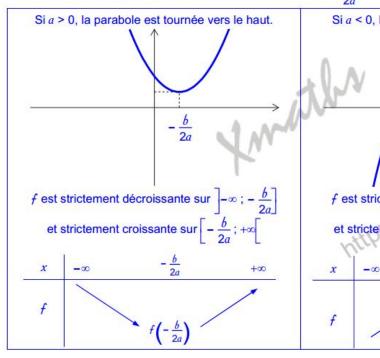
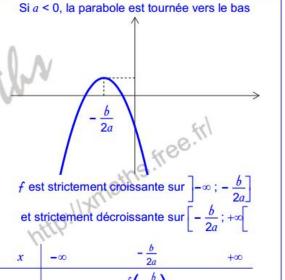
Fonction du second degré (fiche n°1 à apprendre par cò ur)

La représentation graphique d'une fonction trinôme définie par $f(x) = ax^2 + bx + c$ est une parabole. Son sommet a pour abscisse $-\frac{b}{2a}$ et pour ordonnée $f\left(-\frac{b}{2a}\right)$.

La parabole a pour axe de symétrie la droite d'équation $x = -\frac{b}{2a}$





Pour résoudre loéquation $ax^2 + bx + c = 0$ il faut calculer le discriminant $\Delta = b^2 - 4ac$ (le signe de Δ permet de savoir si la parabole croise loaxe des abscisses)

- 1) $si \Delta = b^2 4ac > 0$ $l \neq quation \quad ax^2 + bx + c = 0 \quad a \quad 2 \quad solutions \quad (2 \quad racines) \quad qui \quad sont :$ $x_1 = \frac{-b}{2a} \frac{\sqrt{\Delta}}{2a} \quad et \quad x_2 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{2a}$ $et \quad on \quad peut \quad factoriser \quad l \neq expression \quad ax^2 + bx + c = a(x x_1)(x x_2)$
- 2) $si \Delta = b^2 4ac = 0$ $l\phi\acute{e}quation \ ax^2 + bx + c = 0 \ a \ lseule \ solution \ (1 \ racine) \ qui \ est \ : \ x_0 = \frac{-b}{2a}$ $et \ on \ peut \ factoriser \ l\phi\acute{e}expression \ ax^2 + bx + c = a(x x_0)^2$
- 3) $si \ \Delta = b^2 4ac < 0$ $l \phi equation \ ax^2 + bx + c = 0 \ n \phi a \ pas \ de \ solution$ $(la \ parabole \ f(x) = ax^2 + bx + c \ ne \ croise \ pas \ l \phi axe \ des \ abscisses \ et \ « son \ signe \ est \ constant \ »)$ $Si \ a > 0 \ alors \ f(x) = ax^2 + bx + c > 0 \ pour \ toutes \ les \ valeurs \ de \ x$ $Si \ a < 0 \ alors \ f(x) = ax^2 + bx + c < 0 \ pour \ toutes \ les \ valeurs \ de \ x$

Exemples : RESOUDRE LES équations

$$x^{2}-2x-3=0$$

$$\begin{cases} a=1 \\ b=-2 \end{cases}$$

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times (1) \times (-3) = 4 + 12 = 16$$
 et comme $\Delta > 0$

$$x^{2} - 2x - 3 = 0 \Leftrightarrow \begin{cases} x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-2) - \sqrt{16}}{2 \times 1} = \frac{2 - \sqrt{16}}{2} = \frac{2 - 4}{2} = \frac{-2}{2} = -1 \\ x_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-2) + \sqrt{16}}{2 \times 1} = \frac{2 + \sqrt{16}}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3 \end{cases}$$

De plus on peut factoriser: $x^2 - 2x - 3 = (1)(x - x_1)(x - x_2) = (x - (-1))(x - 3) = (x + 1)(x - 3)$

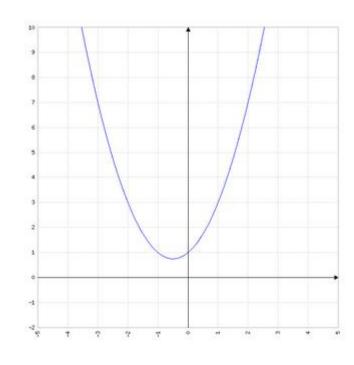
$$2x^{2} + 8x + 8 = 0$$

$$\begin{cases}
a = 2 \\
b = 8 \\
c = 8
\end{cases}$$

$$\Delta = b^{2} - 4ac = 8^{2} - 4 \times 2 \times 8 = 64 - 64 = 0$$

Løéquation $2x^2 + 8x + 8 = 0$ a UNE SEULE solution qui est $x_0 = \frac{-b}{2a} = \frac{-8}{2 \times 2} = \frac{-8}{4} = -2$ De plus on peut factoriser: $2x^2 + 8x + 8 = 2(x - x_0)^2 = 2(x - (-2))^2 = 2(x + 2)^2$

$$\begin{array}{l} x^2+x+1=0\\ \\ \begin{cases} a=1\\ b=1\\ c=1 \end{cases}\\ \Delta=b^2-4ac=1^2-4\times 1\times 1=1-4=-3<0\\ \\ \text{Loc quation } x^2+x+1=0 \text{ now pas de solution}\\ \text{et pour } x\in \left]-\infty\,,+\infty\right[\text{ on } a:x^2+x+1>0 \end{array}$$



3

Fonction du second degré (ETUDE du signe de løexpression ax^2+bx+c

On considère le trinôme $f(x) = ax^2 + bx + c$ avec $a \neq 0$. Soit Δ son discriminant : $\Delta = b^2 - 4ac$.

Si Δ < 0, le trinôme n'a pas de racines. Le trinôme ne peut pas se factoriser.

On peut donner son signe dans le tableau :

• Si $\Delta = 0$, le trinôme a une racine double $x_0 = -\frac{b}{2a}$.

Le trinôme peut se factoriser sous la forme $f(x) = a(x - x_0)^2$

Le trinôme est du signe de a sauf en x_0 où il s'annule.

On peut donner son signe dans le tableau :

	x	-∞	Tu.	+∞		
775	signe de $ax^2 + bx + c$		signe de a	0	signe de a	0

 $\frac{+\infty}{2a} \text{ et } \frac{-b + \sqrt{\Delta}}{2a} \text{ et } \frac{-b + \sqrt{\Delta}}{2a} \text{ .}$ Si Δ > 0, le trinôme a deux racines x₁ et x₂ qui sont égales à :

Le trinôme peut se factoriser sous la forme $f(x) = a(x - x_1)(x - x_2)$

du signe de -a lorsque x est entre les racines Le trinôme est

du signe de a lorsque x est à l'extérieur des racines.

On peut donner son signe dans le tableau : (en supposant que $x_1 < x_2$)

<u>x</u>	<u>-∞</u>	x_1		<i>x</i> ₂		+∞
signe de $ax^2 + bx + c$	signe de a	0	signe de -a	0	signe de a	