Calculs d'aire et de volume de « solide » (dimension 3) ET notion d'agrandissement (ou de réduction)

Notions à comprendre et à apprendre par cœur

Notion n° 1 : Dans un agrandissement ou une réduction de rapport k on peut constater que

- 1) les longueurs sont multipliées par k
- 2) les aires sont multipliées par \mathbf{k}^2
- 3) les volumes sont multipliés par \mathbf{k}^3

Remarque: Si k > 1 alors on a un agrandissement et si k < 1 alors on a une réduction

Notion n° 2 : La section d'un cône ou d'une pyramide par un plan parallèle à sa base est une réduction de la base de ce cône ou de cette pyramide.

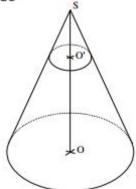
On a également une réduction du volume de ce cône ou de cette pyramide

Exercices à travailler

Exercice n° 1:

- **1**) Tracer un dessin où on peut appliquer le théorème de Thalès (le triangle ou le papillon) tel que ce dessin représente un agrandissement du « petit triangle » avec un rapport $\mathbf{k} = 3$
- **2**) Tracer un dessin où on peut appliquer le théorème de Thalès (le triangle ou le papillon) tel que ce dessin représente <u>une réduction du « grand triangle »</u> avec un rapport $\mathbf{k} = \frac{1}{2}$

Exercice n° 2:


Soit un cône dont la base est un disque (c'est-à-dire un cercle) de rayon $\mathbf{r} = 40 \, \mathrm{cm}$ et de hauteur $\mathbf{h} = 90 \, \mathrm{cm}$

- **1)** Calculer le volume de ce cône en dm^3
- 2) On coupe ce cône par un plan parallèle à sa base . Calculer le volume du « petit cône » si on sait que la base de ce « petit cône » est un disque de rayon $r=20\ cm$

Exercice n° 3:

On réalise la section d'un cône de hauteur SO = 6m par un plan parallèle à la base tel que SO' = 1.5m. Le volume du grand cône est 43,2 cm³ et l'aire de la base est 21,6 cm².

- 1) Calcule le volume du petit cône.
- 2) Calcule l'aire de sa base.

