24. Graphes associés

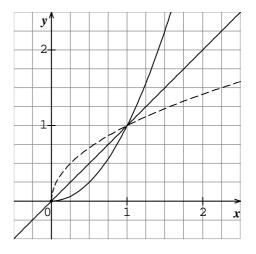
Dans tous les graphes présentés, g(x) est en pointillés et f(x) en trait plein

a)
$$g(x) = f^{-}(x)$$
 (ou $f^{-1}(x)$) (fonctions réciproques)

Un point (x, y) du graphe de f devient le point (y, x) du graphe de g

Exemple:
$$f(x) = x^2$$
 et $g(x) = \sqrt{x}$

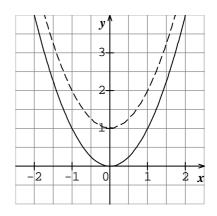
Dans un repère orthonormé, les graphes de ces fonctions sont symétriques l'un de l'autre par rapport à la droite d'équation y = x



b) g(x) = f(x) + k

Un point (x, y) du graphe de f devient le point (x, y + k) du graphe de g

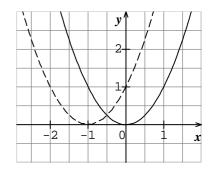
$$Exemple : f(x) = x^2 \text{ et } g(x) = x^2 + 1$$



c) g(x) = f(x + k)

Un point (x, y) du graphe de f devient le point (x - k, y) du graphe de g

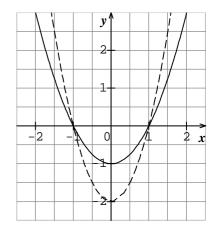
<u>Exemple</u>: $f(x) = x^2$ et $g(x) = (x + 1)^2$



$d) \ \underline{g(x)} = k.f(x)$

un point (x, y) du graphe de f devient le point (x, ky) du graphe de g

Le graphe de g(x) = k.f(x) a les mêmes racines que celui de f(x).



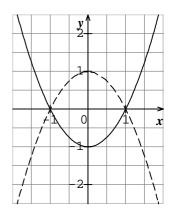
Exemple:

$$f(x) = x^2 - 1$$
 et $g(x) = 2(x^2 - 1)$

e) g(x) = -f(x)

Un point (x, y) du graphe de f devient le point (x, -y) du graphe de g

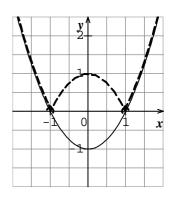
<u>Exemple</u>: $f(x) = x^2 - 1$ et $g(x) = -x^2 + 1$



$f) \ \underline{g(x)} = \ |f(x)|$

Un point (x, y) du graphe de f devient le point (x, |y|) du graphe de g.

<u>Exemple</u>: $f(x) = x^2 - 1$ et $g(x) = |x^2 - 1|$

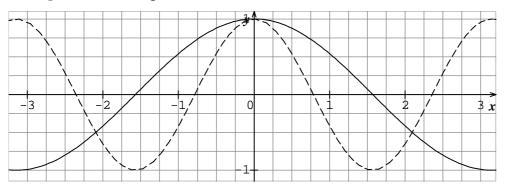


g) g(x) = f(k.x)

Un point (x, y) du graphe de f devient le point $(\frac{x}{k}, y)$ du graphe de g

Le point du graphe de f appartenant à l'axe des y appartient également au graphe de g.

 $Exemple : \cos x \text{ et } g(x) = \cos 2x$



$$h) \ \underline{g(x)} = \underline{f(-x)}$$

Exemple:
$$f(x) = \frac{1}{x-1}$$
 et $g(x) = \frac{1}{-x-1}$

Un point (x, y) du graphe de f devient le point (-x, y) du graphe de g.

Les graphes de ces fonctions sont symétriques l'un de l'autre par rapport à l'axe des ordonnées. (et donc ils coupent cet axe en un même point)

