Chapitre: Dérivation (cours n°3)

I) Taux de variation doune fonction (Rappel du cours n°1)

Le taux de variation doune fonction f entre a et b = a + h est le nombre T tel que

$$T = \frac{f(b) - f(a)}{b - a} = \frac{f(a + h) - f(a)}{h}$$
 avec $h \neq 0$

II) Nombre dérivé de f en a (Rappel du cours n°2)

SI
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 existe ALORS on POSE $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$

On dit que la fonction f est dérivable en a

III) Equation de la tangente à une courbe en un point (Rappel du cours n°2)

Løéquation de la tangente à la courbe \mathcal{C}_f au point døabscisse a est :

$$y = f'(a)(x-a) + f(a)$$
 (si f est dérivable en a)

IV) Notion de fonction dérivée

Si une fonction f est dérivable en tout nombre a appartenant à un intervalle I: on peut définir une nouvelle fonction qui est notée f' et qui est appelée la fonction dérivée de f

La fonction telle que $\forall x \in I \ x \mapsto f'(x)$ est appelée la fonction dérivée de f et est notée f'

Létude du signe de la fonction f' permet une étude des variations (croissance ou décroissance) de la fonction f sur des intervalles I (définis sur $\mathbb R$) et permet de tracer la courbe représentative C_f

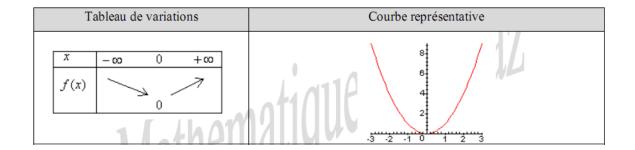
Propriétés:

- ightharpoonup Si $f'(x_0) > 0$ alors f est strictement croissante sur un voisinage de x_0
- ightharpoonup Si $f'(x_0) < 0$ alors f est strictement décroissante sur un voisinage de x_0
- ightharpoonup Si $f'(x_0) = 0$ alors C_f admet une tangente horizontale au point d\alpha abscisse x_0

1^{ier} exemple:

 $f(x) = x^2$ est une fonction dérivable sur \mathbb{R} et f'(x) = 2x

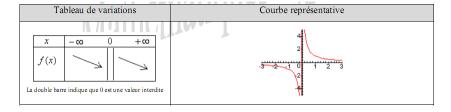
Si x < 0 comme 2x < 0 on a f'(x) < 0: la fonction f est strictement décroissante sur \mathbb{R}^{-*} Si x > 0 comme 2x > 0 on a f'(x) > 0: la fonction f est strictement croissante sur \mathbb{R}^{+*} Pour x = 0 on a f'(0) = 0: C_f a une tangente horizontale au point déabscisse 0



 $f(x) = \frac{1}{x}$ est une fonction dérivable sur \mathbb{R}^{*} ($\mathbb{R} \setminus \{0\}$) et on a $f'(x) = \frac{-1}{x^{2}}$ (voir tableau ci-dessous)

On a $\forall x \in \mathbb{R}^*$ $\frac{-1}{r^2} < 0$ donc f'(x) < 0 sur \mathbb{R}^{-*} et sur \mathbb{R}^{+*}

La fonction f est donc strictement décroissante sur $\operatorname{\mathbb{R}}^{-*}$ et sur $\operatorname{\mathbb{R}}^{+*}$



3^{ième} exemple:

 $f(x) = x^3$ est une fonction dérivable sur \mathbb{R} et $f'(x) = 3x^2$ (voir tableau ci-dessous)

On a $\forall x \in \mathbb{R}^+$ $3x^2 > 0$ donc f'(x) > 0 sur \mathbb{R}^{-*} et sur \mathbb{R}^{+*}

La fonction f est donc strictement croissante sur \mathbb{R}^{-*} et sur \mathbb{R}^{+*} Pour x=0 on a f'(0)=0: C_f a une tangente horizontale au point déabscisse 0

Tableau de variations	Courbe représentative
$ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f(x) & & & & \\ \end{array} $	3 -2 1 2 3 -3 -2 1 2 3

V) Fonctions dérivées des fonctions usuelles (D_f est le domaine de définition de la fonction f

et $D_{f'}$ est le domaine de définition de la fonction $f\phi$

Généralement $D_{f^{\prime}}$ est appelé le domaine de dérivabilité de le fonction f)

fonction f définie par	D_f	fonction dérivée fø définie par	$D_{f'}$
$f(x) = k \text{ (avec } k \in \mathbb{R} \text{)}$	\mathbb{R}	f'(x) = 0	\mathbb{R}
$f(x) = mx + p \text{ (avec } m \neq 0 \text{)}$	\mathbb{R}	f'(x) = m	\mathbb{R}
$f(x) = x^2$	\mathbb{R}	f'(x) = 2x	\mathbb{R}
$f(x) = x^3$	\mathbb{R}	$f'(x) = 3x^2$	\mathbb{R}
$f(x) = x^n \text{ (avec } n \in \mathbb{N} \text{)}$	\mathbb{R}	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x} = x^{-1}$	\mathbb{R}^*	$f'(x) = (-1)x^{-2} = \frac{-1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^2} = x^{-2}$	\mathbb{R}^*	$f'(x) = (-2)x^{-3} = \frac{-2}{x^3}$	\mathbb{R}^*
$f(x) = \sqrt{x} = x^{\frac{1}{2}}$	\mathbb{R}^+	$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$	R ^{+*}
$f(x) = \frac{1}{\sqrt{x}} = x^{\frac{-1}{2}}$	R ^{+*}	$f'(x) = \frac{-1}{2}x^{\frac{-1}{2}-1} = \frac{-x^{\frac{-3}{2}}}{2} = \frac{-1}{2x^{\frac{3}{2}}}$	R ^{+*}
$f(x) = x^q \text{ (avec } q \in \mathbb{Q} \text{)}$	\mathbb{R}^{+*}	$f'(x) = qx^{q-1}$	\mathbb{R}^{+*}

VI) Opérations sur les fonctions dérivables

Soit u et v 2 fonctions dérivables en $x_0 \in \mathbb{R}$ alors la fonction la fonction u + v est dérivable en x_0

Les fonctions ku et $u \times v$ sont dérivables en x_0 ET la fonction $\frac{1}{u}$ est dérivable en x_0 si $u(x_0) \neq 0$

	Valeur de la fonction f en x_0	Valeur de la fonction dérivée de f en x_0	Opération
	$f(x_0) = ku(x_0)$ (avec $k \in \mathbb{R}$)	$f'(x_0) = ku'(x_0)$	(ku)' = ku'
	$f(x_0) = (u+v)(x_0) = u(x_0) + v(x_0)$	$f'(x_0) = u'(x_0) + v'(x_0)$	(u+v)'=u'+v'
(I)	$f(x_0) = (u \times v)(x_0) = u(x_0) \times v(x_0)$	$f'(x_0) = u'(x_0)v(x_0) + u(x_0)v'(x_0)$	(uv)' = u'v + uv'
(*)	$f(x_0) = \left(\frac{u}{v}\right)(x_0) = \frac{u(x_0)}{v(x_0)} \text{ avec } v(x_0) \neq 0$	$f'(x_0) = \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{v^2(x_0)}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
(II)	$f(x_0) = \frac{1}{u(x_0)} \text{ avec } u(x_0) \neq 0$	$f'(x_0) = \frac{-u'(x_0)}{u^2(x_0)}$	$\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$

(*) Démontrons la formule
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
 à partir des 2 formules (I) et (II)

On peut écrire $\frac{u}{v} = u \times \frac{1}{v}$ et en appliquant les formules (I) et (II) on a :

$$\left(\frac{u}{v}\right)' = \left(u \times \frac{1}{v}\right)' = u\left(\frac{1}{v}\right)' + u'\left(\frac{1}{v}\right) = u\left(\frac{-v'}{v^2}\right) + u'\left(\frac{1}{v}\right) = \frac{-uv'}{v^2} + \frac{u'}{v} = \frac{-uv'}{v^2} + \frac{u'v}{v^2} = \frac{u'v - uv'}{v^2}$$

Exemple:

$$f(x) = \frac{x^3}{18} - \frac{x^2}{4} + 4 \Leftrightarrow f(x) = \frac{1}{18}x^3 - \frac{1}{4}x^2 + 4 \text{ Cette function } f \text{ est définie sur } \mathbb{R} \text{ et est dérivable sur } \mathbb{R}$$

$$f'(x) = \left(\frac{1}{18}x^3 - \frac{1}{4}x^2 + 4\right)' = \frac{1}{18}(x^3)' - \frac{1}{4}(x^2)' + (4)'$$

$$f'(x) = \frac{1}{18} (3x^2) - \frac{1}{4} (2x) + 0 = \frac{x^2}{6} - \frac{x}{2} = (\frac{x}{2}) (\frac{x}{3} - 1)$$

Il fait faire une étude du signe de f'(x) selon les valeurs de x pour dessiner le tableau variation de la fonction f. Un tableau de signe permet de conclure que :

$$> f'(x) < 0 \text{ sur }]0;3[$$

$$> f'(x) > 0$$
 sur $]-\infty;0[\bigcup]3;+\infty[$

On a donc le tableau de variation suivant :

X.	- <i>ω</i>	0	3	3 + ac
f''(x)	+		-	+
<i>f</i> (x)	- 80	0		▼+ ∞

La fonction f est strictement croissante sur $]-\infty;0[$ (f est également strictement croissante sur $]3;+\infty[$) La fonction f est strictement décroissante sur]0;3[

Correction de lœxercice n°4 (du cours n°2)

Exercice n°4

Soit f une fonction affine définie sur \mathbb{R} par f(x) = ax + b avec $a \neq 0$ et $b \neq 0$

Ecrire léguation de la tangente à la courbe représentative de cette fonction en un point déabscisse x_0

Indication: il faut calculer $f'(x_0)$

Commenter le résultat obtenu

SOLUTION: Pour calculer $f'(x_0)$ il est faut calculer le taux de variation T de f entre

$$x = x_0$$
 et $x = x_0 + h$ puis calculer $\lim_{h \to 0} T$

$$T = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{\left[a(x_0 + h) + b\right] - \left[ax_0 + b\right]}{h} = \frac{ax_0 + ah + b - ax_0 - b}{h} = \frac{ah}{h} = a$$

Comme $\lim_{h\to 0} T = \lim_{h\to 0} a = a$ on peut conclure que la fonction f est dérivable en $x = x_0$

et que
$$f'(x_0) = a$$

Løéquation de la tangente est $y = f'(x_0)(x - x_0) + f(x_0)$

c'est-à-dire
$$y = a(x - x_0) + (ax_0 + b) \Leftrightarrow y = ax + b$$

<u>Conclusion</u>: La tangente en tout point de C_f de coordonnées (x_0 ; $f(x_0) = ax_0 + b$)

est la même droite que C_f (représentation graphique de cette fonction affine dans un repère du plan)

Exercices à faire pour le prochain cours

Exercice n°5

Soit f la fonction définie par $f(x) = x^3$ définie sur \mathbb{R}

Retrouver læxpression de la fonction f': c'est-à-dire $f'(x) = 3x^2$

en écrivant que $f(x) = x \times x^2$ et en appliquant la formule (I)

Exercice n°6

Soit f la fonction définie par $f(x) = \sqrt{x}$ définie sur \mathbb{R}^+

Démontrer que f nœst pas dérivable en 0 et dessiner le tableau de variation de la fonction f

ET tracer la courbe représentative de cette fonction pour $x \in [0,1]$