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The mapping of scientific fields, based on princi-
ples established in the seventies, has recently shown
a remarkable development and applications are now
booming with progress in computing efficiency. We
examine here the convergence of two thematic mapping
approaches, citation-based and word-based, which rely
on quite different sociological backgrounds. A corpus
in the nanoscience field was broken down into research
themes, using the same clustering technique on the 2
networks separately. The tool for comparison is the table
of intersections of the M clusters (here M = 50) built on
either side. A classical visual exploitation of such con-
tingency tables is based on correspondence analysis.
We investigate a rearrangement of the intersection table
(block modeling), resulting in pseudo-map. The interest
of this representation for confronting the two break-
downs is discussed. The amount of convergence found
is, in our view, a strong argument in favor of the reliability
of bibliometric mapping. However, the outcomes are not
convergent at the degree where they can be substituted
for each other. Differences highlight the complementar-
ity between approaches based on different networks.
In contrast with the strong informetric posture found in
recent literature, where lexical and citation markers are
considered as miscible tokens, the framework proposed
here does not mix the two elements at an early stage, in
compliance with their contrasted logic.

Introduction

Citation flows, on the one hand, and lexical similarity,
on the other hand, are the bases of the main networks used
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to retrieve information and map knowledge flows, from
the Google search engine, which mixes hyperlinks among
sites and word retrieval, to mapping techniques used in
scientometrics. The mapping of science is the topic of an
abundant literature, in which we highlight a few mile-
stones: citation-based mapping was developed especially at
Drexel University and Institute for Scientific Information
(ISI) in the late sixties and the seventies; citation flows
were developed by Garfield (1967); bibliographic coupling
was developed by Kessler (1963); document cocitation was
developed by Small (1973), Small and Griffith (1974), and
Marshakova (1973); author cocitation was developed by
White and Griffith (1981) and further developed by McCain
(1983), who experimented also on journal cocitation analy-
sis (McCain, 1991); and influence relations were developed
by Pinski and Narin (1976). The theoretical framework of
citation mapping was developed in Merton’s and de Solla
Price’s wake.

Later, the development of science studies expanded the
latitude of interpretations of citation relations, ranging from
Merton’s inheritors to actor-network theory (ANT). A strong
theoretical background to the lexical study of scientific text
was a feature of the Anglo-French “sociology of translation”
in the eighties, with an influence of French philosophers
such as Michel Serres. Forerunner of the ANT, the sociol-
ogy of translation (see, for example, Callon, Courtial, Turner,
and Bauin, 1983) highlighted the intermeshing of cognitive
aspects and social stakes of scientific writing and presented
coword analysis as especially appropriate for emerging or
controversial areas of science.

The formal (partial) analogy between words and citation
networks has suggested the use, in parallel, of similar data
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analysis techniques: clustering, factor analysis with many
variants, multidimensional scaling (MDS), and social net-
work methods. Interestingly, in the domain of factor analysis,
Benzecri, promoter of the correspondence analysis, paid great
attention to linguistic applications (Benzecri, 1973). Factor
analyses and MDS have pervaded the world of bibliomet-
rics and information science, for example, in word mapping
(e.g., Noyons et al., 2003). Progress in computing efficiency
allows the large-scale application of new factor methods such
as latent semantic analysis. Local approaches based on prox-
imity measures (typically Salton and Jaccard) and threshold
graphs were privileged by pioneers of both coword and
citation analyses.

Some important trends were noticed during the decade:
the generalization of applications of the social networks
theory, the multi-network approaches, and the need for map-
ping the Web. These trends were boosted by progress in
computer efficiency. The Clever/Google revolution, partly
building on earlier bibliometric works (above-mentioned
“influence measures”), is, in turn, fed back to bibliometric
measures. Science mapping has been a fairly active field
over the decade (Noyons & van Raan, 1998) and power-
ful applications that combine large-scale and document-level
have appeared (Börner, Chen, & Boyack, 2003; Chen, 2003;
Boyack, Klavans, & Börner, 2005). For the specific applica-
tion to thematic maps based on dynamic dating of research
fronts, we watch the progress from crude circular projec-
tions on small fields (e.g., Zitt & Bassecoulard, 1994) to
animated spherical projections that encompass all science at
the document or the journal level (Boyack, 2004).

Our focus here is on hybridization/comparison of methods
that exploit several bibliometric networks such as cita-
tion, words, nomenclature classes (e.g., coclassification), and
authors (e.g., coauthorship, coactivity publications-patents,
affiliation trajectories). We will limit ourselves to the first
two, probably the most precise when targeting thematic map-
ping. Conducting comparisons between the two approaches,
on a large-scale at least demands large computing resources,
which perhaps explains why the hybridization of citation and
words was not studied much in classical bibliometric liter-
ature. Achievements in this area included ISI developments
on the use of citation linkages to generate Keywords-Plus
in citation indexes (Garfield & Sher, 1993). Light forms
of hybridization, such as “citations in context” (Small &
Greenlee, 1980; Small, 1986) are now common in online
databases (a recent contribution is by Callahan, Hockema,
and Eysenbach, 2010). On a smaller scale, practitioners of
citation mapping mobilize basic text statistics measures to
give names to citation-generated clusters. An early exam-
ple of cluster enrichment that combines both approaches is
found in Braam, Moed, and van Raan (1991). Leydesdorff
(2004) carried out another interesting test on the relationship
between titles of patents and titles of the articles they cite. In
the quasi-citation (or “sitation”) world of hyperlinks, Google-
like algorithms also mix textual analysis and hyperlinks.
Zitt and Bassecoulard (1996) made use of lexical validation
for cocitation clusters. Later, these authors proposed a hybrid

process to delineate scientific fields, where citation flows are
used to expand/smooth a set of articles built by a lexical query
(Zitt & Bassecoulard, 2006; Laurens, Zitt, & Bassecoulard,
2010).

Hybrid approaches are also being applied to clustering
processes. van den Besselaar and Heimeriks (2006) have
proposed complete hybridization, which builds on formal
similarities of citation and vocabulary, by mixing words
and reference as pure tokens. Janssens, Glänzel, and De
Moor (2008), after efficient neutralization of distributional
discrepancies by statistical normalization, also considered
citations and lexical tokens as “miscible,” allowing the build-
ing of proximities, ranging from 0% to 100% citation content
(and conversely for words); other clustering applications are
announced by the same team (Liu, Yu, Janssens, Glänzel,
Moreau, & De Moor, 2010). These proposals express a strong
“informetric” posture. Endorsing a perhaps more traditional
view, we do not consider words and citation as informet-
ric tokens substitutable in various proportions, but rather as
different expressions of the communities’life, which can con-
verge, diverge, or complement each other. We will investigate
a comparison of the two approaches that are based on a fairly
simple tool, the table of clusters overlaps, revealing a rich
basis for generating hybrid pseudo-maps. The focus in this
work is on methodological aspects. For that reason, we re-
employed a dataset on nanoscience, used in previous steps of
the exploration.1 We first discuss context, then the methods
and results, followed by conclusions.

Context: Citations and Terms, Analogies and
Differences

Author’s choice. The “social act” of choosing references,
on the one hand, and choosing terms, on the other hand,
is complex, involving individual and collective representa-
tions. Many works have studied the scientific rhetoric and
the citing behavior, for example, Latour (1987), Cozzens
(1989), Luukkonnen (1997), Wouters (1997), Cronin (1984),
Leydesdorff (1998), White (2001), and Aksnes and Rip
(2009), but information scientists and bibliometricians do not
necessarily claim a particular theoretical inscription, a point
made, for example, by Garfield (1998). Obvious differences
exist between words and cited references at the paper level, in
the way they address fundamental aspects such as commu-
nication of the research question and results. The research
question is clearly more apparent from title words than from
a list of references. The combination of knowledge flows for
achieving the research is described more directly by refer-
ences, however, in a mostly imprecise manner as stressed, for
example, by Leydesdorff (1998). The insertion of the com-
munity and identity claims is described again more directly
by references but also possibly by the use of signal terms or
combinations of terms.

1Preliminary results were presented at the 10th Science and Technology
Indicators Conference (Zitt, Lelu, & Bassecoulard, 2008).
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Language markers describe both the research question and
its sociological context. Relativist sociologists have argued
how the scientists’ rhetoric reflected their interests and posi-
tions with the social networks, especially in “hot science”
(leading edge and controversial topics). Some terms act as
interest markers, in a nonseparable mix of social and cog-
nitive value. They can also act as beacons that are likely to
attract attention, persuade the readers, and mark a hot topic
and its potential for attracting funds (e.g., today “sustainable
growth”; Callon, Courtial, Turner, & Bauin, 1983; Law &
Williams, 1982). Such signals in natural language are proba-
bly clearer to policy makers than the equivalent bibliographic
references to a recent path-breaking work that could be
expected to play the same role. One of the main reasons why
words look more adapted to “science alive” is not because
citations cannot describe recent science but rather because
words are universal. Not confined to scientific and kindred
databases, linguistic markers are more able to reflect the inter-
weaving of scientific, social, and political contexts, typical
of emerging and controversial areas—at the expense of some
“translation” effort.

The selection of references and the phrasing of arguments
engage different processes of selection. (e.g., White, 2001).
On their side, citation linkages (“acknowledged knowledge”)
appear as tracers of intellectual connections, even though
only a part of them can easily be interpreted as a Mertonian
acknowledgement of intellectual debts. The list of references,
including those with a non-Mertonian slant, usually contains
direct information about the community of research or at
least the “legitimate repertoire” of the area (Rip 1988). The
research background, mixed with identity claims and social
dependences, can be directly read from the organization of
bibliographic references, while words associations, even in
full text, do not usually make the knowledge flows apparent.

Albeit a source of controversy in the early applications
of cocitation methods (Mullins, Hargens, Hecht, & Kick,
1977), the capability to reflect scientific micro-communities
is usually held as stronger for citation linkages than coword
associations. A typical clue of the divergence of two com-
munities that are working on the same theme and using a
similar vocabulary is the absence of a common legitimate
repertoire of references, which can reveal strong national
imprint, sometimes autarkic behavior, adherence to strict
schools of thought. In such cases, citation clustering will
tend to see two communities, and word clustering a single
one. Violations of the homogeneity hypotheses (open space
of science) may produce divergences between citation and
word mapping. Sometimes, the divergence of communities
includes the usage or coining of different terminology, and
the two mapping methods will detect the split. The opposite
configuration, when the cited repertoire is almost identical
but where sub-communities diverge in their terminology, can
happen, for example, in applied fields that heavily refer to
a common theoretic or methodological substrate (see also
“scientific mix” below).

Emulating citations for delineating communities by word-
based analysis demands sophisticated semantic analysis and

social studies of signal words and jargons. Another point
stressed by the specialists of cocitation is the fact that weak-
linkages à la Granovetter (revisited 1983) are far more reliable
than their counterparts in word networks, where weak ties are
often part of the noise. Last, but not least, instead of a list of
references unique at the article level, several texts/lists are
available on the lexical side: list of controlled key-words and
lists from natural language fields—title, abstract, full text.
Moreover, for coword analyses, for example, a “lexical unit”
(sentences, paragraphs) must be defined when cooccurrence
are calculated on long fields—not mentioning the variants
generated by the terms unification-disambiguation processes.

The aggregate level: Combinations and mapping. Formal
analogies and differences of citation and words distribu-
tions and networks have been sketched in many works
(Egghe, 2000; Prime, Bassecoulard, & Zitt, 2002; Zitt &
Bassecoulard, 2006). By and large, the underlying distribu-
tions are quasi-hyperbolic, with typically more concentration
for words. In this respect, citation distributions are less
skewed, suggesting a higher degree of complexity (richer
“vocabulary”), with parameters also depending on the time
frame (citation window). Despite the choice of metrics or
similarity measures not favoring high-frequency terms, some
lexical groupings are forced by sets of generic terms, where
subsets are better discriminated by citation methods. But,
a general rule can hardly be proposed: Bandwagon effects
in citation behavior may create quasi-cliques of cited items
that hinder the discriminating power of citation-based clus-
tering. The inflation of the number of references in authors’
practice, which is a long-term trend, may also bring noise
to citation clustering. Another phenomenon, typical of the
less dense areas in the networks, is the sensitivity of cluster-
ing/factor methods in those cases, likely to create (spurious)
divergences (mostly) between the two approaches. The dis-
criminating power of the methods can also vary with the scale
of observation. A part of the statistical effects can be reduced
by a proper normalization of proximity measures proposed by
Janssens et al. (op. cit).

Basically, the statistical techniques applicable to measures
of token associations (coword, cocitation) and of articles
associations (lexical coupling, bibliographic coupling), or
combined measures, are similar, although the intellectual
habits have sometimes associated preferential data analysis
techniques to each network. A complete protocol, say, for
citation, may associate a work on structuring items, on the
one hand, and citing articles, on the other hand. The classi-
cal ISI cocitation framework started with cocitation clusters
(“cores”) and then assigned citing articles of the current
literature (“research fronts”). Similarly, one can start with
bibliographic coupling and possibly go backwards towards
the cocitation associations, to access the intellectual structure
of the theme. Path-breaking works in bibliographic coupling
and cocitation mapping have been recalled in introduction.
Additional features on cocitation may be found in, for exam-
ple, Zitt and Bassecoulard (1996) for applications to general
clustering rather than leading edge, Chen (1999, 2003) for
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high-performance methods, and Glänzel and Czerwon (1996)
for bibliographic coupling. Mapping by lexical techniques
was studied in great detail by sociologists in the “translation”
school (Callon et al., op. cit), especially the coword side. In
the following, we will limit ourselves to bibliographic and
lexical coupling.

“Just-in-time” and other time-features. The time qualifi-
cation of items and linkages is a basic difference between
the two approaches, because articles bear a publication date,
while words are not primarily dated. Then, the citation rela-
tion between articles (A cites B) is diachronic whether no
similar relation exists for words, at least in a direct form
(time series of their usage or their combinations can be ana-
lyzed). However, the diachronicity of citation disappears as a
primary feature in the matrix multiplication, leading from
the original matrix [article × cited references] to a bibli-
ographic coupling matrix [article × article] or a cocitation
matrix [cited references × cited references], remembering
that a complete cocitation run involves a reassignment of
citing articles (“research front”) to the cited core established
from the latter matrix. There is no fundamental discrepancy
in the “just-in-time” capability of citation methods compared
with a similar word-based technique. The criticism of a lack
of immediacy of citation techniques bore on early appli-
cations of cocitation at ISI and Drexel University, which
deliberately focused on the leading edge of research (strong
signals) at the expense of emerging topics. In this particu-
lar case, the immediacy is naturally hindered because of the
citation lag to get the score of citation or cocitations used as
a threshold. Thresholds may also be necessary for process-
ing time constraints, but this is true as well for techniques
following the lexical way.

If we now take threshold-free applications of bibliographic
coupling technique or even cocitation, the issue of immediacy
is alleviated. For example, in a typical application of biblio-
graphic coupling, the matrix of proximity [article × article]
of a particular citing year is known at the same time as it
lexical coupling counterpart. The only lag is the delay of
awareness by citing authors of a published material in citable
form, common to all publication-based techniques.

Just-in-time is then not a distinct advantage of lexical
techniques. In classical cocitation or coupling maps, the
diachronicity of the underlying relations, if not directly
exploited in building the structure of themes, is especially
helpful to qualify the time features of clusters (Zitt &
Bassecoulard op. cit. 1994), for example, crossed immedi-
acy of the intellectual base with short-term growth indicator.
The dynamics of research fronts have often been studied; for
example, Morris, Yen, Wu, and Asnake (2003) proposed a
dynamic visualization of research fronts and Chen (2003)
replaced citation dynamics in the general context of scien-
tific networks visualization. Lexical changes have attracted
attention for a long time (among others, Zitt, 1991; Polanco,
Grivel, & Royauté, 1995). A variety of techniques is used for
dynamic analysis of fields (see, for example, Noyons & van
Raan, 1998).

A common feature: Holism. A deep but misleading anal-
ogy exists between lexical and bibliographic coupling. Both
stress the synthetic vantage point of classical word and cita-
tion approaches: A single measure of proximity reflects the
kinship of two articles on the basis of shared references
or shared terms, with various normalizations. This global
and semantic-free rendering of the “scientific mix” dilutes
the particular features carried by specific groups of refer-
ences or terms, for example, their slant towards particular
dimensions of research: theory, models, methodology, instru-
ments, observations, tests, applications, or towards particular
research objects, products, or scientific areas. Undisputable
advantages of the global view are simplicity and indepen-
dence from a priori semantic classifications. There are also
counterparts to this holistic approach: the black-box effect in
the way intellectual structure is uncovered, in contrast with
in-depth descriptions of semantic networks, and the fact that
proximity measures are uneasy to interpret.

When two documents are close to each other on a word
coupling index, we do not know on which semantic grounds
they are linked: Do they share the theoretical point of view?
The instruments? The methodology? The balance between
the various components of the “scientific mix” is out of
control. Stating that the relative importance of the various
dimensions of this scientific mix are reflected in the balance of
terms, or cited items, thus contributing to the convergence
of lexical and citation methods, is a heroic hypothesis. Yet,
to a large extent, similarity of scientific mixes is a condition
of proximity. Let us assume that the vocabularies relative
to the K semantic dimensions do not overlap, with K = 5.
Say the dimensions are as follows: field features, theoreti-
cal context and hypotheses, methodology and instruments,
empirical results, applications or objects. Take two articles
i and j and suppose, for convenience, lists of equal lengths
L for i and j. The number of words marking the dimension
k = 1..K in article i is noted n(k, i). Let Min(k, i, j) = Min
(n(k, i), n(k, j)). For example, if i contains 5 words on the
“theoretical context and hypothesis” and j contains 12 words
on this dimension, Min(k, i, j) = 5 and only those words will
be available for matching i and j on this dimension, whatever
the particular coupling formula. The active part of the total list
L on which matching i–j in usual coupling formula can take
place is

∑
kMin(k, i, j) ≤ L. The fraction L-

∑
kMin(k, i, j)

is not available for matching. This expresses a quite simple
notion that under the hypothesis of separation of dimensions,
the global term sharing measure, dimension by dimension,
is bounded by the alignment of dimensions in terms of
word abundance. The precise effect depends of course on
the weighting system used in particular coupling formula.
In summary, a high proximity between articles requires both
a similar balance of semantic dimensions and an alignment
within the (main) dimensions.

Although not as clear-cut—any cited article already com-
prising a mix of dimensions—, most cited references can
chiefly be classified using similar categories: theoretical
background, methodology/instruments, field of application,
usually referred to in specialized sections of article.
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Then, proximity calculations, in both universes, depend
on the balances of dimensions in the “scientific mix,” with
no guarantee that word and citations will establish, in a given
article, the same balance. In a dynamic perspective, the vari-
ations of the respective importance of the dimensions could
be witnessed in the evolving structure of terms and cited ref-
erences. In growing areas, both terms and references may
exhibit a similar tendency to reflect the differentiation of
topics. Conversely, if one dimension of the scientific mix is
getting stabilized—say, methodology, which is getting stan-
dardized in a particular area—, then one expects that number
of both the terms and the references relative to methodol-
ogy will decline. The same is true for merges of topics, well
captured by cocitations and possibly echoed by fusion of
vocabulary. However, the possibly different rhythm of com-
pliance of terms and citations, with the changing balance
of interests in life cycles of themes, is not easy to cap-
ture and a convergence in this respect cannot be taken for
granted.

Therefore, in dynamic as well as static terms, the anal-
ogy of approaches, holistic in both cases, may obscure
systematic differences as to how semantic dimensions are
covered, according to balances that moreover can differ
across scientific areas. One might risk a few hypotheses:

• The semantic balance of references probably exhibits more
degrees of freedom than its linguistic counterpart. If so, then
the references tend to inflate the main dimensions of the arti-
cles’ argument, more than the word abundance regulated by
the rhetoric structure of the papers sections. In such cases, this
main dimension carries the classifying power of citations, for
either unification or discrimination.

• According to a widely accepted idea, popularized by Narin,
Pinski, and Gee (1976) in their studies of scientific jour-
nals, citations, all things equal, privilege up-stream idea,
for example, cognitive aspects or key methodology rather
than applications. We could expect, for example, that applied
works will pay tribute to theoretical papers more than the
reverse.

• When all dimensions are strongly dependent of each other,
for example, in emerging areas where theories, methods, and
objects are specific, citations and words can converge, with
respects to statistical constraints on distributions.

In absence of general rules, tools for comparison and com-
bination of the two approaches are appealing. An extreme
convergence would suggest that both ways are substitutable
and robust, a moderate convergence that they are comple-
mentary, and a low convergence could inspire suspicion about
the reliability of mapping based on bibliometrics. Depending
on areas, local convergence suggests to build mixed super-
clusters where “strong forms,” apparent from both methods,
are found and to be more cautious in the interpretation of
diverging schemes.

Methods

Sources and Data

The original data come from the Web of Science (WoS)
offline database at Observatoire des Sciences et Techniques

(OST, Paris), implemented on contract with Thomson
Reuters. The dataset was collected by a hybrid method
that involves a lexical query, complemented by a citation-
based extension process, detailed in the above-quoted articles
(Zitt & Bassecoulard, 2006; Laurens et al., 2010). The set
used here represents approximately 168,000 articles for the
years 1999–2003. This relatively ancient set, especially in
the context of a rapidly evolving field, is kept, for the sake
of continuity with previous experiments, because the present
article is focused on methodology and not on the current
development of this field.

Clustering Stage

Before addressing the core of the comparison, let us sum-
marize the methods and techniques used in this particular
experiment. It should be stressed that the further comparison
stages could be carried out on the outcomes of any clustering
technique with good properties as well, but the delineation
of clusters is, of course, sensitive, to a certain extent, to the
particular technique picked.

Citation-based clustering. The general principle consists
in connecting articles through their proximity, in a “bibli-
ographic coupling” rationale rather than through an inter-
mediate stage of cocitation. Background of citation-based
clustering, by either cocitation or coupling, has been recalled
above.

A variety of data analysis methods are available for cluster-
ing. The method adopted here is an axial k-means technique
(AKM or KMA), developed by one of us and implemented in
the software Neuronav (Diatopie). It is a variant of k-means
partitioning methods (Lloyd, 1982, building on an Bells’s
lab unpublished paper by the same author, 1957; McQueen,
1967), which brings significant improvements (Lelu, 1994,
2008), giving rise to concept-vectors and document orthogo-
nal and oblique projections on each cluster axoïd. It is related
to the spherical k-means family (Domengès & Volle, 1979),
with a robust theoretical basis. AKM metrics is based on
the Hellinger distance: Any raw data-vector x with compo-
nents xi, i = 1, . . . I, is turned into a normalized z one, the
components of which write:

zi = (xi/x.)1/2 where x. = �ixi

In this spherical dataspace, comparing distances amounts
to compare vector angles:

d(z1, z2)
2 = 2(1 − cos(z1, z2)), where cos(z1, z2) = z1

t z2

and zt stands for the transpose of column vector z.
This distance satisfies the property of distributional equiv-

alence. Like other k-means methods, the variantAKM is quite
powerful and can process relatively large sets of data, but it is
sensitive to the initial draw of centroids. However, this weak-
ness is alleviated here, because of the low number of clusters
targeted (50), compared with the ∼100 000 documents clus-
tered. Bassecoulard, Lelu, and Zitt (2007) have reported the
methodology, some features of clusters and the thematic map
of the dataset under study. We prolonged this analysis by a
clustering process with the same grain (M = 50), built on
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word-base similarity. Note that other methods might have
been used instead for clustering or partition, involved in the
present comparison, provided the results are of good quality.

Word-base clustering. The term extraction was carried out
under the software Neuronav by Diatopie (S. Aubin) and
some complements under SAS software by Lereco. Morpho-
synctactic labeling and stemming are conducted on a dictio-
nary of forms, and two heuristics: In case of ambiguity, the
most frequent label is used; then, the forms that are absent
in the dictionary are considered as nouns. Multiterms are
obtained from syntactic motifs, under constraint of noninclu-
sion in specific lists (e.g., to avoid “remarkable results” or
“improved method”). The process privileges high precision,
around 95% versus a careful manual indexing. The recall is
lower (ca. 50%), not a serious shortcoming given the high
degree of redundancy of terms within an abstract.

For the clustering stage, the same principle as for citation-
based clustering was adopted, namely, a direct classification
of articles by lexical coupling rather than through an inter-
mediary coword or cocitation stage. The same options used
in the citation round were also applied to the metrics: the
classification method, the number of clusters set to the same
value, M = 50, to facilitate comparison. In the following, c-
cluster designates clusters of articles from citation analysis
(bibliographic coupling) and w-cluster designates a cluster of
articles from word analysis (lexical coupling). The original
maps of c-clusters and w-clusters are shown in Figure 2A
and Figure 2B in the Results section. For simplicity reasons,
c-clusters as well as w-clusters result from a strict partition
(no overlaps), but this constraint can be lifted in many meth-
ods, including AKM. The overlaps we are interested in are
the intersection between c-clusters and w-clusters.

It should be recalled that the retrieval of literature by
a hybrid method—as in the data collection for the present
experiment—alleviates a possible bias of classical queries
methods. A query system on large fields is often a union of
elementary queries that are expected to cover particular sub-
fields/areas, and then to predetermine, to a certain extent, the
structure that will emerge from clustering. If our initial query
system was indeed based on unions, then the sequence lexi-
cal query-citation expansion, mentioned above, smoothes the
boundaries of the field and then reduces the structuring bias
of initial queries.

The Table of Clusters Overlaps as a Tool for Comparison

Our aim is to compare the outputs of clustering processes,
conducted on citation and word proximity, with the same
set of scientific publications. The main difference here does
not lie in methods/options of metrics used—identical by
construction as seen above—but in the nature of the origi-
nal linkage used for structuring, bibliographic coupling, and
lexical coupling.

For memory’s sake, many kinds of data analysis can
explore the convergence of partitions or classification trees,

including full-range analyses that consider the original sim-
ilarities among the N documents. Examples of complete
analysis involve a pair comparison of distances between arti-
cles in either approach or a comparison of classification trees
(Guénoche & Garetta, 2002), yielded by lexical coupling and
bibliographic coupling on this full set of documents. One can,
for example, compare the fate of any couple of documents
(k, l) in two classifications. Such analyses aim solely at a com-
parison of approaches, not a combination. The present work
is rather a cross map of literature overlaps that are generated
by combining lexical and citation clustering. Various appli-
cations of the crossmaps to scientific literature were sketched
by Morris and Yen (2004).

Here, we start from the cluster level (M = 50 clusters in
each approach). We assume c-clusters in rows and w-clusters
in columns. In the contingency table of dimension M × M,
each cell ij contains the intersection of c-cluster i and w-
cluster j (number of articles); derived tables may be with
normalized intersections, either similarity (Jaccard, Ochiai)
or probability measures. For any type of content, direct or
normalized measures, a color scale may help to visualize the
strength of intersections; here, we will use shades of grey.

The table of intersections proves rich in information. It
enables us to study the convergence of the citation and word
approaches in a simple way, at first, by independence mea-
sures like chi-square and derived indexes (Phi). For example,
if all cells are zero except M heavy cells, none of these with
the same i or the same j, then the breakdowns are identi-
cal. Although this cell-level measure provides a first piece
of information, rearranging rows and columns, by proxim-
ity, could give us a structured landscape to watch at several
levels and give us a more complete insight on the overall
convergence of c-classifications and w-classifications.

Hybrid profile distances on cc and ww. There are two basic
options for computing proximity between rows, and between
columns. We use either the sole information contained in
the intersection table or additional information, namely, the
original distances between c-clusters, on the one hand, and
w-clusters, on the other hand, calculated at the initial cluster-
ing stage in either universes. We will go back hereafter to the
latter process. Let us now focus on the former, where proxim-
ity between w-clusters (here rows) is assessed by their profile
towards c-clusters: so to say, citation structure is used to group
w-clusters, and conversely. For example, two c-clusters i = 1,
5 that both overlap, on the same profile, with four w-clusters
j = 4, 7, 24, 39 will be deemed very close. Two c-clusters
that overlap with completely different sets of w-clusters will
exhibit a zero similarity. As the table of intersections is a
contingency table from two partitions of the same set, cor-
respondence analysis (CA; Benzecri, 1973), which relies on
the good properties of the chi-square distance, may be used.
The alignment of axes in both spaces is a central feature
of the methods, allowing a projection of the two types of
items, but the proximity between projections of individuals
(say, w-clusters in rows) with variables (c-clusters in
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FIG. 1. Five sequences. O–S (original dist + separate metrics); H–J (hybrid dist + joint metrics), O–J (original dist + joint metrics); H–S (hybrid
dist + separate metrics); K joint clustering: direct clustering of intersections.

columns) is not directly interpretable. In those representa-
tions, the visual perception of the global agreement between
c-clusters and w-clusters (see Figure 4 in the results section),
after their projected distance, is poor. Some extensions of CA
are based on the Hellinger’s distance (Rao, 1995).

Matrix Reordering

Matrix reordering is a long-lasting and still very active
research field, under varied names: seriation, biclustering,
and heat-maps. Bertin was a pioneer of seriation stud-
ies (Bertin, 1967), who inspired many subsequent works,
e.g., Wilkinson (1979) and Marcotorchino (1987). The latter
coined the term “block-seriation” for his linear optimization
process, while reordering is often based on a hierarchi-
cal clustering on rows/columns or a factor analysis. The
term biclustering stems from Mirkin (1996), with Harti-
gan (1972) as a forerunner. Heat maps (Eisen, Spellman,
Brown, & Botstein, 1998) appeared as a special application
of reordering to gene expression data.

Combined metrics. For the present application, we tried to
investigate joint metrics, leading to hybrid super-clusters and
unambiguous blocks. In this approach, the distance between
a c-cluster and a w-cluster (noted c-w) can be expressed as a
function of c-c and/or w-w distances. We reached acceptable
results in practice, as shown in the following. The detail of
calculation is given in Appendix A. An alternative technique
that takes advantage of AKM properties, and is likely to be
more rigorous and powerful, would present some advantages
(see below).

Figure 2 summarizes some possible protocols, according
to the choice (a) of metrics: original distance in the two net-
works [“O”] versus hybrid distance from the intersection

table [“H”] and (b) of treatment (separate treatment of c-
clusters and w-clusters [“S”] versus joint treatment using
a c-w distance [“J”]. This yields four typical sequences:
O–S (original distance + separate treatment); H–J (hybrid
distance + joint treatment); O–J (original distance + joint
treatment); and H–S (hybrid distance + separate treatment).
Another pathway of joint clustering, K, based on direct clas-
sification of intersections, is mentioned but not applied in the
present work.

Assuming that both word-based clustering and citation-
based clustering offer consistent views of the same universe,
then we wish to compare and possibly combine the words
and citation perspectives. Among the four ways depicted in
Figure 2, “O–S” is classical in block-modeling. Here, we
investigated the (O–J) and (H–J) ways with particular atten-
tion on to the latter. The fact that many ways of reordering
give usable but perfectible results (the problem has an expo-
nential complexity) lead many software packages to allow
manual optimization, in the spirit of Bertin’s recommenda-
tions (Bertin, 1977). Intentionally, for comparison purposes,
we made no attempt here to optimize visualization manually.

Reordering and Super-Clusters

Basing ourselves on the joint metrics described in
Appendix A, we reordered rows and columns in two stages:

1. Hierarchical clustering of c-clusters (here in columns)
together with w-clusters (rows) into super-clusters. We
chose the group average distance, generally considered
robust, to generate the super-clusters at all levels. A super-
cluster typically entails c-clusters and w-clusters. Then, on
the reordered matrix, a super-cluster typically embodies
cells within two orthogonal stripes, one of contiguous rows
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FIG. 2A. Original correspondence analysis (CA) map of citation-based clusters (1st plane of CA). CA is typically based on a table of contingency
categories-criteria. Here, the intersection table of w-clusters and c-clusters is used as the contingency table fed to CA. Despite the dual nature of CA, the
proximity between projection of individuals (w-clusters in rows) and projections of variables (c-clusters in columns) is not directly interpretable. Grouping
in macrothemes is apparent from the display.

and one of contiguous columns, where the crossing area
represents the block. Two super-clusters at a given cut-off
level tend to be overlapping in terms of cells.2 Super-
clusters with complete discrimination are those where
crossing stripes are empty except in their common block.
There is a perfect correspondence in this case, at the level
considered, between w-grouping and c-grouping.

2. To finalize the reordering on c-clusters and w-clusters,
a good representation among all those compatible with
the hierarchical clustering found, is sought. We used a
unidimensional MDS, under constraint of the hierarchi-
cal tree: An average of components (leaf) positions on the
axis is calculated for clusters at all levels in the tree, and at
each dichotomy, starting with the root level, and the two

2If necessary a nonoverlapping scheme may be derived from this represen-
tation. The outcome is a nonoverlapping and nondichotomic classification of
cells/blocks of successive levels. For example, at a given level, a block will
aggregate two blocks of the last level, plus the two pseudo-blocks of previ-
ously unassigned cells. Note that the process is different from a treatment of
cells as individual objects, submitted to a classification process (pathway K
on Figure 2).

branches are ranked depending on their average position.3

This process aims only at bringing an acceptable organiza-
tion of blocks. The super-clusters and related blocks built
on the joint metrics are unambiguously determined and
do not need an external decision to choose among many
combinations of w-clusters and c-clusters, in contrast with
sequences O–S and H–S.

The outcome of a matrix reordering, for contingency
tables, may be called a “pseudo-map,” where both the size of
objects, cells or blocks, and their visual distances are inter-
pretable. Each cell visualizes the size (absolute or relative)
of the intersection set between a c-cluster and a w-cluster,
and the number of cells that separates two such cells, after
reordering, row-wise and column-wise (city block distance)
can be loosely interpreted as an image of their dissimilarity.

3In this particular experiment, the constraint of the hierarchical tree was
ignored for the 10 first levels (close to the root) the ranking of which is left
to the MDS. Groupings at this level involve quite weak links. This option
can be cancelled if one wishes a complete hierarchy.
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FIG. 2B. Original correspondence analysis (CA) map of word-based clusters (1st plane of CA). Large themes are less clearly delineated than above and
borders are not represented.

With the help of this visualization, let us now focus on
the blocks defined by those cells common to the c-clusters
and the w-clusters that compose the super-cluster. A block
appears a “strong form” of hybrid nature, retrieved by both
citation and lexical analysis, if it concentrates most of the
heavy cells of the corresponding rows and columns. Block-
level indexes of retrieval can be coined—a simple one being
the geometric average of the proportion of recovered articles
in both directions, the Ochiai index, already employed for
the color coding of individual cells in Figure 5 in the Results
section.

Original distances, on which the initial 50 clusters on each
side were built, may be used instead of hybrid distances.
A distinct advantage when one works on original distances
rather than hybrid profiles distances is that the logic of sepa-
ration of c and w pathways is maintained. In this respect, the
path O–S, classical in block modeling, is the most orthodox
if we adopt a strict posture of discrimination between word
and citation approaches throughout the process. The weak
point is that it does not yield a unique hierarchy of super-
clusters/blocks but many possible combinations. More suited,
perhaps, to comparison purpose, it is not so well adapted to
combination of methods.

In the present exploration, we eventually limited ourselves
to the sequences H–J and O–J. Hybrid profile distances group
c-clusters on their intersection profile with w-clusters, hence,
on a lexical logic and, conversely, for w-clusters. Hybrid pro-
files’ distances are likely to be efficient for reordering the
intersection matrix and creating explicit super-clusters, but
the interpretation of combinations reached is sometimes del-
icate. Outcomes of the sequence O–J are also mentioned, O–J
keeps the separation of techniques a bit longer. A practical
shortcoming of the latter sequence is the fairly large distri-
butional differences in original distances of c-clusters, on the
one hand, and w-clusters, on the other hand.

A more satisfactory way to deal with original distances
is the spherical factor analysis, taking advantage of the
AKM clustering. It is possible to represent the cluster
axoïds directly in their common document space, as well
as in their distinct attribute space—thus, doing without
the intersection matrix—, a process that will be developed
elsewhere.

An alternative exploitation of the table of overlaps could
take advantage of this method: It would start from the indi-
vidual cells—here, 2,500 cells—instead of rows/columns as
studied here (pathway K on Figure 2). Two-stage or “hybrid”
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hierarchical process, where strong forms (stable sets) are
submitted to a final clustering stage, is a classical practice in
cluster analysis of large datasets. Strong forms (Diday, 1971)
may result from a variety of treatments including repeated
trials (k-means or moving clouds for example) or crossing of
outcomes from different techniques. In our context, inter-
sections could be considered as elementary strong forms,
needing the construction of a distance between individual
cells or blocks, that could be provided by the spherical factor
analysis just mentioned.

Convergence of approaches

The degree of independence of the lexical and citation
breakdowns, regardless of the arrangement of rows and
columns, can be measured by classical indexes typically of
the chi-square family, for example, the Phi-index and the
contingency coefficient C. Visually, with an appropriate grey
scale, the dependence will be associated with high contrasts
between, say, “black cells” (high absolute or relative over-
lap) and “white cells” (no or negligible overlap). An identity
between c-clustering and w-clustering would result in M
black cells and the rest white; independence would result in
a quasi-uniform grey rendering. Global independence mea-
sures are limited to the initial cut-off level, the M-level
clusters, and say nothing about the higher level structures,
represented by the super-clusters.

The reordering helps to visualize another phenomenon,
inherited from the respective properties of c-clusters and w-
clusters size distribution. Let us assume an efficient reorder-
ing. Intuitively, a strong convergence of c-classifications and
w-classifications will result in a quasi-diagonal scheme. On
the M × M table built here, an exact diagonal will be reached
only if the size distribution of c-clusters and w-clusters
is alike. In case of convergence with distributional differ-
ences, the “black cells” will follow a bent or “snaky” curve
instead of an alignment on the diagonal. If, for example, we
imagine a quite skew distribution of c-clusters size (say, a
big cluster and many little ones), while the w-clusters size
is more evenly distributed, then we will get a long verti-
cal rectangle in some place, compensated by sequences of
small horizontal ones. The total number of c-clusters and
w-clusters being identical in the present study, if citations
prove more discriminating in a particular area (say, nan-
otubes), then it will tend to be compensated in another area.
In the following, the convergence of approaches will be tested
after the local density in the neighborhood of cells with
strong overlap (dark cells), density that reaches high values
for continuous agglomerations, typically along a diagonal
scheme.

One clue of approximate convergence is the accumula-
tion of grey-embedded blocks, with mitigation when the
scale enlarges, along a dark curve (approximately) diago-
nal. Scattered structures, in contrast, suggest a divergence
of logic, keeping in mind the limitations of the block mod-
eling practiced. Globally, the landscape generated and the
system of grids that could be materialized on an appropriate

display exhibit some analogy with the medieval sea charts,
“portolans,” as seen in the Results section.

Results

General Outcomes of Clustering, Citations Versus Lexical

Let us first have a look at the two basic maps of 50
clusters, established by bibliographic coupling and lexical
coupling (Figures 2A–B). The display is based on a principal
component analysis of the AKM clusters in their descrip-
tor space. These two-dimensional (2-D) projections look
quite different. The general organization is more apparent
on the citation-based classification: While w-clusters are
scattered across the diagram, c-clusters are structured in
macrogroups, contributing heavily to one factor, easy to
identify—nanotubes, bionano, and theoretical aspects.

The size distribution of clusters is shown Figure 3. In con-
trast with the native distribution of cited items or words, it
reveals more skewed for c-clusters than for w-clusters. The
citation-based method produces a few very big clusters and a
majority of comparatively small clusters. This is not para-
doxical: In many cases, the abundance of citation in the
medium-low part or low tail of citation distribution is able
to identify small research areas and communities (an exam-
ple is the discrimination of several fronts within nanotubes).
This is compensated (with the rule of 50 clusters on both
sides) by a few very big clusters, such as gene delivery,
2-D and 3-D arrangements and self-assembly, quasi-crystals,
and magneto-resistance. Citation networks can produce, at
a given threshold, quasi-cliques in a quite large range of
size, especially for integrated communities basing on a strong
common repertoire.

Respective distributional features of citation coupling
or word coupling—and the particular classification method
used, here AKM—influence the final rendering of the
reordered matrix, especially the diagonal area.

A Classical Display: The Field Landscape/CA Map

The map of the first factors plane is shown Figure 4.
As previously mentioned, the distance between c-clusters,
or between w-clusters, is directly interpretable with respect
to the stress of projection, while the distance between a c-
cluster and a w-cluster is not. The general structure shows
a three-branched star, around a heavy kernel, evoking the
original c-map of Figure 2A. Although giving an appealing
view of the general landscape, the CA display alone is not
really appropriate to compare and combine c-clusters and w-
clusters, a goal more efficiently achieved by elaborating on
the intersection matrix.

Intersection Table

The general aspect of the full intersection table is shown
(after the reordering of rows and columns) in Figure 5A, with
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FIG. 3. Cluster size distribution. c-clusters and w-clusters are separately ranked by size.

grey shades based on the intensity mutual inclusion (Ochiai
Index). Figures 5B and 5C are zooms on two parts of the
figure, top-left and bottom-right of Figure 5A. Independently
from the particular reordering:

The independence of breakdown at the cluster level was
tested by usual measures on contingency tables R × C, based
on chi-square Q.

Phi Coef. = √
(Q/n) Phi = 1.96 (here max 7)

Contingency Coef.:
√

(Q/(Q + n)) CC = 0.89 (here
max ∼=1)

In both cases, independence is strongly rejected
p < 0.0001.

Beyond the global balance that is expected from the
cross-tabulation, we observe contrasts in the distribution
of concentration along rows and along columns. Scrutiny
of Herfindahl and entropy-based coefficients lead to the
same conclusion: c-clusters exhibit a more even distri-
bution of concentration, w-clusters a broader range of
concentration. Besides, if we sort clusters by diversity
of their overlaps, the top c-clusters (Ti02surface/ par-
ticles/ films; nanobelts-ribbons; photonic/ colloidal crys-
tals; molecular electronics-principles; fullerenes) reveal less
diverse than the top w-clusters (X-ray, Molecular_dynamics/

Simulations, Magnetoresistance, and two clusters on
modelling).

Reordering

The maps shown Figures 5 and 6 are intentionally left in
the configurations that are produced automatically. Figure 5
details the outcome of the sequence H–J.

The diagonal area appears heavy, especially at the two
ends: the blocks in the top-right area (the orientation is arbi-
trary) represent bionano, mesoporous structures, two blocks
devoted to self-assemby, electrochemistry and films, AFM-
STM, and a sub-block of nanomaterials, metal particles,
and crystals; bottom-right blocks are the home of quan-
tum dots and Kondo affects (bottom), the carbon nanotubes,
alloys, adsorption-catalysis, and a sub-block of nanomate-
rials, surface, and carbon films. The central sub-block of
nanomaterials, theoretical studies, is fuzzier. An organiza-
tion of larger blocks is guessed at, but the concentration of
grey cells decreases off the diagonal area. This general view
brings evidence that the two c and w representations are fairly
similar but not substitutable.
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FIG. 4. Correspondence analysis map: c-clusters and w-clusters. Correspondence analysis typically exploits a table of contingency categories-criteria,
namely, here the intersection map of w-clusters and c-clusters. Despite the dual nature of CA, the proximity between projection of individuals (w-clusters in
rows) and projections of variables (c-clusters in columns) is not directly interpretable.

Figure 5C is a simple zoom on the bottom-right sec-
tion of Figure 5A. Figure 5B zooms on the top-left, using
a different display that conveys some visual analogy with
early manuscript sea charts, used during centuries XII–XVI.
The “portolans” showed shores and ports in some detail,
as well as a web/grid of compass directions, radiating from
several points. Here, lexical and citation clusters figure the
ports on two mainland shores. Forming a roughly diagonal
archipelago, a few directions starting from each island (the
major intersections), are of particular interest: A multilevel
grid connects ports in the shores to islands in the archipelago;
the diagonal directions along the archipelago invite a visit
along the universe’s main dimension. Portolans had many
limitations, due to data and the use of approximate planar
representation before Mercator projection. Here, too, is the
reduction of information drastic, in comparison, say, to CA
rendering; but, the clear information on intersections made it

useful for understanding a combined bibliometric vision of a
field.

Using a large-scale visualization Figure 6 compares the
outcome of H–J and O–J sequences obtained by the process
(respectively top-left and bottom-left). It also displays a basic
map obtained by the first factor of Correspondence Analysis
(top-right), and a variant of the latter map, starting with the
CA order and complemented by an automatic research of a
maximum load for the diagonal (bottom-right). The top-left
map presents a good concentration, avoiding most outsiders.

Structural convergence and goodness of rearrangement.
We measured the level of grouping of high-density cells,
regardless of the sinuous or curved shape of the diagonal
path. Using a rule of thumb, we selected top-quantiles cells
(respectively 5% and 8%) on the criterion of overlap and
tested the number of other top-quantile cells and the average
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FIG. 5A. Reordered matrix: general: general appearance. Two large parts are detailed in Figures 5B and 5C.

FIG. 5B. Reordered matrix—zoom on top-left part of 5A. The display is a surface graph, with the overlap index (Ochiai) as z-axis values, displaying the
archipelago structure on a sort of Portulan chart. Shores are given an “altitude” proportional to the size of c-clusters or w-clusters (values not comparable to
overlap value). On a table based on gross intersections rather than relative overlap measures (Ochiai), altitude of shores and islands may use the same scale.
For convenience, the y-axis of 5A are reversed.
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FIG. 5C. Reordered matrix—zoom on the bottom-right part of 5A. This zooming uses the same display as Figure 5A.

density in their neighborhood (contiguous or next contiguous
cells). The performance is about three times the expectation
(randomly arranged matrix). The density measure embod-
ies the latent organization of data and the capability of the
reordering to reveal this organization. There may be some
systematic underestimation of the degree of organization of
data if the reordering process falls far from the optimum: A
better heuristic could probably enhance the visual perception
of the diagonal/block structure.

Let us browse the variety of macrostructures uncov-
ered.4 We focus on the outcome of hybrid profile distances
(sequence H–J) and on occasion briefly mention the outcomes
of the sequence O–J.

Converging areas. Strong cells are found in the intersection
table, but no real one-to-one cluster correspondence. In many
cases, a good agreement is reached at a more aggregate level,
on either square or rectangular blocks. Let us first envision
the blocks exhibiting square or quasi-square shapes. In the
best cases, few external connections exist outside the block,
row-wise and column-wise. A block that is not decompos-
able at a finer-grain level, displaying a quasi-uniform grey
area, shows that terminology and citations propose different
breakdowns of this block, as if the balances of the “scientific
mix” discussed above were treated in a different way. At a

4Warning: As usual for research themes or front naming, titles are given
from central or specific words in the cluster, which does not imply that the
title is representative of all documents in the cluster.

larger scale, the level of the block, both methods retrieve the
theme.

Examples of quasi-square blocks are as follows:
Scanning tunneling microscopy (AFM; 1981) and

atomic force microscopy (STM; 1986) are historical pil-
lars of the domain, making it possible to image and
manipulate atoms and nanoscale structures. Although
transversal to many applications, the theme is the
support of two self-standing clusters, in both c and
w approaches. The c-clusters are AFM/STM_studies
and Single_molecule_level/Spectroscopy/Imaging. The w-
clusters are AFM studies/AFM imaging and microscopy
techniques/AFM/ STM/ SPM. SPM denotes scanning probe
microscopy, the branch of microscopy initiated by SPM and
now encompassing many techniques. These structures are
strongly overlapping, but the generic character of the tech-
nique is apparent from quite a few intersections off the diag-
onal. This is especially the case for the c-cluster AFM/STM
studies, bigger and with a more scattered profile, especially
intersections with the w-clusters of the electrochemistry and
nanomaterials block. This is perhaps an illustration of a
hypothesis stated in the context section, the strength of a path-
breaking methodology in constant development and applied
in many areas.

In the sequence O–J, the block rightly captures
another dedicated w-cluster, AFM_studies/Thin_Films/
Surface_studies (quite scatted in its c-profile) but loses homo-
geneity on the c-cluster side by accretion of two bio-oriented
clusters.
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FIG. 6A–D. Visual comparison of reorderings. Scale: Ochiai × 1000. Panel B makes use of the original distances, others are based on information from the
intersection table only (sequence O–J).
A (top-left): from sequence H–J (a schematic display of Figure 5A).
B (top-right): from sequence O–J, based on original distances.
C (bottom-left): CA 1st factor ordering.
D (Bottom-right): CA 1st factor ordering, with local automatic optimization.
C and D do not comply with the tree structure of H–J or O–J. No display presents both properties of a quasi-continuous diagonal region and a visual regularity
of the gradient off-diagonal. A and C have the second property but not the first one, D the first one but not the second one, and B none of them. Overall,
A presents the soundest repartition.

Surface studies, adsorption, catalysis. Sub-block within
nanomaterials, with grey cells: three w-clusters discrimi-
nate on type of phenomenon and instruments (Adsorption_
analysis/Desorption/Catalysis/Adsorption_methods; STM_
studies; Surface structure/grown_films/Adsorption/LEED).
Among the three c-clusters, one addresses the type of
materials, TiO2_surface/Particles/Films, the two others

discriminate on theoretical aspects, Density_Functional_
Theory/Self-diffusion/Modelling; Electronic structures/
calculation, a capability is expected from citation techniques.
A nearby c-cluster devoted to theoretical studies is left outside
the block.

In the sequence O–J, the same clusters are contiguous but
not all retrieved as a super-cluster.
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Metal nanoparticles, crystals, nanoparticles. Another
sub-block of nanomaterials: five w-clusters discriminate
(loosely) on materials: Nanoparticles/gold/silver/TEM
(transmission electron microscopy); Gold/silver/metallic
nanoparticles; mechanical alloying/nanosize powders/
Fe_compounds; Solvothermal synthesis/room temp; syn-
thesis/ nanocrystalline_structures; Nanopowder synthesis/
nanoparticles synthesis. Five c-clusters on materials
and objects: Monolayer/Gold particles; Photonic/colloidal_
crystals; Nanocrystals; Nanocomposites/Clay_polymers/
Hybrids; Nanobelts/ Nanoribbons/ Nanowires. This suggests
that communities are based on investigation by type of object
(see also nanotubes below). The block is rather homogeneous,
with a particular proximity to some outsiders with similar
profile such as c-clusters TiO2_surface and Quasi_crystals/
Amorphous_alloys.

The sequence O–J shows a rearrangement within a larger
block containing mesoporous structures.

Bionano, a particularly promising area within nano sci-
ences. Peripheral to the central themes, bionano is clearly
delineated as a block, but the internal structure again indi-
cates different logics. An efficient sorting in terms of
usage is offered by two of three large-size w-clusters:
Gene_therapy/Gene_delivery/Gene_transfer; Drug_delivery/
Pharmakinetics/Drug_carrier/Encapsulation. The third one
is Integrin/Extracellular matrix/ Protein_expression/ Cell_
adhesion. The five c-clusters discriminate medical appli-
cations of gene therapy and drug delivery (grouped into
a very big cluster), on the one hand, and underlying
protein properties and specific tools, on the other
hand: Protein/DNA_microarrays; Titin/Protein_mechanics;
Kinesin/Activity/Motors; Biomolecular_interaction/Binding/
Adhesion. This result suggests the capability of citations to
discriminate research communities, whatever the size, con-
trasting with the ability of terminology to point out typical
domains of application. The c-clusters, especially the first two
ones, have some connections with off-diagonal w-clusters
(such as Copolymers/Polymer_architecture, AFM_studies).
The c-cluster microchips/ Biomedical_analysis/Proteomics
is classified off-diagonal, within the block Electrochem-
istry/Films, favoring technical proximity.

Bionano appears as a strong form, whose clusters are best
grouped on hybrid distances (sequence H–J) than original
ones (sequence O–J).

Also peripheral with respect to the core of nanoscience,
the block “mesoporous structures” (top-left in Figure 5A)
is fairly well-delineated by the sequence H–J, with a sin-
gle w-cluster (Mesoporous Silica/ Mesoporous carbons) and
two c-clusters (Mesoporous/ Silica/ Synthesis; Mesoporous/
Organo-silica/ Ordered_materials) with external traces.

In the sequence O–J, those clusters are merged with other
nanomaterials.

Electrochemistry as a block is moderately homogeneous (a
few white cells) but two sub-blocks, Dendrimers/ Microchips
and Photoelectrochemistry/Polyelectrolytes, contain mostly
grey cells. In the first sub-block, the two c-clusters are
Bio-medical_biochips/ Proteomics and Dendrimers (large

branched molecules), both with extensive biomedical appli-
cations. The two w-clusters distinguish between Copolymers
and Nanofiltration/Membranes. In the second sub-block, one
comes across three clusters on both sides, c-clusters high-
light Porphyrin_Fullerene_dyads/Fullerene_hybrids, Poly-
electrolyte_Films/Multilayer, Photoelectrochemistry/ Solar_
Cells; w-clusters are Langmuir-Blodgett films/Air-water
interface, Eletrochemical_studies/Electron_transfer, Thin_
Films/Photoelectrochemistry. Giving a more precise account
of the differences would need a deeper analysis of the arti-
cles contents. The w-clusters of the block show many more
intersections off-diagonal than the c-clusters, including the
intersections with the block Bionano already noticed.

The sequence O–J retrieves approximately the same clus-
ter, with the addition of self-assembled monolayers, however,
and metal complexes rejoin copolymers.

The block epitaxy-light emission, Q-Wells, Q-dots deals
with emerging models of semiconductors. Epitaxy refers
to various techniques of depositing monocrystalline lay-
ers. Molecular beam epitaxy (MBE) was a precursor of
the crystal depositing techniques. Quantum dots, quantum-
wires, and quantum wells cover electron-confinement in
3-D, 2-D, or one dimension. The convergence at the block
level is moderate, but the number of cells involved (five c-
clusters, eight w-clusters) can contribute to its heterogeneity.
The w-cluster Quantum-Dots/ Structural_properties/ Opti-
cal_properties, already mentioned, is particularly marginal,
with a unique but strong connection within the block, with
the c-cluster 2D-3D_ordering. The sequence O–J cuts off the
cluster, with epitaxy and photoluminescence on one side, and
Quantum Dots/ Kondo effects on the other side.

Nearby, the apparent one-to-one correspondence between
Quasicrystals_Amorphous_Alloys (c-cluster) and Alloys/
Grain_bourndary (w-cluster), also found in the O–J sequence,
is a bit misleading because the c-cluster, especially, traces a
long wake with close w-clusters such as Amorphous_Alloys
and more remote ones such as Solvothermal synthesis and
Nanopowders_synthesis.

Converging areas with asymmetry. A block is again clearly
delineated but with an elongated shape, evoking micro-
communities broken down by citations, while the textual
approach is less discriminating. Two example of blocks, close
to each other, are found in the bottom-right area of Figure 5.

One is located in an emblematic area of nanosciences,
the Carbon nanotubes, the family of nanoobjects, which
emerged next to fullerenes, also covering early research
on flat mono-layer lattices (graphenes). It forms a fairly
well-delimited block, letting few components in the stripes
outside the crossing area. Citations split the theme into
seven clusters, each addressing a particular type of object or
properties, an indication of distinct research areas and pos-
sibly communities: Carbon_nanotubes/Functionalization;
CN/Hydrogen_storage; CN/Mechanical_properties; CN/Pro-
duction/Properties; Single_wall_CN/Electronic_properties;
Single_wall_CN/Synthesis/Raman;CN/Growth. The lexical
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way finds only two clusters, one is CN/field-emission, the
second taking on CN/ Single wall CN/ Synthesis/ Growth/
Characterization. The block carbon nanotubes is exactly
retrieved by the sequence O–J.

Another example is the block quantum dots, Kondo effect
(bottom-right). The Kondo effect refers to the relation of
resistivity to temperature in metals, due to magnetic impuri-
ties. The block is based on a single w-cluster (Quantum_dots/
Kondo_effect/ Electron_transport/ Quantum_wires) because
the reordering groups a second candidate (Quantum_dots/
Structural_properties/ Optical_properties) within the Epitaxy
block—because of a heavy intersection with the c-cluster
2D-3D_reordering. Corresponding c-clusters discriminate
between Spin_injection/Filter/Polarization/Transport; Quan-
tum_dots/Bits/Josephson; Kondo_effect; Quantum_dots/
Magnetic_field/Coulomb_interactions. The sequence O–J
groups the two c-clusters but with a slight rearrangement
of c-clusters, adding the c-cluster 2D-3D_ordering in the
same block, instead of Spin_injection/ Filter/ Polarization/
Transport, which remains contiguous.

A c-cluster and a w-cluster are given the same title,
“self-assembled monolayers,” a core topic in the bottom-up
approach of nanosciences. However, whereas the w-cluster
is pretty much centered on its c-cluster counterpart, the
c-clusters is much larger and encompasses many other inter-
section cells, especially with the Electro-chemistry/Films
block. Again, the suggestion here is an intellectual base
apparent from citations, with several areas of exploitation.
An immediate neighbor block combines the c-clusters Self-
assembly/ Rotaxane and the smaller Molecular_magnets with
the w-cluster Metal_complexes/ Ligands/ Hydrogen_Bonds.
The sequence O–J integrates the two cells, kept separate, into
two larger blocks, devoted to electrochemistry and fullerenes,
and to Metal_complexes and Polymers.

Diverging areas. In some areas, the logic of c-clusters and
w-clusters seems quite different, and the reordering does
not achieve a homogeneous block. A good example is enti-
tled “Nanomaterials: Theoretical studies,” a consistent theme
when retrieved by citation clustering alone. In the hybrid anal-
ysis, it forms a sub-block of nanomaterials. The c-clusters
Magnetoresistance (giant magnetoresistance is an important
topic of “top-down” approaches in nanotechnology) and The-
oretical_studies exhibit some intersections outside the block,
but the phenomenon is striking for the w-clusters of the block,
quite scattered in their intellectual base, seemingly attracted
by the various fields of experiment or application. This is
the case, in particular, for clusters with a focus on model-
ing and simulation. In this case, citation clusters are likely
to be more reliable to discriminate areas of research, while
word-clusters connect theoretical aspects with various appli-
cations or orientations.Another sign of the loose organization
of the block is the fact that the sequence O–J, unusually, does
not retrieve this grouping, the components being scattered;
however, the c-clusters Fullerene, Molecular_electronics and
Glass_transition are kept close to each other.

Conclusion

Our purpose in this work was to investigate novel avenues
for hybrid classification and mapping, exploiting lexical and
citation relations. For methodological reasons, the study was
conducted on data on nanosciences that were previously col-
lected and the landscape depicted is a bit out of date now.
Similarly, the data used (SCI-WoS) do not allow a complete
coverage of the subject, namely, the environmental, health,
and ethical implications of nanotechnology. The focus of our
work is on the methodology.

There are several ways to achieve a mix of the two clas-
sical, powerful methods of thematic mapping, for example,
an early mix of citation and word-based metrics, addressed
recently by scholars, or a separate construction of clusters/
groups and a comparison of the outcomes. Again, several
variants are possible, keeping the word/cite separation or
not at the various stages in the process, depending also on
the balance of objectives: comparison or combination. Given
the variety of ways to exploit such intersection tables by
matrix reordering, we picked pragmatic methods, aiming at
an unambiguous construction of hybrid blocks, allowing both
a comparison and an easy combination of clusters.

The final display may be interpreted as a pseudo-map of
the field, carrying a type of information different from a fac-
tor analysis layout. The reduction of dimensions is drastic,
and the field appears structured along a main route loosely
following the diagonal of the matrix. The loss of information
on other dimensions, if compared with CA rendering, for
example, is compensated by a more precise account of the
convergence/divergence of the two approaches. Exhibiting
some similarity with old sea charts (portolans), the result-
ing pseudo-maps are perfectible in many respects, but offer
a stimulating way of bibliometric mapping.

Improvements may be sought in several directions. We
limited ourselves to the exploitation of titles and abstracts.
More focused lexical units along with “citations in context,”
based on full text, could be appealing. The informetric prop-
erties of the two underlying networks, influencing the distri-
bution of cluster size, also remain an open question. Besides,
the comparison/combination involves a sequence of stages
with several methodological options, sources of artefacts:
metrics, clustering/factor techniques, type of hybridization,
visualization. A more fundamental point, the semantic and
social balances conveyed in vocabulary versus bibliographic
references, need in-depth studies, going beyond the purpose
of this work. No strict corroboration can be claimed, given
the limits of the exercise, but the findings tend to illus-
trate a classical idea on citations, the higher precision in
the delineation of micro-communities based on a cognitive
base or a large research question, while terminology mir-
rors the various aspects of the scientific mixes, including
criteria of usage. These tendencies do not mean a clear-
cut divergence between lexical clusters driven by products,
applications, or stakes, and citation clusters designed by the-
ory or methodology. In this respect, the field studied, where
nanosciences and nanotechnology are often held synonymous
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with an integration of theory, instruments and products (nano-
materials, nanoobjects), is perhaps not the easiest one to test
these discrepancies, and applications to other fields with a
different heuristic structure are foreseen.

Extensions to other types of linkage may be added: the nat-
ural candidate is the network of authors, with a limit, however,
due to the thematic range and mobility of individual scien-
tists. The corresponding overlap table is tridimensional, with
an expected concentration, after reordering, on a diagonal of
the cube. Without adding the third dimension of authoring
proximity, the discriminative content of each partition with
respect to the community features could not be addressed
at this stage of the work but is quite interesting. However,
some spurious agreement might appear between authoring
and citation-based approaches, especially if no correction for
self-citations is introduced.

As to the visualization, there is little doubt that more elab-
orate techniques could achieve better results, but the outcome
is satisfactory. Nonoptimal reordering may lead to the under-
estimation of the convergence of the two approaches, word
or cite-based.

Despite some limitations, to overcome in further investiga-
tions, they are not likely to question the main finding, which
is a good overall convergence of citation and word mapping.
The diagonal archipelago in our “pseudo-map” portolan sug-
gests that bibliometric mapping is robust, but the convergence
remains partial, not only as the result of local differences in
scale effects. A complete convergence would mean substi-
tutability, making it pointless to mobilize two approaches.
This is obviously not the case—with respect to the possi-
ble underestimation of convergence noted above—and we
have suggested some interpretations of the local divergences.
These conclusions need to be confirmed by applications to
other fields with different features—an experience is ongo-
ing in the field of genomics, with first indications of similar
conclusions.

It is quite important for science mapping that, together with
its sociological role in stimulation of experts and scientists’
discussion, it can rely on a firm basis as a descriptive tool
with scientific value. If completely different bases (lexical
and citation networks) lead to relatively convergent but not
substitutable views, then we hold a strong argument in favor
of the reliability of bibliometric mapping of science, provided
that a careful use is made thereof.
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Appendix A

We start from this intersection table. Let n(ij) the value of
the cell at the intersections of w-cluster i (row) and c-cluster
j (column); d(j, j′) the distance between c-clusters clc(j)
and clc(j′); d(i, i′) the distances between w-clusters clw(i)
and clw(i′).

Distances d are calculated using Hellinger’s formula (e.g.,
Legendre & Gallagher, 2001), for example:

d(j, j′)2 = ∑
i(
√

p(j, i) − √
p(j′, i))2 where p(j, i) are

the profile values like:
p(j, i) = n(j, i)/

∑
i n(j, i)

Note: max(d(j, j′)) = √
2; min(d(j, j′)) = 0

We try to find surrogate distances between a w-cluster
clw(i) and a c-cluster clc(j) that first are commensurable with
distances d(i, i′) and d(j, j′) and second do not depend only
on the local overlap of i and j, which may be sensitive to
particular cut-off artefacts at the classification stage, but also
on their neighborhood.

i, j vary from 1 to M.
Proxy Dc(ij) based on length-2 paths linking cluster clw(i)

and cluster clc(j) through all clc(j′) for k = 1..M:
paths: clw(i) — clc(j′ = 1..M) — clc(j)
Dc (ij) = ∑

j′ w(i, j′) d(j, j′)
Proxy Dw(ij), analogous to Dc(ij), based on M length-

2 paths linking cluster clw(j) and cluster clc(j) through all
clw(i′) for k = 1..M:

clw (i) — clw(i′ = 1..M) — clc(j).
Dw(ij) = ∑

i′ w(j, i′) d(i, i′)
w(i, j′) is a weight depending on the profile of the cluster

i with the c-clusters j′ in the matrix of intersections. A satis-
factory weight is the product of row and column percentages
per cell along the row i, taking into account the weight of cell
(i, j′) in both the profile of intersection of i and the profile of
intersection of j′.

TABLE A1.

Dist N Mean Std dev Skewness Min

d(j, j′) c–c 1275a (k = j incl.) 0.831 0.283 −0.79 0 (0.54 excl. diag)
d(i, i′) w–w 1275a (i = h incl.) 0.835 0.248 −1.42 0 (0.23 excl. diag.)
Dc(ij) c-w 2500 0.855 0.174 −0.56 0.03
Dw(ij) c-w 2500 0.905 0.209 −0.46 0.02
Dcw(ij) geom.mean 2500 0.878 0.186 −0.52 0.046
Dcw(ij) min 2500 0.835 0.186 −0.52 0.02

aDiagonal terms k = j or i = h are included because they are used in computation of Dc(ij) and Dw(ij).

e(i, j′) = (ni,j′ / ni.) . (ni,j′ / n.j′) = ni,j′ 2 / (ni.n.j′)
w(i, j′) = e(i, j′) /

∑
j′ (e(i, j′))

and similarly for w(j, i′).
In the limit case where a c-cluster and a w-cluster are

identical, with the same contents in terms of publications,
Dc (ij) and Dw(ij) are reduced to the direct zero distance,
with w(i, j′) = w(j, i′) = 1. Built as weighted averages of the
profile distancesd,Dc andDw can be used in the same scheme
of distances. As expected from the averaging process:

• the mean of Dc (ij) over the table is close to the mean of
d(j′, j), the mean of Dw(ij) close to the mean of d(i, i′).

• the standard deviations are lower for Dc and Dw.

The following table represents some aspects of the four
distributions on our particular dataset. They are quite simi-
lar, however, the lower deviation for c-w distances disfavors
these pairs in the early clustering stages in ascending clas-
sifications. The distances of each kind (c-c, w-w, c-w) can
be standardized or rank-transformed. The latter option was
picked. We also chose to aggregate Dc(ij) and Dw(ij) in a sin-
gle measure Dcw(ij), with two options: geometric mean(Dc,
Dw) or min(Dc, Dw). The outcome is a 2 × M, matrix con-
taining distances c-c, w-w, c-w, where a given c-cluster can
be associated with a c-cluster and with a w-cluster with the
same probability.

This process is a provisional solution planned to be
replaced by a development of AKM.

Distances Statistics

On our particular dataset, the overall correlation between
Dc(ij) and Dw(ij) is >0.86, resulting in correlation of Dcw

with components >0.97 (geometric mean) and >0.94 for
(min). (see Table A1)
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Appendix B

List of Clusters

C-CLUSTERS (by order of Figure 5) # W-CLUSTERS

Gene_carrier/Delivey/Therapy/Transfection/Transfer C15 Gene_therapy/Gene_delivery/Gene_transfer M8
Protein/DNA_Microarrays C5 Drug_delivery/Pharmacokinetics/Drug_carrier/Encapsulation/ M34

Drug_evaluation
Titin/Protein_mechanics C16 Integrin/Extracellular_matrix/Protein_expression/Cell_adhesion M46
Kinesin/Activity/Motors C42 Mesoporous_silica/Mesoporous_carbons M47
Biomolecular_interaction/Binding/Adhesion C19 Self-assembled_monolayers M45
DNA_molecules/Mechanical_properties C 7 Metal_complexes/Ligands/Hydrogen_bonds M27
Mesoporous_II/Silica/Synthesis C49 Copolymers/Block_copolymers/Polymer_architecture M28
Mesoporous_I/Organosilica/Ordered/Materials C12 Nanofiltration/Membranes/Aqueous_solutions/Polyelectrolytes M16
Self_assembled_monolayer/thiolmonolayers C30 Langmuir-Blodgett_films/Langmuir_monolayers/Air/water_interface M32
Self_assembly/Rotaxanes C6 Electrochemical_studies/Electrochemical_processes/Electron_transfer M 3
Molecular_magnet C45 Thin_films/Photoelectrochemistry/Porous_materials M30
Dendrimers C22 AFM_Studies/AFM_imaging M24
Microchips/Biomedical_analysis /Proteomics C40 Microscopy_techniques/AFM/STM/SPM M17
Porphyrin_fullerene_dyads/Fullerene_hybrids C46 Nanoparticles/Gold/Silver_nanoparticles/TEM M11
Polyelectrolytes_fims/Multilayers C31 Gold/Silver_nanoparticles/Metallic_nanoparticles M48
Photo_electro_chemistry/Solar_cells/photovoltaic C36 Mechanical_alloying/nanosize_powders/Fe_compounds M38
AFM/STM_studies C8 Solvothermal_synthesis/Room_temperature_synthesis/ M15

Nanocrystalline_struct
Single_molecule_level/Spectro/Imaging C3 Nanopowders_synthesis/Nanoparticles_synthesis M44
Monolayer_protected_cluster/Gold_nanoparticles C43 XPS_studies/Surface_studies/X-ray/Films M22
Photonic/Colloidal_crystals C13 Adsorption/Interfaces/Solid-liquid M13
Nanocrystals C23 AFM_studies/Thin_films/Surface_studies M37
Nanocomposites/Clay_polymer_hybrids C25 Glasses/Glass_transition/Phase_transition/themosensitivity M26
Nanobelts/Nanoribbons/Nanowires_fabrication C14 X-ray_studies/Grazing_incidence_X-ray M36
Glass_transition/Glass_forming C27 Modelling/Simulation/Model_systems/Transport M39
Magnetoresistance C26 Room_temperature/Magnetoresistance/Temperature_dependence M42
Molecular_electronics/First_principles C1 Thin_films/Ultrathin_fims/Thickness M29
Fullerene/C-60/Production/Formation/behavior C24 Raman_scattering/Raman_spectroscopy/SERS M23
Theoretical_studies/First_principles/Ab_initio_studies C2 Ion_implantation/Ion_beam/ M25
Carbo_nitride_films/MechanicalTribological_properties C21 Molecular_dynamics_simulations M50
Carbon_films/Diamond_like/Amorphous C41 Ab_initio_studies/Models/Calculations/Density_functional_studies M5
TiO2_surface/Particles/Films/Catalysis C38 Amorphous_alloys/Mechanical_alloying/Heat_treatment/ M10

Thin_films/X-Ray
Density_functional_theory_studies/Self_diffusion/Modelling C11 Surface_morphology/Thin_films/Morphology_formation/roughness M31
Electronic_structures/Calculations C20 TEM_studies/Structure_studies/Nanostructures/Dislocations M18
Quasicrystals/Amorphous alloys C34 Nitride_films/Sputtering/Annealing/X-Ray M 2
Porous_silicon_properties C17 Diamond_films/Silicon films/Nanocrystalline/Vapor_deposition M1
Semiconductors/Ferromagnetism C35 Adsorption_analysis/Adsorption_desorption/Catalysis/ M49

Adsorption_methods
Diodes/Optical_properties/Applications C28 STM_studies/ M40
Band_Structure/Parameters/Gap C9 Surface_structures/Surface_grown_films/Surface_adsorption/LEED M20
2D-3D_ordering/Self_assembledqQuantum_dots C50 Alloys/Grain_boundary/Microstructures/Metallic_alloys/ M41

Magnetic_properties
Carbon_nanotubes_functionalization C37 Photoluminescence/SiO2_substrates/Light_emission/Films M14
Carbon_nanotubes/Hydrogen_storage C39 Band_gap/Electronic_structures/Conduction_band/Photoemission M21
Carbon_nanotubes/Mechanical_properties C32 Growth_behaviour/Epitaxial_growth/Films M12
Carbon_nanotubes/Production/Properties C47 Epitaxial_growth/Thin_films/RHEED_studies M35
Single_walled_carbon_nanotubes/Electronic_properties C4 Molecular_beam_epitaxy_growth/Qdots_formation M33
Single_walled_carbon_nanotubes/Synthesis/Raman/ C44 Molecular_beam_epitaxy/Epitaxial_growth/GaAs M9

Arc_method
Carbon_nanotubes_growth C29 Photoluminescence/Optical_properties/Quantum_wells/Quantum_wires M6
Spin_injection/Filter/Polarization/Transport C18 Quantum_dots/Structural_properties/Optical_properties M7
Quantum_dost/Magnetic_fields/Coulom/Interactions C48 Carbon_nanotubes/Single_wall_nanotubes /Synthesis/Growth/ M4

Characterization
Quantum_dots/Bits/Josephson C33 Carbon_nanotube_field_emission M43
Kondo_effect C10 Quantum_dots/Kondo_effect/Electron_transport/Quantum_wires M19

Note. NB = no match c-clusters – w-clusters by rows.
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