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Protect_ion and monitoring of the electrical energy transmission networks - Appendix 3

APPENDIX  3
(by clicking above you return to the general summary)
ELECTRICAL  CHARACTERISTICS OF THE  LINES

1 - Matrix of the inductance values
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1 - 1 - Preliminaries:  inductance per length unit of a double wire line
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1 - 2 - Single circuit three phase line, one wire per phase, perfectly conductive soil, no earth cable.
4

1 - 3 - Single circuit three phase line, one wire per phase, resistive soil, no earth cable.
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1 - 4 - Single circuit three phase line, several wires per phase, resistive soil, no earth cable.

6

1 - 5 - Double circuit three phase line, several wires per phase, resistive soil, no earth cable.

6

1 - 6 - Single circuit three phase line, one wire per phase, resistive soil, one earth cable.

8

1 - 7 - Double circuit three phase line, several wires per phase, resistive soil, two earth cables.
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2 - Matrix of the capacitance
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3 - Matrix of the resistance
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4 - Matrix of the transverse conductance
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ELECTRICAL  CHARACTERISTICS OF THE  LINES
we try to determine the characteristics of the electrical lines, as they are defined by the matrix equation seen at  § 21 of the appendix 1.

1 - Inductance matrix

1 - 1 - Preliminaries: inductance per metre  of a double wire line

The formula given in the  Techniques de l'Ingénieur, Vol D1, page 69-8, formula 613, [89], is:



µo
      µr


D

L = 

* (
    +  Log 
       )


Log = Napier logarithm


            2*
       4


r

with:

µr 
= 
magnetic permeability of the wires, here equal to 1,



D 
=
distance between each wire, in metre



r 
= 
radius of each wire, in metre



L 
=
inductance per metre, in henry / m



µo 
= 
4 *  * 10-7
The term  µr / 4 corresponds to the internal inductance, i. e. created by the flux inside each wire, and the term Log ( D / r) corresponds to the external inductance i. e. created by the flux outside the wires. 

This formula does not take into account the kin effect, which increases the density of the current near the surface of the wires, and decreases the term µr / 4. In fact, in the calculations of the energy transmission lines, this term is neglected. It remains:
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In the infinitely short line element beneath, the instantaneous values v and i are linked by:
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1- 2 - Single circuit three phase line, one wire per phase, perfectly conductive soil, no earth cable

The soil is thus considered as a mirror in which the conductors are reflected. The currents in the reflected conductors run in the sense opposite to the real conductors. 
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figure 1

If the conductor r is run by the current  ir = i and the conductor  y by the current iy =  -i,

the equation 1 becomes: 


     d(vr - vy)

Lry
       d (ir - iy)


-  

  =  

* 





(2)

 
          dx

 
2
             dt

This equation can be generalised to the case where ir is different from - iy. We consider that the current iy  make a voltage drop on vr, and that the current  ir make a voltage drop on vy:



dvr / dx = (Lry / 2) * diy / dt



dvy / dx = (Lry / 2) * dir / dt

Thus the equation giving the voltage drop on vr:

Dvr     µo
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  r          dt           r         dt
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in which Dry, Drb.. are the distances between the conductor r and the conductor y, between the conductor r and the conductor b, ...

The equations giving the voltage drop on  vy and vb are deduced from the equation above by circular permutation. Thus, after simplification, the equation giving the matrix of the inductance:
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inductance matrix



(3)

From figure 1, we find:












Drr' = 2 * hr

Dry'² = (hr + hy)² + dry²

Dry² = (hr - hy)² + dry²



Dyy' = 2 * hy

Drb'² = (hr + hb)² + drb²

Drb² = (hr - hb)² + drb²



Dbb' = 2 * hb

Dyb'² = (hy +hb)²  + dyb²

Dyb² = (hy - hb)² + dyb²       













The inductance matrix can be diagonalised by the symmetric component if the terms of the diagonal are equal and so do also the other term. To use these component, the currents and voltages must be complex variables. The values taken for h and d are mean values, i. e.: 



h = (hr * hy * hb) 1 / 3

d = (dry * dyb * dbr) 1 / 3
The terms located on the diagonal have following value:
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and the other terms:
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The eigenvalues are then:
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The heights which are used are the mean heights, obtained from the mean H between the anchoring points and the arrow F by the formula:

h = H - 2 * F / 3 

The arrow is given by the approximate formula:
 
F = P * (   P² + H²   / (8 *a)

with:
P =  
horizontal range


H = difference in level between both anchoring points


a = parameter for installing the line (linked to the mechanical tension)

This formula is found in the Techniques de l'Ingénieur, Vol D41, page D 4421, formula 14. [89]

1- 3 - Single circuit three phase line, one wire per phase, resistive soil, no earth cable.

We can use the same formulae as previously ( § 12), but we must place the mirror no more at the surface of the soil, but at a depth  given by:



 =(µo * 
with:
 = soil conductibility , in mho/m


 = 100 * 
The equations (4) become then :
Drr' = 2 * (hr + )

Dry'² = (hr + hy + 2*)² + dry²





...




...






...




...
(5)

1- 4 - Single circuit three phase line, several wires per phase, resistive soil, no earth cable..

If each conductor is formed of n identical wires (n = 2; 3; 4) the preceding reckoning remains relevant by replacing the radius r of the conductor by an equivalent radius req given by:
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(r * R n-1 )
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n = 4



1- 5 - Double circuit three phase line, several wires per phase, resistive soil, no earth cable.

The matrix (3) becomes then a 6 * 6 matrix, in which the index 1 is given to the parameters concerning the circuit n° 1, and the index 2 to the parameters concerning the circuit n° 2.
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If the terms written in blue are equal each other, and if among the other terms the ones written in red are equal  each other, the symmetric components of the voltages and the currents are linked between each other by the following equations:
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by putting:
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with:

h1 = (hr1*hy1*hb1)1/3  + 


d1 = (dr1y1*dy1b1*db1r1)1/3
h2 = (hr2*hy2*hb2)1/3  + 


d2 = (dr2y2*dy2b2*db2r2)1/3


h12 = (hr1*hy1*hb1*hr2*hy2*hb2)1/6  + 

d12 = (dr1y1*dy1b1*db1r1*dr2y2*dy2b2*db2r2)1/6


1- 6 - Single circuit three phase line, one wire per phase, resistive soil, one earth cable.

Let us consider again the figure 1 du § 11, in which the earth cable is added, and also its image in the mirror.
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The equation giving the voltage drop on vr is:
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in  which Dry, Drb.. are the distances between the conductor r and the conductor y, between the conductor r and the conductor b, ... 

More, the voltage drop on the earth cable is null:
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The equation (2) allows to eliminate in the equation (1) the term Ig. That equation becomes:

dvr
   µo
         
Drr'

Drg'

Log ( Dg'g / Drg)

dir



           =
           * [ (Log
         -
Log 

*


      ) *  

+ 


dx
  2*
        
r

Drg

Log ( Dgg' / r)
 
dt





Dry'

Drg'

Log (Dg'g / Dyg)

 diy




    (Log

- Log

*


        ) *

  +





Dry

Drg

Log ( Dg'g / r)

  dt





Drb'

Drg'

Log (Dg'g / Dyb)

 dib




     (Log

- Log

*


         ) *

  ](3)





Drb

Drg

Log ( Dg'g / r)

  dt

The equations giving the voltage drop on vy and vb are deducted from the equation above by circular permutation. 

From figure 1 of this §, we find:



Drr' = 2 * (hr+)

Dry'² = (hr + hy + 2*)² + dry²

Dry² = (hr - hy)² + dry²



Dyy' = 2 * (hy+)
Drb'² = (hr + hb + 2*))² + drb²

Drb² = (hr - hb)² + drb²



Dbb' = 2 * (hb+)
Dyb'² = (hy +hb + 2*)²  + dyb²

Dyb² = (hy - hb)² + dyb² 



Dgg' = 2 * (hg+)
Drg'² = (hr + hg + 2*)² + drg²

Drg² = (hr - hg)² + drg² 






Dyg'² = (hy + hg + 2*)² + dyg²

Dyg² = (hy - hg)² + dyg²






Dbg'² = (hb + hg + 2*)² + dbg²

Dbg² = (hb - hg)² + dbg² 













(4)

The inductance matrix can be diagonalised by the symmetric component if the terms of the diagonal are equal and so do the other terms. We use for the parameters h and d the average values, i. e.:


h = (hr * hy * hb) 1 / 3
d = (dry * dyb * dbr) 1 / 3
    dg = (drg * dyg * dbg) 1 / 3

(5)

 The terms located on the diagonal have the following value:
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and the other terms:
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The eigenvalues become then:
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Lo = L + 2 * M 

note: In the equation (2), we did not take into account the resistance per length unit  rg of the earth cable. If we want to do it, we must use the complex values of the voltages and currents, and not the instantaneous values. Indeed, the equation (2) becomes:
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 r
               r

The current is split between the soil and the cable in a complex report.


In the equations (6) and (7), the term
 

Log [2*(hg+) / r] 


must be replaced by:


 Log [2 * (hg + ) / r] + 2 *  * rg / (j *  * µo)



(10)

The terms L and M become complex. The real part must be kept  for the inductance matrix, and the imaginary part for the resistance matrix. 

Practically, when the resistance of the earth cable has a value close to the one of the phasor conductors, the influence of its resistance on the reckoning of the inductance may be neglected.

1- 7 - Double circuit three phase line, several wires per phase, resistive soil, two earth cables.


Let us consider the figure 1 of § 11, into which we add the earth cable and its image beyond the mirror.
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The equation giving the voltage drop on  vr1 is:

dvr1
 µo
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in which Dr1y1, Dr1b1... Dr1y2, Dr1b2, ... Dr1g1, Dr2g2 are the distances between the conductor r1 and the conductor y1, ... between the conductor r2 and the conductor y2..., between the conductor r1 and the earth cable g1, ...

The voltage drops on vy1, vb1, vr2, vy2, vb2 are deducted from equation (1) by circular permutation. By putting
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We can  write these equations under the following form,
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(matrix 6*1)
  (matrix 6*6)
(matrix 6*1)
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(matrix 2*1)

note: The matrix A is the inductance matrix seen in the formula (1) of § 1-5.

Then we write that the voltage drop on each earth cable is null:
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(3)

where Dg1g2 is the distance between the earth cable g1 and the earth cable g2, ..., and r the radius of the earth cable.






        


Iyt i a system of two equations with two unknown  ig1 and ig2. Let us name:
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the solution is the following one:
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that we note:
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By reporting equation (4) into the equation (2), we find:
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The matrix A - B * C * D is the researched inductance matrix. 

From figure 1 of this §, we can reckon the different parameters Drr', ..., by formulae similar to (4) of § 16.

Dr1r1' = 2 * (hr1+)

Dr1y'1² = (hr + hy + 2*)² + dry²

Dry² = (hr - hy)² + dry²

Dyy' = 2 * (hy+)


Drb'² = (hr + hb + 2*))² + drb²

Drb² = (hr - hb)² + drb²

Dbb' = 2 * (hb+)

Dyb'² = (hy +hb + 2*)²  + dyb²

Dyb² = (hy - hb)² + dyb² 

Dgg' = 2 * (hg+)

Drg'² = (hr + hg + 2*)² + drg²

Drg² = (hr - hg)² + drg² 





Dyg'² = (hy + hg + 2*)² + dyg²

Dyg² = (hy - hg)² + dyg²





Dbg'² = (hb + hg + 2*)² + dbg²

Dbg² = (hb - hg)² + dbg²

We can then do the same approximations as at § 15, and check that the factor  seen at § 1-3 and the presence of earth cables have no influence on the positive sequence inductance. On the other hand, the zero sequence inductance increases with the factor d. It is decreased, and so do the mutual zero sequence inductance, by the presence of earth cables.

2 - Capacitance matrix

The capacitance per unit of a double wire line is given by:



1
      1
        
      D

L



        =
       
    *  Log
  =



C
2 *  * o    
       r
          o * µo

We can thus admit that the capacitance matrices are deducted from the inductance matrixes by the formula:




 L -1



 C  =




o * µo

3 - Resistance matrix

Through lack of knowledge of the ground resistance, which varies with the nature and the dampness of the soil, and the quality of the earthing sockets of the substations and of the towers, we admit that the resistance matrices are obtained from the inductance matrices by multiplying them by the average ratio between the resistance of  each pair of conductors and the inductance of the loop they form (see figure of § 11).

4 - Matrix of the transverse conductance

This matrix varies strongly with the moisture of the air and of the soil. We choose it so that the Heaviside condition is verified.


(L ( * ( G ( = ( R ( * ( C(
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