ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ETIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE

ÉCOLE POLYTECHNIQUE (OPTION T.A.)

CONCOURS D'ADMISSION 1995

MATHÉMATIQUES

PREMIÈRE ÉPREUVE OPTIONS M ET P'

(Durée de l'épreuve : 4 heures)

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie : MATHÉMATIQUES I.

L'énoncé de cette épreuve, commune aux candidats des options M et P', comporte 4 pages. Ce problème est consacré à l'étude de suites complexes périodiques. Par définition, une suite complexe $U = (u_n)_{n \in \mathbb{N}}$ est périodique si et seulement s'il existe un entier naturel p, différent de 0, tel que, pour tout entier naturel n, l'égalité

$$u_{n+p} = u_n$$

a lieu. L'entier p est appelé période de la suite U. Soit \mathscr{P} l'ensemble de ces suites.

La première et la deuxième partie définissent les applications linéaires L, D, θ , S et les sousespaces vectoriels \mathscr{P}_0 et \mathscr{P}_1 de l'espace vectoriel \mathscr{P} . Elles étudient les noyaux et les espaces images de ces applications. La troisième partie s'intéresse à leur continuité.

Première partie.

Désignons par \mathscr{B} l'ensemble des suites complexes $V=(v_n)_{n\in\mathbb{N}}$ bornées. Admettons que \mathscr{B} soit un espace vectoriel complexe et que l'application de \mathscr{B} dans \mathbb{R} , $V\mapsto \|V\|_{\infty}=\sup_{n\geqslant 0}|v_n|$, soit une norme.

I-1°) Premières propriétés de l'ensemble \mathscr{P} des suites complexes périodiques :

- a. Désignons par $\mathscr{T}(U)$ l'ensemble des périodes d'une suite complexe périodique U. Démontrer l'existence d'une plus petite période p_0 ; caractériser l'ensemble $\mathscr{T}(U)$. Déterminer les ensembles $\mathscr{T}(\Omega)$ et $\mathscr{T}(C)$ relatifs aux deux suites définies ci-dessous :
- $\Omega = (\omega_n)_{n \in \mathbb{N}}$, pour tout $n, \omega_n = 1$; $C = (c_n)_{n \in \mathbb{N}}$, pour tout $n, c_n = \Re i^{n+1}$.
 - b. Démontrer que l'ensemble ${\mathscr P}$ des suites complexes périodiques est un sous-espace vectoriel de l'espace ${\mathscr B}.$
 - c. Cet espace vectoriel \mathscr{P} est-il de dimension finie?

Étant donnés une suite U de \mathscr{P} et deux entiers naturels p et n, désignons par A(U,p,n) le nombre complexe défini par la relation : $A(U,p,n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{n+k}$.

I-2 $^{\circ}$) Décomposition de \mathscr{P} en somme directe.

a. Démontrer que pour une suite U donnée de \mathscr{P} , le nombre complexe A(U, p, n) ne dépend ni de l'entier naturel n, ni de la période p de U (p appartient à $\mathscr{T}(U)$).

Pour une suite U donnée de \mathscr{P} , soit L(U) la valeur commune de ces nombres complexes A(U, p, n); désignons par L la forme linéaire : $U \mapsto L(U)$.

1

- b. Calculer $L(\Omega)$ et L(C); Ω et C sont les suites définies à la question **I-1** ° **a**.
- c. Soit \mathscr{P}_0 le noyau de la forme linéaire L. Soit \mathscr{P}_1 le sous-espace vectoriel engendré par la suite Ω définie à la question \mathbf{I} $\mathbf{1}$ ° \mathbf{a} ; démontrer que l'espace vectoriel \mathscr{P} est égal à la somme directe des deux sous-espaces vectoriels \mathscr{P}_0 et \mathscr{P}_1 : $\mathscr{P} = \mathscr{P}_0 \oplus \mathscr{P}_1$.

I-3°) Étude d'un endomorphisme D_0 de \mathscr{P}_0 .

À tout élément $U=(u_n)_{n\in\mathbb{N}}$ de \mathscr{P} , associons la suite $U'=(u'_n)_{n\in\mathbb{N}}$, définie par la relation :

pour tout entier naturel $n, u'_n = u_{n+1} - u_n$.

- a. Démontrer que, pour tout U de \mathscr{P} , la suite U' appartient à \mathscr{P} . Soit D l'application : $U \mapsto U'$; établir que D est un endomorphisme de \mathscr{P} . Déterminer les images $D(\Omega)$ et D(C) des suites définies à la question **I-1** ° **a**. Quels sont les noyau et espace image de l'endomorphisme D?
- b. Démontrer que le sous-espace vectoriel \mathscr{P}_0 est stable par D et que la restriction de D à \mathscr{P}_0 est un automorphisme, qui est noté D_0 .
- c. Déterminer toutes les valeurs propres de cet automorphisme D_0 de \mathscr{P}_0 ; préciser des éléments de \mathscr{P}_0 qui sont des vecteurs propres associés à ces valeurs propres.

I-4°) Étude d'une application linéaire de \mathscr{P}_0 dans \mathscr{P} .

À tout élément $U=(u_n)_{n\in\mathbb{N}}$ de \mathscr{P} , associons la suite $U^*=(u_n^*)_{n\in\mathbb{N}}$, définie par la relation :

pour tout entier naturel
$$n$$
, $u_n^* = \sum_{k=0}^n u_k$.

- a. Démontrer que l'application $\theta:U\mapsto U^*$ est une application linéaire de \mathscr{P}_0 dans $\mathscr{P}.$
- b. Déterminer le noyau et l'espace image de cette application linéaire θ .

Deuxième partie

Soient $U=(u_n)_{n\in\mathbb{N}}$ un élément de \mathscr{P} et α un réel supérieur ou égal à 1. L'objet de cette partie est d'étudier la série de terme général $v_n=\frac{u_n}{n^\alpha},\ n\geqslant 1$, et de considérer la forme linéaire S qui, à un élément U de \mathscr{P}_0 , associe le nombre complexe S(U) défini par la relation : $S(U)=\sum_{n=1}^{\infty}\frac{u_n}{n}$.

- II-1°) Soient $U=(u_n)_{n\in\mathbb{N}}$ un élément de \mathscr{P} et α un réel strictement supérieur à 1. Quelle est la nature de la série de terme général $u_n,\ n\in\mathbb{N}$? Quelle est celle de la série de terme général $v_n=\frac{u_n}{n^{\alpha}},\ n\geqslant 1$?
- II-2°) Soit $U=(u_n)_{n\in\mathbb{N}}$ un élément de \mathscr{P} de période p; supposons le réel α égal à 1; pour étudier la convergence de la série de terme général $v_n=\frac{u_n}{n},\ n\geqslant 1$, considérons les nombres complexes $w_k,\ k\geqslant 1$, définis par la relation :

$$w_k = v_{kp} + v_{kp+1} + \dots + v_{kp+p-1} = \sum_{j=0}^{p-1} \frac{u_j}{kp+j}.$$

2

- a. En supposant les deux entiers p et j donnés $(p>0,\ j\geqslant 0)$, déterminer le développement limité à l'ordre 2 par rapport à $\frac{1}{k}$ de l'expression $\frac{1}{kp+j}$, lorsque l'entier k croît indéfiniment.
- b. En déduire la nature de la série de terme général w_k , $k \ge 1$, lorsque la suite U appartient à \mathscr{P} sans appartenir à \mathscr{P}_0 puis, lorsque la suite U appartient à \mathscr{P}_0 .
- c. En déduire la nature de la série de terme général v_n , $n \ge 1$; discuter sa convergence suivant que la suite U appartient ou non à l'ensemble \mathscr{P}_0 .

Désormais, désignons par S la forme linéaire qui, à une suite U appartenant à \mathscr{P}_0 , fait correspondre le réel $S(U) = \sum_{n=1}^{\infty} \frac{u_n}{n}$.

II-3°) Deux exemples:

a. Soit $C = (c_n)_{n \in \mathbb{N}}$ la suite définie à la question I-1 ° a. Calculer S(C). Une méthode, parmi d'autres, consiste à utiliser la relation :

pour tout entier naturel
$$k$$
, $\int_0^1 t^k dt = \frac{1}{k+1}$.

b. Soit $T=(t_n)_{n\in\mathbb{N}}$ la suite de période p, dont les termes $t_n,\,n\in\mathbb{N}$, sont définis par les relations:

pour tout entier r compris entre 1 et p-1, $1 \le r \le p-1$, $t_r=1$; $t_p=1-p$.

Déterminer S(T) en supposant connu le résultat : il existe une constante γ telle

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \ln(n) + \gamma + o(1)$$
, lorsque l'entier n croît indéfiniment.

Troisième partie

D'après les résultats admis et la question I-1 ° b, le couple $(\mathscr{P}, \| \|_{\infty})$ est un espace vectoriel normé. Le sous-espace vectoriel \mathscr{P}_0 de \mathscr{P} est muni de la même norme. L'objet de cette partie est d'étudier la continuité des applications linéaires $L,\,D,\,\theta$ et S. Rappelons que, si T est une application lipschitzienne d'un espace vectoriel normé $(E, || \cdot ||_E)$ dans un espace vectoriel normé $(F, \|\ \|_F),$ sa norme est définie par la relation :

$$||T|| = \sup_{x \in E} \frac{||T(x)||_F}{||x||_E}.$$

- III-1 $^{\circ}$) Démontrer que la forme linéaire L est lipschitzienne. Déterminer sa norme. Le sousespace vectoriel \mathscr{P}_0 est-il fermé dans \mathscr{P} ?
- III-2°) Cette application linéaire D de \mathscr{P} dans lui-même est-elle lipschitzienne? Déterminer éventuellement sa norme.
- III-3°) L'application linéaire θ de \mathscr{P}_0 dans \mathscr{P} est-elle lipschitzienne?
- III-4 $^{\circ}$) Étude de la continuité de la forme linéaire S:

Dans cette question, q est un entier donné strictement positif.

a. Soit I_q l'intégrale définie par la relation : $I_q = \int_0^1 \frac{1-t^q}{(1-t)(1+t^q)} \ \mathrm{d}t.$

Étudier la définition de l'intégrale I_q et la convergence de la suite réelle $(I_q)_{q\geqslant 1}$ lorsque l'entier q croît indéfiniment.

b. Soit $Z=(z_n)_{n\in\mathbb{N}}$ la suite appartenant à \mathscr{P} , de période 2q dont les termes z_n , $n \in \mathbb{N}$, sont définis par les relations :

pour tout entier n compris entre 1 et $q: 1 \leq n \leq q, z_n = 1$,

pour tout entier n compris entre q + 1 et $2q : q + 1 \leq n \leq 2q$, $z_n = -1$.

Étant donné un entier N strictement positif, soit V_N le réel défini par la relation $V_N = \sum_{n=1}^{2qN} \frac{z_n}{n}.$

$$V_N = \sum_{n=1}^{2qN} \frac{z_n}{n}.$$

Étudier la convergence de la suite réelle $(V_N)_{N \geqslant 1}$.

c. Déduire des résultats précédents que la forme linéaire S définie sur \mathcal{P}_0 , n'est pas lipschitzienne.

FIN DU PROBLÈME