Rappel de cours :

La fonction f est homographique si et seulement s'il existe trois réels a, α et β tels que : $f(x)=rac{a}{(x-lpha)}+eta$

La valeur α étant interdite, la fonction f est définie sur $\mathbb{R}\setminus\{\alpha\}$

Sa courbe représentative est une hyperbole de centre $C(\alpha; \beta)$. Son sens de variation dépend du signe de a:

• si a < 0, alors

fest croissante sur $]-\infty; \alpha[$

f est croissante sur α ; $+\infty$

• si a>0, alors :

f est décroissante sur $]-\infty; \alpha[$

f est décroissante sur $\alpha; +\infty$

Exercice n° 1

On considère la fonction g définie par $g(x) = \frac{4x-9}{2x-4}$.

1 - Quel est le domaine de définition de g? On l'appelle Dg.

2 - Prouver que pour tout $x \in Dg$, $g(x) = 2 - \frac{1}{2x - 4}$.

3 - Étudier le sens de variation de g sur l'intervalle $]-\infty; 2[$.

Exercice n° 2 Exercice : Soit la fo

Exercice: Soit la fonction f définie par $f(x) = \frac{4x-1}{2x+6}$.

1°) Quel est l'ensemble de définition de f?

2°) En quels points la courbe représentative de f coupe-t-elle l'axe des ordonnées ? L'axe des abscisses ?

3°) Déterminer les coordonnées du point de la courbe représentative de f d'ordonnée 5.

4°) 2 admet-t-il un antécédent par f? Interpréter graphiquement ce résultat.

5°) Tracer la fonction sur la calculatrice et dresser le tableau de variations de f.

6°) Dresser le tableau de signes de f(x).

7°) Montrer que pour tout nombre x différent de -3, $f(x) = 2 - \frac{13}{2x+6}$. En déduire un encadrement de f(x) si $x \in [1;2]$.

Exercice n° 3

1*) Compléter sans calculs par < ou > :

$$\frac{1}{2,1}$$
.... $\frac{1}{2,11}$ car 2,1....2,11 et $x \mapsto \frac{1}{x}$ estsur

$$-\frac{1}{5}$$
... $\frac{-1}{4}$ car -5 -4 et $x \mapsto \frac{1}{x}$ estsur

2*) Lorsque
$$x \in [1;10]$$
, $\leq \frac{1}{x} \leq$ car $x \mapsto \frac{1}{x}$ estsur.....

Lorsque
$$x \in [-5; -2]$$
, $\leq \frac{1}{x} \leq$ car $x \mapsto \frac{1}{x}$ estsur.....