1

Protect_ion and monitoring of the electrical energy transmission networks - Appendix 1

APPENDIX   1
(by clicking above you return to the general summary)
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1 - Why do the utilities use the three phase voltage?

It is a problem of alternative current generator.

1 - 1 - Principle of the one phase generator

      
- the rotor is a magnet surrounded by a coil run by a direct current. It creates, in the magnetic circuit that it forms with the armature,  a magnetic induction with constant amplitude, but whose direction varies with the rotation. The flux of this induction in the coils of the stator makes an alternating voltage  V appear at their terminals. Its frequency is equal to the product of the rotation speed of the inductor by its number of pole pairs  (1 on the scheme).

      
- If you connect the armature to a load, a current runs inside the armature coils. This current creates a fixed direction induction vector, following the y-y' axis but with sinusoidal amplitude. This is called the armature reaction. It can be shown that it may be broken down into two rotating induction vectors, with constant amplitude:

. the first one turns in the same direction  as the rotor, and at the same speed. It is out of phase with respect to the initial induction vector by a fixed angle that depends on the nature of the burden. 

. the second one turn in the opposite direction. It creates a variable flux inside the rotor, thus the appearance of Eddy currents that seriously disturb the operation of the generator and deteriorate its efficiency.
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1 - 2 - Principle of the three phase generator

Three coils are placed on the armature so that their axes have 120° between them. Thus the appearance, under the effect of the induction produced by the inductor, of three voltages out of phase by 120 ° the one with respect to the other. If these voltages supply balanced burden, the currents are also out of phase by 120 °. The 3 induction vectors they create in the inductor have a fixed direction but a sinusoidal amplitude. They are also out of phase of 120 ° the one with respect to the other. It may be shown that such a system is equivalent to an induction vector rotating in the same direction as the inductor and with constant amplitude. An induction vector rotating in the opposite direction no longer exists. 

The advantages of the three phase generator over the one phase generator are so great that all generators are three phase. 

On the receptors, similar advantages are found, notably on large motors (synchronous and asynchronous), and on bridge rectifiers (Graetz rectifiers) 

2 - Study of overhead lines 

2 - 1 - General theory

We will tart with the most complicated theory, simplifying it later. 

- Remember the telegraph equation
Let us consider an element of a one wire line, which length is dx. The resistance of this element is  r * dx, its inductance is l * dx, its transverse conductance is g * dx, and its transverse capacitance is c * dx. 

The parameters r, l, g, c are respectively the resistance per km of the line, its inductance per km, its conductance per km, and its capacitance per km. 

The transmission equation on the line are:

          
dv / dx = r  * i  + l * di  / dt            

 (1)

di  / dx = g * v + c * dv / dt 
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- Application to the three phase lines

The equation is the same, but the data v, i and parameters  l, r, g, c are matrixes:                                                                
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If we assume that v and i have sinusoidal value, the resolution of the equation (1)  gives the following relations between the rms voltage V1 and the rms current I1 on the input of the line, and the rms voltage V2 and the rms current I2 on the output of the line: 

            V1 = ch ( * x) *V2 + zc * sh ( * x) * I2                                                                                                                                               













(2)

            I1 = zc-1  * sh ( * x) *V2 + ch ( * x) * I2

with:

              = ( (r + j * l * ) * (g + j * c * )


             

(r + j * l * )


zc =

 (g + j * c * )

Here, the functions of square matrices are used. For this, the following property is used: if a square matrix M can be diagonalised in the form:

                                    

M = T-1  * D * T

the function  f ( M ) can be put into the form:

                                         f (1)   
0            0

  
f ( M ) = T-1  *  
0       
f (2)     0           * T

                                         0          
0            f (3)

       
1, 2, 3 being the eigenvalues of the matrix M.

So that the above equations may be used simply,  r, l, g, c must have the same eigenvector matrix T. 

Now, this is approximately the case for l and c, which are calculated from the same geometric arrangement of conductors, the ones with respect to the others and with respect to the ground, and by using similar equations. 

As for r and g, they are highly variable with air humidity (g), and ground humidity (c), and we can, on the average, assume that they have the same eigenvector as l and c, and that in addition the Heaviside condition is realised, namely: 

                                     

l * g  =  r * c

2 - 2 - Study of a geometrically balanced system

 In this case, the terms of the diagonal of the matrices  r, l, g, c, are equal each other and the other terms are also equal each other. This is the case, on the average, for regularly transposed overhead lines, as well as, more exactly, for underground cables placed in cloverleaf. As an example, the inductance matrix becomes:



lrr   lry   lry


l =   
lry   lrr   lry



lry   lry   lrr

The equation giving the eigenvalues is then written:

    
(lrr - lry - )²  * (lrr + 2 * lry - ) = 0

The matrices then have a double eigenvalue and a single eigenvalue. They thus have an infinity of eigenvectors pairs corresponding to the double eigenvalue, and a single eigenvector corresponding to the single eigenvalue.
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The single eigenvector corresponding to the single eigenvalue is called zero sequence vector   
1
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The eigenvector pair corresponding to the double eigenvalue, and currently used, are: 

     
- symmetric components

         
1                       
1

       
a²          et          
a                  with a = - 1 / 2 + j *  (  3   / 2

        
a                       
a²

They are well fitted to the description of the three phase generator operation.

- Clarke components.

    
1                    
1

            -2                         
0

          
1                     
1

 They are mainly used for the power line carrier telecommunication systems on very high voltage line. The first vector correspond to the inter - phase mode in which a signal is injected between one phase and the two others put into parallel. The second corresponds to the twin wire mode in which the signal is injected between two phases.

Note: the Edith  Clarke components make it possible to describe certain forms of asymmetry such as horizontal display overhead lines. They allow also the description of surge phenomena. On the other hand, symmetric components can be used only for periodic operation, and are totally unfitted to the study of asymmetric lines. 
2 - 3 - Definition of symmetrical components

The passage of currents called phasor currents, i. e. the ones which are directly observable on a line, to symmetric currents is done in the following way:

       
Id                            
1    a    a²               Ir

           
Ii          =        
1 / 3  * 
1    a²   a       *       Iy                         (3)

          
Io                            
1    1    1                Ib

 Id is called positive sequence current. It is the only one which is not null when Ir, Iy and Ib form a balanced system. If, in a generator, there is only positive sequence current, it operates in optimal conditions.

 Ii is called negative sequence current. It creates in a generator an induction vector rotating in the direction opposite to the one of the rotor. It must remain weak, less than 2% of the positive sequence current, or else it will cause an unacceptable heating of the rotor. 

 Io is called zero sequence current. It is equal to the third of the current flowing in the ground and which is called residual current. This current does not create damages in the generators, but can generate, by induction, surge bothersome for telecommunication lines close to energy transmission lines. 

Inversely, we go from symmetric components to phasor components by the relation:

     
Ir                   1    1    1              Id

          
Iy           =      a²   a   1      *       Ii                              (4)

          
Ib                   a    a²   1              Io

The same relations are used for voltages.

Remark: in the equation 4, in steady and balanced state, Id and Ir are equal. It is then said that the positive sequence current defined here is relative to the phase r. By circular permutation between the phases r, y, b, we obtain the positive sequence components relative to the phase y and to the phase b, which are deduced from phase r by 120 ° rotations. By the same way, the negative sequence current defined here is relative to the phase r, and we obtain the negative sequence components relative to the phase y and the phase b by 120 ° rotations:

     
Ir                   1    1    1             
Idr

          
Iy           =      a²   a    1      *     
Iir                            

          
Ib                   a    a²   1             
Io

     
Ir                   a    a²    1            
Idy

          
Iy           =      1    1   1      *      
Iiay                           

          
Ib                   a²   a    1             
Io 

     
Ir                   a²    a    1            
Idb

          
Iy           =      a    a²   1      *     
Iib                          

          
Ib                   1     1   1             
Io 

2 - 4 - Study of the impedance of  line by using symmetric components

If we neglect the transversal admittance, the voltages and currents of each end of the line are linked by:

    
vr1                  
vr2              
zrr       
zry    
zry                     
Ir

             
vy1     =        
vy2      +      
zry      
zrr     
zry         *         
Iy                     (5)

            
vb1                   
vb2             
zry       
zry     
zrr                    
Ib 

Let us name S the matrix transforming the phasor components into symmetric components, defined in the relation n° 3. Let us note V1 the vector of the phasor voltages at the end 1 of the line, Vs1 the vector of the symmetric components at the same end, etc, and let us try to transpose equation n° 5 into symmetric components.  

            
      V1 = 
       V2 +         z * I

       
S * V1 = 
S *  V2 +  S *  z * I 

        
S * V1 = 
S *  V2 +  S *  z *  S-1  *  S * I

                  Vs1 = 
      Vs2 +  S *  z *  S-1  * Is

If we set: 

     
3 * zrr = zo + 2 * zd

      
3 * zry = zo - zd 

we find:

      
Vd1 = Vd2 + 
zd * Id2

         
Vi1  = Vi2  + 
zd * Ii2

         
Vo1 = Vo2 + 
zo * Io2

 The matrix equation of the line is broken down, thanks to symmetric components, into three scalar equation systems, and the line can be represented in the following way:
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Similar relations can be found for transformers, on the condition of neglecting asymmetries between phases.

If, on a line, we wish to take into account the transversal admittance, we must use equations n° 2 again, in which we can, using symmetrical components, replace the matrix equation by three scalar equations. 

The eigenvalues of zc are called positive sequence characteristic impedance, negative sequence characteristic impedance equal to the preceding one, and zero sequence characteristic impedance. 

The real part of the eigenvalues of    are called damping positive, negative and zero sequence constants, and their imaginary part is called positive, negative and zero sequence wavelength constants. 

 Such calculation turn out to be necessary for long lines, when their length becomes an important fraction of the quarter of the wavelength corresponding to the frequency of the network, i. e. 1500 km for a frequency of 50 Hz. It is generally admitted that when the length is inferior to 400 km, it is not necessary to take into account the transversal data for the protective relay calculation.   

3 - Use of symmetric components to study a fault

We write the equations of the healthy part of a network by using symmetric components, then the ones of the disturbed part by using phasor components. We link these equation by using relations n° 3 and 4. Generally, the transversal conductance and capacitance values may be neglected. 

3 - 1 - First example: phase to earth short circuit behind a self - transformer

Let us consider the following network:
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A phase to earth fault appears on a 63 kV line. We research the phase impedance seen by the corresponding loop "phase to earth" of the relay located at P, on the 90 kV side of a self transformer 90 kV / 63 kV, linked to earth by a neutral reactor, the value of which is  Xn.

The equivalent scheme of the self transformer is:

positive and negative sequence scheme



zero sequence scheme 



Zd = Zi
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The zero sequence scheme of the whole self transformer - neutral reactor is deduced from the one of the self - transformer by putting:


Z'1 = Z1  - 
3 * (k - 1) * Xn


Z'2 = Z2 + 
3 * k * (k - 1) * Xn 


Z'3 = Z3 + 
3 * k * Xn

k being the transformation ratio

The scheme used for calculation is a follows:
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Phasor components

symmetric components

 





On the left of T, we find:



Ir1 = 0


Vr1 unknown



Iy1 = 0


Vy1 unknown



Ib1 unknown

Vb1 = 0

The symmetric components on the right of T are linked to the phasor components on the left of T by:


Vd1


1
a
a²

Vr1


Vi1 
=
1 / 3
1
a²
a
*
Vy1


Vo1


1
1
1

0


Id1


1
a
a²

0


Ii1
=
1 / 3
1
a²
a
*
0


Io1


1
1
1

Ic1

The symmetric components at P are linked to the ones observed on the right of T by:


Vd2 = Vd1 + Zd * Id1


Vi2  = Vi1  + Zd * Ii1


Vo2 = (1 + Z'2 / Z'3) * Vo1 + [(Z'1 * Z'2 / Z'3) + Z'1 + Z'2] * Io1












(2)


Id2 = Id1


Ii2 = Ii1


Io2 = (1 + Z'1 / Z'3) * Io1 + Vo1 / Z'3

These components are linked to the electromotive force of the source by:


Vd2 = E - Zds * Id2


Vi2 =     - Zds * Ii2


Vo2 =    - Zos * Io2

Thus, by starting again towards the left, and by using the equations 
(2) 


Vd1 + Zd * Id1 = E - Zds * Id1


Vi1  + Zd * Ii1  =     - Zds * Ii1


[1+Z'2/Z'3] * Vo1 + [(Z'1*Z'2/Z'3) + Z'1 + Z'2] * Io1 = - Zos * [(1 + Z'1/Z'3) * Io1 + Vo1 / Z'3)]

Then, by using the equations  (1)
on the voltages and the currents:


Vr1 + a * Vy1  = 3 * E - (Zds + Zd) * a² * Ib1


Va1 + a² * Vb1 =          - (Zds + Zd) * a  * Ic1


(Va1+Vb1) * [1+ (Z'2/ Z'3) + (Zos / Z'3)] = - Ic1 * [Zos*(1+Z'1/Z'3) + (Z'1*Z'2/Z'3) + Z'1 + Z'2]

This is a system of three equations with three unknowns

        
        Zos*(1+Z'1/Z'3) + (Z'1*Z'2/Z'3) + Z'1 + Z'2

Let us put 
 =  




1+ (Z'2/ Z'3) + (Zos / Z'3)

We obtain:


Vr1 + a  * Vy1 
= 3 * E - (Zds + Zd) * a² * Ib1


Vr1 + a² * Vy1 
=          - (Zds + Zd) * a  * Ib1


Vr1 +        Vy1 
= 
   
      -  * Ib1

thus:


3 * Vr1 

= 3 * 
  E + 
(Zds + Zd - ) 
* Ib1


(3)


3 * Vy1

= 3 * a² * E + 
(Zds + Zd - ) 
* Ib1


(4)

and:

3 * (Vr1 + Vy1)  = - 3 *  * Ic1 = - 3 * a * E + 2 * (Zds + Zd - ) * Ib1

and finally:


Ib1 = 3 * a * E / (2 * Zds + 2 * Zd+ )  





(5)

From (3) and (4) we get:


Vr1 = 
    E  + a * E * (Zds + Zd - ) / (2 * Zd + 2 * Zds + ) 


(6)


Vy1 =  a² *E  + a * E * (Zds + Zd - ) / (2 * Zd + 2 * Zds + )


(7) 

To obtain the voltages and currents at point P we start again towards the right. On the right side of the matrix T, we find, by applying the transformation (1) on the voltages and currents:


3 * Vd1 =         
E * [ 2 -         (Zds + Zd - ) / (2 * Zd + 2 * Zds + )]


3 * Vi1  = - a² * 
E * [1 +         (Zds + Zd - ) / (2 * Zd + 2 * Zds + )]


3 * Vo1 =   a  * 
E * [-1 + 2 * (Zds + Zd - ) /  (2 * Zd + 2 * Zds + )]


3 * Id1 = 3 * 
E  / (2 * Zds + 2 * Zd+ ) 


3 * Ii1  = 3 * a² * E  / (2 * Zds + 2 * Zd+ ) 


3 * Io1 = 3 * a * 
E  / (2 * Zds + 2 * Zd+ )  

So we obtain, from the equations (2)

Vd2 = 

E * [ Zds + 2 * Zd + b] 



 /  [ 2 * Zds + 2 * Zd+ ] 

Vi2  =  - a² *
E *    Zds




 /  [ 2 * Zds + 2 * Zd+ ]

Vo2 =  -a   *
E * [  * (Z'2 + Z'3) - (Z'1*Z'2 + Z'2*Z'3 + Z'1*Z'3)]  / [ Z'3 * (2*Zds + 2*Zd + b) ] 

Id2 =  

E  


/ (2 * Zds + 2 * Zd+ )

Ii2  = a² * 
E 


/ (2 * Zds + 2 * Zd+ ) 

Io2 = a * 
E * (1 + Z'1 / Z'3) 
/ (2 * Zds + 2 * Zd+ )   

We find the phasor components, by the transformation inverse from the one of (1):

Vb2 = a * Vd2  + 
a² * Vi2 + 
Vo2


Ib2  =  a *  Id2  + 
a² *  Ii2  + 
Io2

Vb2 = a *E *{2 *Zd  -  * (Z'2/Z'3) + [(Z'1*Z'2/Z'3)+ Z'2 + Z'1]} 
/  (2*Zds + 2 * Zd + ) 

Ib2  = a* E * [3 


  + (Z'1 / Z'3) ] 


/ (2 * Zds + 2 * Zd+ )

The impedance seen by the relay located at P on the loop b - earth is given by: 


Z = Vb2 / (Ib2 + 3 * ko * Io2)

that i



2 *Zd - * (Z'2 / Z'3) +  (Z'1*Z'2 / Z'3)+ Z'2 + Z'1

Z = 


      
    3 + (Z'1 / Z'3)  + 3 * ko * [1 + (Z'1 / Z'3)]

Numerical application:

The impedance values seen from the 90 kV network are:


Zd = 
9.7 




Zds = 
3     
 




Z1 = 
18 
 



Zos = 
5.4  


Z2 =
 -8 




k   = 
90 / 63  


Z3 = 
802




ko = 
0.8


Xn = 
40 

that gives:


Z'1 = 
- 28 




b = 38


Z'2 = 
  65




Z'3 = 
973 

The phase impedance seen by the relay is: 
9.8 
3-2-Second example: phase to earth  short circuit on a double circuit line supplying a dead burden 

Let us consider the following network:
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We try to find the currents crossing the relay located at P2, and also the distance at which it sees the fault.

We can mock up the network by such a way:
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The equation are the following:

On the left of point 1:


Vd1 
= E - zds * (Id1 + Id2) 
- zdl * x * Id1


Vi1 
=     - zds * (Ii1 + Ii2)  
- zdl * x * Ii1


Vo1 
=     - zos * (Io1 + Io2) 
- zol * x * Io1 - Xm * x * Io2

On the right of point 2:


Vd2 
= E - zds * (Id1 + Id2) - zdl * (2 - x) * Id2


Vi2  
=     - zds * (Ii1 + Ii2)   - zdl * (2 - x) * Ii2


Vo2 
=     - zos * (Io1 + Io2) - zol * (2 - x) * Io2 - Xm*x*Io1+Xm*(1-x)* Io2+Xm*(1-x)*Io2




(equations 1)

The phasor values between point 1 and 2 are linked to the symmetric values external to these points by following equations:


3 * Vd1 
= Vr + a * Vy
= 3 * Vd2


3 * Vi1 
= Vr + a² * Vy 
= 3 * Vi2


3 * Vo1
= Vr +       Vy 
= 3 * Vo2


3 * Id1
= Ir + a * Iy + a² * Ib 


3 * Ii1 
= Ir + a² * Iy + a * Ib


3 * Io1
= Ir + Iy + Ib


3 * Id2 
= - Ir - a * Iy - a² * (Ib - ID)


3 * Ii2
= - Ir - a² * Iy - a * (Ib - ID)


3 * Io2 
= - Ir - Iy - Ib + ID




(equations 2)

Equations 1 and 2 form a system of 18 equations with 18 unknowns.
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In the equations 1, I replace the symmetric components by the phasor components, by using equations 2:


Vr + a *  Vy  = 3*E - zds * a² * ID - zdl * x * (Ir + a * Iy + a² * Ib)





Vr + a² * Vy  =  
     - zds * a  * ID - zdl * x * (Ir + a² * Iy + a * Ib)


    


Vr +       Vy   =        - zos *       ID - zol * x * (Ir+         Iy +      Ib) 
 - Xm * x * (-Ir - Iy - Ib + ID) 


Vr + a * Vy  = 3 * E - zds * a² * ID - zdl * (2 -x) * (- Ir - a *  Iy - a² * Ib + a² * ID)


Vr + a² * Vy =  
      - zds * a * ID - zdl * (2 - x) * (- Ir - a² * Iy - a * Ib + a * ID)


Vr +        Vy =          - zos *       ID - zol * (2 - x) * (- Ir -        Iy -      Ib +       ID) …

      - Xm * x * (Ir + Iy + Ib) + 2 * Xm * (1 - x) * (- Ir - Iy - Ib + ID)




(equations n° 3)

I subtract them two by two. After simplification I get:


0  =  a² *  (2 - x) * ID - 2 * (Ia + a *  Ib + a² * Ic)






0  =  a  *  (2 - x) * ID - 2 * (Ia + a² * Ib + a * Ic)
 (equations n° 4)


0  =       
  (2 - x) * ID - 2 * (Ia + 
   Ib +      Ic) 


The first three equations 3 and the equations 4 form a system of 6 equations with 6 unknowns.

I discard simultaneously Ir and Iy, and I find:


(2 - x) * ID - 2 * Ic  = 0

That gives the three phasor currents:


Ib = (2 - x) *ID / 2

Iy = 0

Ir = 0

I look for the symmetric values on the left of rectangle 1 (matrix T-1 )


3 * Id1 = a² * (2 - x) * 
ID / 2  
 


3 * Ii1  = a *  (2 - x) *
ID / 2 


3 * Io1 =       (2 - x) * 
ID / 2

then, on the right of rectangle 2 (matrix T)


3 * Id2 = a² *x *
ID / 2


3 * Ii2 =  a * x * 
ID / 2


3 * Io2 =      x * 
ID / 2

and I check that:


3 * (Id1 + Id2) =  a² * ID


3 * (Ii1  + Ii2)  =  a *  ID


3 * (Io1 + Io2) =
       ID

I replace now Ir, Iy, and Ib by their values in the first three equations (3):



Vr + a * Vy  = 3 * E - a²  * ID * (zds +    zdl   * x * (2 - x) / 2)


a



Vr + a²* Vy  =          - a   * ID * ( zds +   zdl   * x * (2 - x) / 2)



a²


Vr +       Vy  =                  - ID * [ zos + ( zol   * x * (2 - x) - Xm * x²) / 2]

1


I discard simultaneously Vr and Vy, and I get ID


-3 * a * E = ID * ( -2 * zds - zos - zdlx * (2 - x) - (zol * x * (2 - x) - Xm * x²) / 2)
thus






6 * a * E



ID =  




4 * zds + 2 *zdl * x * (2 - x) + 2 * zos + zol * x * (2 - x) - Xm * x²

The currents crossing the relay are:


- phase current:
Ibp2 

= ID - Ib 

= x * ID / 2


- earth current:
3 * Iop2 
= Ir - Iy - Ib + ID 

= x * ID / 2


The impedance see by the loop phase b - earth of the relay located at P2 is given by the ratio between the values measured at P2:





Vbp2



Zp2 =  






ko = (zo - zd) / (3 * zd)




   Ibp2 + 3 * ko * Iop2

I put  q = Xm / zol

By considering the mock up, we find:

Vbp2 
= a * Vdp2 + a² * Vip2 + Vop2

= a *[Vd2 + (1-x) *zdl * Id2] + a² *[Vi2 + (1-x) * zdl * Ii2] + [Vo2 + zol * (1-x) * (1-q) * Io2]

= (a * Vd2 + a² * Vi2 + Vo2) +(1 - x) * zdl * (a * Id2 + a² * Ii2) + [zol * (1 - x) * (1 - q) * Io2]

Ibp2 + 3 * ko * Iop2 = x * (ID / 2) * (zol / zdl)

Now:


a*Vd2+a²*Vi2+Vo2 = Vb2 = 0

Thus:




         2 * zdl  + zol - Xm 






Zp2 = zdl * (1 - x) *





2 * zdl   + zol 





   

Numerical application:


zol 
= 3 * zdl 

(ko = 0,66)


Xm 
= 1,2 * zdl

(km = 0,4)


x 
= 0


Zp2 = 0,76 * zdl

The fault, located on the remote end of the line, is seen at 76% of the line length.

3-3-Third example

Study of the following shortcoming:

A transformer 220 kV / 20 kV, the neutral point of which is linked to earth by a 9 resistor, supplies a dead burden. A short circuit between the phases r and y on the higher voltage side of this transformer make trip by mistake the phases y and b of the end supplying the 225 kV substation where the transformer is located. The phase r remains closed. Which over - voltage does appear on the terminals of the resistor?



           





Vr


    e
         zds
    X
zdl       X









zdt

  z burden









Vy


 a² *e
          zds
     X
           X








         T
     
zit = zdt

  z burden








Vb


 a *e
          zds
     X
           X









      
zot










transformer





         ko * zdl



phasor components




symmetric components




The matrix T is the matrix transforming the phasor components into symmetric components:



3*Vd


1
a
a²

Vr



3*Vi

=
1
a²
a
*
Vy



3*Vo


1
1
1

Vb

The equations of the system are:

Vr 
= e - [zds + zdL * (1 + ko)] * (Ir + Iy)=Vy  

3 *Vd
=Vr + a * Vy + a² * Vb

=(1 + a) * Vr  + a²*Vb

= -a² * Vr + a² * Vb 

= -a²*[e - (zds + zdL* (1+ko)) * (Ir + Iy)] + a² * Vb   

3*Vi
=Vr + a² * Vy + a * Vb

=Vr * (1+a²) + a * Vb 

= -a * Vr + a * Vb = -a * [e - (zds + zdL * (1+ko)) * (Ir + Iy)]+ a * Vb 

3*Vo 
= Vr + Vy + Vb

= 2 * Vr + Vb 

= 2 * [e - (zds + zdL * (1+ko)) * (Ir + Iy)] + Vb 

3 * Id 
= Ir + a * Iy

3 * Ii 
= Ir + a² * Iy   

3 * Io 
= Ir + Iy

3 * Vd 
= 3 * (zdt + z burden) * Id

3 * Vi 
= 3 * (zdt + z burden) * Ii

3 * Vo 
= 3 * zot 
       * Io

The resolution of this equation system gives:





3 * e


Ia = 






= Ib 
= 3/2 * Io



zdt + z burden + 2*zot + 6*zds + 6*zdL*(1+ko) 


We get Vb from:


3 * Vo 
= 3 *zot * Io 

= zot * (Ir + Iy)



= 2 * [e - (zds + zdL*(1+ko)) * (Ir + Iy)] + Vb  

thus:






zot - zdt - z burden


Vb = 2 * e *




zdt + z burden + 2 * zot + 6 * zds + 6 * zdL * (1 + ko)

Calculation of the voltage on the neutral point on the lower voltage side

In fact, the zero sequence impedance of the transformer i given by the following equivalent scheme:




         j *
Xo1

         j *
Xo2

3 * Rn



Io


     I'o





          I''o
j * Xo3





     Z burden



Rn is the resistance between the lower voltage side neutral point and the earth.

The current  Io and I'o are linked by:


I'o = Io * j * Xo3 / (3 * Rn + j * Xo2 + z burden + j * Xo3)

and the voltage on the terminals of the resistor Rn is:


Vn = 3 * Rn * I'o

numerical application
(Impedance values seen by the 220 kV side)


Zdt

= j * 266 


Xo
= j * 289      


z burden 
=    1265 


Rn 
= 9 * (225/20)² 
= 1140 



zds + zdL*(1+ko) = j * 17 


Xo2 
= - j * 24 








Xo3
= j * 386 
We find, in volt and ampere seen from the 220 kV side: 


Ir = Iy = 306 A


Io = 204 A



Vn = 74 kV 

i . e.  a voltage, appearing effectively on the terminals of the neutral resistor, equal to   74 * 20 / 225 = 6.6 kV


3-4- Use of the superposition principle

note: this principle can be used to solve the preceding exercises

      S1










S2




          b

     a*E1

    zdsl

       x * zdl
      (1 - x) * zdl

zds2

a*E2




           y

     a²*E1
    zdsl

       x * zdl
      (1 - x) * zdl

zds2

 a²E2




           r

       E1

    zdsl

       x * zdl
      (1 - x) * zdl

zds2

  E2







  Sf      Ef














            Rf




zosl - zdsl
   x * ( zol - zdl)
     (1-x)*(zol-zdl)          zos2 -zds2





       3


3
               3

    3

In a first time, we consider that the network is safe and supplied by the sources  S1 et S2, with electromotive force E1 and E2. At the future fault point F, the voltage is Ef. We do not change the functioning by inserting between F and the earth a source Sf with an electromotive force Ef, in series with a fault resistance Rf. 

In a second time, without changing the impedance values, we make null the electromotive forces of the sources E1 and E2, and we make equal to - Ef the electromotive force of Sf. 

The superposition of both types of functioning give the functioning when the network is faulty. In that type of  functioning, the electromotive forces are equal to the sum of the electromotive forces of both types of functioning, and so are the currents and voltages. 

In the particular case where the electromotive forces have the same phase, the second type of functioning gives directly the fault currents. 

In the second type of functioning, the voltage at F is:


Vrf = - Ef + Rf * If  

Let us write the relations between phasor component and symmetric components at point F:

If I is the current variation at point F, we get:


Id = Ir / 3
+ a² * 
Iy / 3
+ a *  
Ib / 3
= If / 3


Ii  = Ir / 3  
+ a  * 
Iy / 3
+ a² * 
Ib / 3
= If / 3


Io = Ir / 3
+        
Iy / 3
+ 
Ib / 3
= If / 3


Vrf = Vdf + Vif + Vof

Thus the representation beneath, in which these equalities are represented by putting in series the positive sequence, negative sequence and zero sequence networks

Single circuit line









If / 3 = Id = Ii = Io
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P


Id1
F1
Id2



       
      zdl * x



     zdl *(1-x)






             Vdf







  




        zds1
      

 
         zds2






      S1

 S2



P


Ii1
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       zil * x



     zil *(1-x)







 Vif













 3*Rf




        zis1



         zis2




P


Io1

Io2



       zol * x
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 Vof










        zos1



         zos2







F2


This scheme corresponds to the following  network:















       P



Line 


         E1

        X
      X





        X
      X
      E2      





X
     x


              The safe functioning is obtained by putting the electromotive forces at the places noted with dotted lines, the voltage source S being open. A voltage Ef appears between the point F1 and F2. We can add a voltage source S, with an electromotive force Ef, without changing the functioning. 

We replace then E1 and E2 by zero, and we set S electromotive force at - Ef.

The superposition of both types of functioning gives the fault functioning type, with the symmetric components.

To get the phasor component, we multiply the following matrix with the symmetric components:

 

a²    a    1            

 
T-1   =  
a    a²    1 

          
           
1     1    1             


Double circuit line, one of them being linked to earth on both ends









If / 3 = Id = Ii = Io
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Id1
F1
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             Vdf
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    zil1 *(1-x1)







 Vif













 3*Rf
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         zis2







Io1
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 zol1 * x1


     (
     

        zol1 *(1-x1)







 Vof
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         zos2







F2

     Zom * x







      Zom * (1 - x)




 Zol2 * x





         zol2*(1-x2)

     (

This scheme corresponds to the following network:



















Line 1
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      X





        X
      X
      E2      





X
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Line 2


         








      x2



Solely the zero sequence circuits interact each another ( see 3rd part, § 2127)

Two lines functioning in parallel (relay located at P1)









If / 3 = Id = Ii = Io
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This scheme corresponds to the following network:
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     x










Line 2


         

                     X                                                                                    X
The positive and negative sequence impedance of the safe circuit are in parallel with the ones of the faulty circuit. 

A double circuit line with bridges between both circuits (relay located at P)









If / 3 = Id = Ii = Io
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Here is the example of a line with one bridge at each end and two intermediary bridges.



         E1
      X
X







         X
    X 
 E2











x

x



 = 1)

Two lines physically in parallel on a part of the route, but electrically in series,

without source on their common substation







         If / 3 = Id = Ii = Io
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This scheme corresponds to the following network:
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(This case may happen only in case of disturbed operation)
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