Asie 2017. Enseignement spécifique

EXERCICE 1 : corrigé

Partie A: étude d'un cas particulier

1) La fonction C est dérivable sur $[0, +\infty[$ et pour tout réel positif t,

$$C'(t) = 12 \times \left(-\left(-\frac{7}{80}e^{-\frac{7}{80}t}\right)\right) = \frac{21}{20}e^{-\frac{7}{80}t}.$$

La fonction C' est strictement positive sur $[0, +\infty[$ et donc la fonction C est strictement croissante sur $[0, +\infty[$.

2)
$$\lim_{t\to +\infty} e^{-\frac{7}{80}t} = \lim_{x\to -\infty} e^x = 0$$
 et donc $\lim_{t\to +\infty} C(t) = 12(1-0) = 12$. Le traitement de ce patient n'est pas efficace.

Partie B: étude de fonctions

1) La fonction f est dérivable sur $]0, +\infty[$ en tant que produit de fonctions dérivables sur $]0, +\infty[$ et pour tout réel strictement positif x,

$$f'(x) = 105 \left(-\frac{1}{x^2} \left(1 - e^{-\frac{3}{40}x} \right) + \frac{1}{x} \left(-\left(-\frac{3}{40} e^{-\frac{3}{40}x} \right) \right) \right)$$

$$= 105 \left(\frac{-1 + e^{-\frac{3}{40}x}}{x^2} + \frac{\frac{3}{40} e^{-\frac{3}{40}x}}{x} \right) = \frac{105}{x^2} \left(-1 + e^{-\frac{3}{40}x} + \frac{3}{40} x e^{-\frac{3}{40}x} \right)$$

$$= \frac{105g(x)}{x^2}.$$

2) La fonction g est strictement décroissante sur $[0, +\infty[$ et g(0) = 0. Donc, pour tout x de $]0, +\infty[$, g(x) < 0. On en déduit que pour tout x de $]0, +\infty[$, $\frac{105g(x)}{x^2} < 0$ ou encore que pour tout x de $]0, +\infty[$, f'(x) < 0. La fonction f est strictement décroissante sur $]0, +\infty[$.

3) $f(1) = 105 \left(1 - e^{-\frac{3}{40}}\right) = 7,7\dots$ et donc f(1) > 5,9. $f(80) = \frac{105}{80} \left(1 - e^{-6}\right) = 1,3\dots$ et donc f(80) < 5,9. f est continue et strictement décroissante sur [1,80]. On sait que pour tout réel k de l'intervalle [f(80),f(1)], l'équation f(x) = k a une solution et une seule dans l'intervalle [1,80]. Puisque 5,9 appartient à l'intervalle [f(80),f(1)], l'équation f(x) = 5,9 a une solution et une seule dans l'intervalle [1,80].

Si 0 < x < 1, puisque f est strictement décroissante sur $]0, +\infty[$, f(x) > f(1) > 5,9 et en particulier, $f(x) \neq 5,9$. Si x > 80, f(x) < f(80) < 5,9 et en particulier, $f(x) \neq 5,9$. Ceci montre que l'équation f(x) = 5,9 a une solution et une seule dans l'intervalle $]0, +\infty[$ et de plus cette solution, notée α , appartient à l'intervalle [1,80].

La calculatrice fournit $f(8,1) = 5,901\ldots$ et $f(8,2) = 5,88\ldots$ Donc, f(8,1) > 5,9 > f(8,2). Puisque f est strictement décroissante sur $]0,+\infty[$, on en déduit que $8,1 < \alpha < 8,2$. Ainsi, $\alpha = 8,1$ à 10^{-1} près par défaut.

Partie C: détermination d'un traitement adéquat

1) a)
$$C(6) = \frac{105}{a} \left(1 - e^{-\frac{a}{80} \times 6} \right) = \frac{105}{a} \left(1 - e^{-\frac{3a}{40}} \right) = f(a).$$

b) $C(6) = 5, 9 \Leftrightarrow f(a) = 5, 9 \Leftrightarrow a = \alpha$. Une valeur approchée à 10^{-1} près de la clairance est 8,1 litres par heure.

2) $\lim_{t\to +\infty} C(t) = \frac{d}{a}(1-0) = \frac{d}{a}$. Ensuite, $\frac{d}{a} = 15 \Leftrightarrow d = 15a$. Pour un débit de 121, 5 micromoles par heure, le traitement du patient est efficace.