TES_1 : DEVOIR SURVEILLÉ N°1: CORRIGÉ

Exercice 1 (4 points)

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = (1+x)^3 + x$$

1. La fonction g est de la forme : $g = u^n + v$ avec : u(x) = 1 + x ; n = 3 et v(x) = x.

Donc
$$g' = nu' u^{n-1} + v'$$
. Ce qui donne : $g'(x) = 3(1+x)^2 + 1$.

Inutile de développer, on a immédiatement : g'(x) > 0 pour tout $x \in \mathbb{R}$. (Un carré auquel on ajoute 1 donne une quantité strictement positive)

La fonction g est donc strictement croissante sur \mathbb{R} .

- 2. C'est une question classique. Vérifions les trois conditions du théorème de bijection :
 - * La fonction g est dérivable sur \mathbb{R} donc a fortiori g est dérivable sur [-1;0].
 - * La fonction g est strictement croissante sur \mathbb{R} donc a fortiori g est strictement croissante sur [-1;0].
 - * On a : g(-1) = -1 < 0 et g(0) = 1 > 0. Le réel $\lambda = 0$ est donc bien compris entre g(-1) et g(0).

D'après le théorème de bijection, on en déduit que l'équation g(x) = 0 admet une unique solution α dans

l'intervalle [-1;0]:

x	-∞	-1	α	0	+∞
signe de la dérivée g'			+		
variations de g	1	-1	0	11	->

3. Encadrement de α d'amplitude 10^{-1} à l'aide d'un petit tableau de valeurs :

х	-0,9	-0,8	-0,7	-0,6	-0,5	-0,4	-0,3	-0,2	-0,1
g(x)	-0,899	-0,792	-0,673	-0,536	-0,375	-0,184	0,043	0,312	0,629

Les valeurs de g(x) sont

On en déduit :

$$-0.4 < \alpha < -0.3$$

Exercice 2 (12 points)

Soit f la fonction définie sur $\mathbb{R} \setminus \{3\}$ par : $f(x) = -2x + 1 - \frac{8}{x-3}$

1. Limite de f en $-\infty$. On a :

$$\begin{cases} \lim_{x \to -\infty} (-2x+1) = +\infty \\ \lim_{x \to -\infty} -\frac{8}{x-3} = 0 \text{ puisque } \lim_{x \to -\infty} (x-3) = -\infty. \end{cases}$$

Donc, par somme, $\lim_{x \to -\infty} f(x) = +\infty$.

Limite de f en $+\infty$. On a :

$$\begin{cases} \lim_{x \to +\infty} (-2x+1) = -\infty \\ \lim_{x \to +\infty} -\frac{8}{x-3} = 0 \text{ puisque } \lim_{x \to +\infty} (x-3) = +\infty. \end{cases}$$

Donc, par somme, $\lim_{x \to +\infty} f(x) = -\infty$.

Comme les limites de f en $+\infty$ et en $-\infty$ **ne sont pas finies**, la courbe C_f n'admet donc pas d'asymptote horizontale en $+\infty$, ni en $-\infty$.

2. Limite de *f* en 3⁻. On a :

$$\begin{cases} \lim_{x \to 3^{-}} (-2x+1) = -5 \\ \lim_{x \to 3^{-}} -\frac{8}{x-3} = +\infty \text{ puisque } \lim_{x \to 3^{-}} (x-3) = 0^{-}. \end{cases}$$

Donc, par somme, $\lim_{x \to 3^{-}} f(x) = +\infty$.

Limite de f en 3^+ . On a :

$$\begin{cases} \lim_{x \to 3^{+}} (-2x+1) = -5 \\ \lim_{x \to 3^{+}} -\frac{8}{x-3} = -\infty \text{ puisque } \lim_{x \to 3^{+}} (x-3) = 0^{+}. \end{cases}$$

Donc, par somme, $\lim_{x \to 3^+} f(x) = -\infty$

Comme les limites de f en 3^+ et 3^- sont **infinies**, on en déduit que la courbe C_f admet une asymptote verticale D d'équation x = 3.

3. Étudions la différence f(x) - (-2x + 1). ("Écart vertical" entre la courbe C_f et la droite Δ en l'abscisse x).

$$f(x) - (-2x + 1) = -2x + 1 - \frac{8}{x - 3} - (-2x + 1) = -\frac{8}{x - 3}$$

Cet "écart vertical" tend vers 0 quand x tend vers $+\infty$: $\lim_{x \to +\infty} [f(x) - (-2x + 1)] = \lim_{x \to +\infty} -\frac{8}{x-3} = 0$

La courbe C_f admet donc une asymptote oblique Δ d'équation y = -2x + 1 en $+\infty$.

On a le même résultat en
$$-\infty$$
: $\lim_{x \to -\infty} [f(x) - (-2x + 1)] = \lim_{x \to -\infty} -\frac{8}{x - 3} = 0$

La courbe C_f admet donc également une asymptote oblique Δ d'équation y = -2x + 1 en $-\infty$.

4. Calcul de la dérivée f' de la fonction f:

La fonction f est de la forme : $f = u - 8 \times \frac{1}{v}$ où u et v sont les fonctions définies par $\begin{cases} u(x) = -2x + 1 \\ v(x) = x - 3 \end{cases}$.

Donc
$$f' = u' - 8 \times \left(-\frac{v'}{v^2}\right) = u' + 8 \times \frac{v'}{v^2}$$
, ce qui donne : $f'(x) = -2 + \frac{8}{(x-3)^2}$.

En réduisant au même dénominateur :

Remarque : on peut aussi réduire f(x) au même dénominateur puis utiliser la formule de la dérivée d'un quotient...

$$f'(x) = \frac{8 - 2(x - 3)^2}{(x - 3)^2} = \frac{8 - 2(x^2 - 6x + 9)}{(x - 3)^2} = \frac{-2x^2 + 12x - 10}{(x - 3)^2}$$

Par ailleurs, on a: $-2(x-5)(x-1) = (10-2x)(x-1) = -2x^2 + 12x - 10$. Donc: $f'(x) = -\frac{2(x-5)(x-1)}{(x-3)^2}$

5. On en déduit le tableau de variation de f:

x	-∞	1		3		5		+∞
signe de – 2	_		_		_		_	
signe de $(x-5)$	_		_		_	0	+	
signe de $(x-1)$	_	0	+		+		+	
signe de $(x-3)^2$	+		+	0	+		+	
signe de la dérivée f'	_	0	+		+	0	_	
	+∞ \		1	+∞		1 −13	\	
variations de f					/	/		
		3.			_∞ /		1	_∞

La fonction \overline{f} admet un maximum relatif en 5: f(5) = -13.

Justification des signes :

$$x - 5 \ge 0 \iff x \ge 5$$

$$x - 1 \ge 0 \iff x \ge 1$$

Un carré est positif ou nul

Ne pas oublier de compléter le tableau de variation avec les valeurs des limites et des éventuels extremums 6. L'équation de la tangente T au point d'abscisse 2 est donnée par la formule :

$$T_2: y = f(2) + f'(2)(x - 2)$$

La formule générale est : $y = f(x_0) + f'(x_0)(x - x_0)$

Or, f(2) = 5 et f'(2) = 6.

D'où:

 $T_2: y = 6x - 7$

7. Veuillez refaire soigneusement le graphique chez vous puis me le rendre pour le Jeudi 4 Octobre 2001

En tenant compte des conseils suivants :

- Respecter les unités graphiques.
- Tracer les deux asymptotes (l'oblique Δ et la verticale)
- Tracer la tangente *T*.
- Pour tracer C_f, soyez généreux et calculez de nombreuses valeurs avec la calculette (Vous pouvez utiliser le menu "TABLE"). Marquez d'une croix légère au crayon tous les points calculés. Lorsque vous dessinez C_f, veillez à bien représenter le comportement asymptotique (C_f doit s'approcher de ses asymptotes). Veillez également à ce que la droite T soit bien tangente à C_f au point d'abscisse 2.
- Représenter par une double flèche les tangentes horizontales à C_f . (Les coordonnées des points correspondants sont visibles dans le tableau de variation)
- Enfin, utilisez des couleurs différentes!

Exercice 3 (4 points)

On dispose d'une courbe C_f représentant une fonction f et de deux de ses tangentes T_1 et T_{-1} .

(Voir graphique ci-contre)

On sait que la fonction f est de la forme : $f(x) = ax^2 + bx + c$. (C_f est une parabole)

- 1. f(0) = 6. Par ailleurs, f(0) = c. Donc c = 6.
- 2. f'(x) = 2ax + b.
- 3. $f'(1) = \text{coefficient directeur de la tangente } T_1 = -3$. $f'(-1) = \text{coefficient directeur de la tangente } T_{-1} = 1$.

Par ailleurs, d'après la question 2, on a : f'(1) = 2a + b et f'(-1) = -2a + b.

En résolvant le petit système $\begin{cases} 2a+b=-3\\ -2a+b=1 \end{cases}$, on trouve facilement a=-1 et b=-1.

On a donc déterminé la fonction $f: f(x) = -x^2 - x + 6$.

4. Les solutions de l'équation f(x) = 0 sont les abscisses des points d'intersection de C_f avec l'axe (Ox).

Graphiquement, on trouve deux solutions : $x_1 = -3$ et $x_2 = 2$. Donc $S = \{-3, 2\}$.

Pour retrouver ce résultat par calcul, on résout l'équation $-x^2 - x + 6 = 0$. Allez, tout le monde sait le faire, je vais me coucher !