Pondichéry 2013. Enseignement spécifique

EXERCICE 4 (6 points) (commun à tous les candidats)

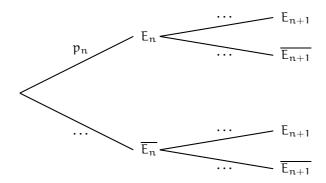
Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe.

- Un salarié malade est absent
- La première semaine de travail, le salarié n'est pas malade.
- \bullet Si la semaine $\mathfrak n$ le salarié n'est pas malade, il tombe malade la semaine $\mathfrak n+1$ avec une probabilité égale à 0,04.
- \bullet Si la semaine n le salarié est malade, il reste malade la semaine n+1 avec une probabilité égale à 0,24.

On désigne, pour tout entier naturel \mathfrak{n} supérieur ou égal à 1, par $E_{\mathfrak{n}}$ l'événement « le salarié est absent pour cause de maladie la \mathfrak{n} -ième semaine ». On note $\mathfrak{p}_{\mathfrak{n}}$ la probabilité de l'événement $E_{\mathfrak{n}}$.

On a ainsi : $p_1 = 0$ et, pour tout entier naturel n supérieur ou égal à $1: 0 \le p_n < 1$.

- 1) a) Déterminer la valeur de p₃, à l'aide d'un arbre de probabilité.
 - b) Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.
- 2) a) Recopier sur la copie et compléter l'arbre de probabilité donné ci-dessous



- b) Montrer que, pour tout entier naturel n supérieur ou égal à 1, $p_{n+1} = 0, 2p_n + 0, 04$.
- c) Montrer que la suite (u_n) définie pour tout entier naturel n supérieur ou égal à 1 par $u_n = p_n 0,05$ est une suite géométrique dont on donnera le premier terme et la raison r. En déduire l'expression de u_n puis de p_n en fonction de n et r.
- d) En déduire la limite de la suite (p_n) .
- $\textbf{e)} \ \ \text{On admet dans cette question que la suite } (p_n) \ \text{est croissante. On considère l'algorithme suivant} :$

Variables	${\sf K}$ et ${\sf J}$ sont des entiers naturels, ${\sf P}$ est un nombre réel					
Initialisation	P prend la valeur 0 J prend la valeur 1					
Entrée	Saisir la valeur de K					
Traitement	Tant que $P < 0.05 - 10^{-K}$ P prend la valeur $0.2 \times P + 0.04$ J prend la valeur $J + 1$ Fin tant que					
Sortie	Afficher J					

A quoi correspond l'affichage final J?

Pourquoi est-on sûr que cet algorithme s'arrête?

- 3) Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p = 0,05.
 - On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues.
 - On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée.
 - a) Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres.

Calculer l'espérance mathématique μ et l'écart type σ de la variable aléatoire X.

b) On admet que l'on peut approcher la loi de la variable aléatoire $\frac{X-\mu}{\sigma}$ par la loi normale centrée réduite c'est-à-dire de paramètres 0 et 1.

On note Z une variable aléatoire suivant la loi normale centrée réduite. Le tableau suivant donne les probabilités de l'événement Z < x pour quelques valeurs du nombre réel x.

χ	-1,55	-1,24	-0,93	-0,62	-0,31	0,00	0,31	0,62	0,93	1,24	1,55
P(Z < x)	0,061	0,108	0, 177	0,268	0,379	0,500	0,621	0,732	0,823	0,892	0,939

Calculer, au moyen de l'approximation proposée en question b), une valeur approchée à 10^{-2} près de la probabilité de l'événement : « le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15 ».