ \text{vrai aussi en } t = 1 \text{ donc } \sum_{j=1}^{4n} \frac{c_j}{j} = \int_0^1 \frac{t^{4n} 1}{t^2 + 1} \, dt = -\int_0^1 \frac{1}{t^2 + 1} \, dt + \int_0^1 \frac{t^{4n}}{t^2 + 1} \, dt. \text{ Mais } 0 \leq \int_0^1 \frac{t^{4n}}{t^2 + 1} \, dt \leq \int_0^1 t^{4n} \, dt = \frac{1}{4n+1} \xrightarrow[n \to +\infty]{} 0 \text{ donc en passant à la limite :} \end{aligned}$

$$S(C) = -\int_0^1 \frac{1}{t^2 + 1} dt = -\frac{\pi}{4}$$

b)
$$T \in \mathcal{P}_0$$
 donc $S(T)$ existe et on a $S(T) = \lim_{n \to +\infty} \left(\sum_{j=1}^{np} \frac{t_j}{j} \right) = \lim_{n \to +\infty} \left(\sum_{j=1}^{np} \frac{1}{j} - p \sum_{k=1}^{n} \frac{1}{pj} \right)$. Or $\sum_{j=1}^{np} \frac{1}{j} - p \sum_{k=1}^{n} \frac{1}{pj} = \sum_{j=1}^{np} \frac{1}{j} - \sum_{k=1}^{n} \frac{1}{j} = \ln(np) + \gamma + o(1) - (\ln(n) + \gamma + o(1))$. Donc $S(T) = \ln(p)$.

Troisième partie

III-1°) \diamond Soit $U \in \mathcal{P}$ et $p \in \mathcal{T}(U)$, on a $|L(U)| = \left|\frac{1}{p}\sum_{k=0}^{n}u_{n+k}\right| \leq \frac{1}{p}\sum_{k=0}^{n}|u_{n+k}| \leq \frac{1}{p}\sum_{k=0}^{n}\|U\|_{\infty}$. Donc $|L(U)| \leq \|U\|_{\infty}$ et donc \underline{L} est continue sur $\underline{\mathcal{P}}$. \diamond On a, d'après ci-dessus, $\|L\| \leq 1$ mais, pour la suite constante Ω , $|L(\Omega)| = 1 = \|\Omega\|_{\infty}$. Donc $\|L\| = 1$. \diamond On a $\mathcal{P}_0 = \text{Ker } L = L^{-1}(\{0\})$, or L est continue de \mathcal{P} dans \mathbf{C} et $\{0\}$ est un fermé de \mathbf{C} donc, en tant qu'image réciproque d'un fermé par une application continue, \mathcal{P}_0 est un fermé de \mathcal{P} .

III-2°) \diamond Soit $U \in \mathcal{P}$ et U' = D(U), $\forall n, |u'_n| = |u_{n+1} - u_n| \le |u_{n+1}| + |u_n| \le 2 \|U\|_{\infty}$ donc $\|U'\|_{\infty} \le 2 \|U\|_{\infty}$ donc \underline{D} est continue sur $\underline{\mathcal{P}}$.

 \diamond De plus, $||D|| \leq 2$ mais on a vu au **I-3°) c)** que $-2 \in \operatorname{Sp}(D_0) \subset \operatorname{Sp}(D)$ (obtenu,par exemple, pour p=2 et k=1) et, en prenant $U \in E_{-2} = \mathbf{C} \cdot \left((-1)^n\right)_{n \in \mathbf{N}}$ et $U \neq 0$, on a $||D(U)||_{\infty} = 2 ||U||_{\infty}$. Donc ||D|| = 2.

- ${\rm III-3^{\circ}}$) Soit $q \in {\bf N}^*$ et Z la suite (qui sera utilisée également plus bas) définie par :
 - $\rightarrow Z$ est 2q-périodique,
 - $\rightarrow \text{ pour } n \in \llbracket 1,q \rrbracket, \, z_n = 1, \, \text{et, pour } n \in \llbracket q+1,2q \rrbracket, \, z_n = -1.$

On a A(Z, 2q, 1) = q - q = 0 donc $Z \in \mathcal{P}_0$, $||Z||_{\infty} = 1$ et, si $Z^* = \theta(Z)$, $z_q^* = \sum_{k=0}^q z_k = -1 + q \cdot 1 = q - 1$

 $\mathrm{donc}\ \|Z^*\|_{\infty} \geq q-1.\ \mathrm{Donc}\ \forall M \geq 0,\ \exists\, q,\ |D(Z)| > M = M.\, \|Z\|_{\infty}.$

Donc θ n'est pas continue sur \mathcal{P}_0 .

 $\mathbf{III-4}^{\circ}$)a) $\diamond \forall t \in [0,1[, \frac{1-t^q}{(1-t)(1+t^q)} = \sum_{k=0}^{q-1} \frac{t^k}{1+t^q}$ qui se prolonge par continuité en 1 et donc $\underline{I_q}$ existe.

 $\diamond I_q = \sum_{k=0}^{q-1} \int_0^1 \frac{t^k}{1+t^q} \, dt \text{ or, pour } k \in [0,q-1], \ \forall t \in [0,1], \ t^q \leq t^{k+1} \text{ donc } 0 \leq 1+t^q \leq 1+t^{k+1} \text{ et donc } 1 \leq t^{k+1} \text{ donc } 0 \leq 1+t^q \leq 1+t^{k+1} \text{ et donc } 1 \leq t^{k+1} \text{ donc } 1 \leq t^{k+1$

 $\frac{t^k}{1+t^{k+1}} \le \frac{t^k}{1+t^q}.$

On a donc $\int_0^1 \frac{t^k}{1+t^q} dt \ge \int_0^1 \frac{t^k}{1+t^{k+1}} dt = \left[\frac{1}{k+1} \ln(1+t^{k+1})\right]_0^1 = \frac{\ln(2)}{k+1} \operatorname{donc} I_q \ge \ln(2) \sum_{k=0}^{q-1} \frac{1}{k+1} \xrightarrow{q \to +\infty} +\infty$.

$$\mathbf{b)} \ V_N = \sum_{n=1}^{2qN} \frac{z_n}{n} = \sum_{p=0}^{N-1} \left(\sum_{r=1}^q \left[\frac{z_{2pq+r}}{2pq+r} + \frac{z_{2pq+q+r}}{2pq+q+r} \right] \right)$$

$$= \sum_{p=0}^{N-1} \left(\sum_{r=1}^q \left[\frac{1}{2pq+r} - \frac{1}{2pq+q+r} \right] \right) = \sum_{p=0}^{N-1} \left(\sum_{r=1}^q \left[\int_0^1 t^{2pq+r-1} dt - \int_0^1 t^{2pq+q+r-1} dt \right] \right)$$

$$= \sum_{p=0}^{N-1} \left(\sum_{r=1}^q \int_0^1 (1-t^q) t^{2pq} t^{r-1} dt \right) = \sum_{p=0}^{N-1} \int_0^1 (1-t^q) t^{2pq} \sum_{r=1}^q t^{r-1} dt$$

$$= \sum_{p=0}^{N-1} \int_0^1 (1-t^q) t^{2pq} \frac{1-t^q}{1-t} dt = \int_0^1 \frac{(1-t^q)^2}{1-t} \sum_{p=0}^{N-1} (t^{2q})^p dt$$

$$= \int_0^1 \frac{(1-t^q)^2}{1-t} \frac{1-t^{2qN}}{1-t^{2qN}} dt = \int_0^1 \frac{1-t^q}{(1-t)(1+t^q)} (1-t^{qN}) dt = I_q - \int_0^1 \frac{1-t^q}{(1-t)(1+t^q)} t^{qN}, dt$$

(toutes les égalités ci-dessus sont valables comme au **II-3**° car les égalités entre fonctions à intégrer sont valables en t=1 par continuité)

Or
$$0 \le \int_0^1 \frac{1 - t^q}{(1 - t)(1 + t^q)} t^{qN}$$
, $dt = \sum_{k=0}^{q-1} \int_0^1 \frac{t^k}{1 + t^q} t^{qN} dt \le \sum_{k=0}^{q-1} \int_0^1 t^{qN} dt = \frac{q}{qN + 1} \xrightarrow[N \to +\infty]{} 0$.
Donc $V_N \xrightarrow[N \to +\infty]{} I_q$.

c) Comme $Z \in \mathcal{P}_0$, $V_N \xrightarrow[N \to +\infty]{} S(Z)$ donc $S(Z) = I_q$ et $|I_q| \xrightarrow[q \to +\infty]{} +\infty$ donc $\forall M \geq 0, \ \exists q, \ |S(Z)| > M = M. \|Z\|_{\infty}$.

Donc \underline{S} n'est pas continue sur \mathcal{P}_0 .

* * *

ተ ተ

*