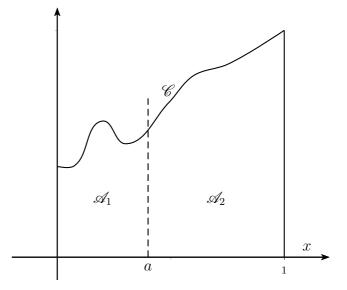
EXERCICE 2 (6 points)

(commun à tous les candidats)

Soit f une fonction définie sur l'intervalle [0;1], continue et positive sur cet intervalle, et a une réel tel que 0 < a < 1.

On note:

- $\mathscr C$ la courbe représentative de la fonction f dans un repère orthogonal ;
- \mathscr{A}_1 l'aire du domaine plan limité par l'axe des abscisses et la courbe \mathscr{C} d'une part, les droites d'équations x=0 et x=a d'autre part.
- \mathscr{A}_2 l'aire du domaine plan limité par l'axe des abscisses et la courbe \mathscr{C} d'une part, les droites d'équations x=a et x=1 d'autre part.



Le but de cet exercice est de déterminer, pour différentes fonctions f, une valeur du réel a vérifiant la condition (E): « les aires \mathscr{A}_1 et \mathscr{A}_2 sont égales ».

On admet l'existence d'un tel réel a pour chacune des fonctions considérées.

Partie A - Étude de quelques exemples

- 1) Vérifier que dans les cas suivants, la condition (E) est remplie pour un unique réel a et déterminer sa valeur.
 - a) f est une fonction constante strictement positive.
 - **b)** f est définie sur [0; 1] par f(x) = x.
- 2) a) À l'aide d'intégrales, exprimer, en unités d'aires, les aires \mathcal{A}_1 et \mathcal{A}_2 .
 - **b)** On note F une primitive de la fonction f sur l'intervalle [0; 1]. Démontrer que si le réel a satisfait la condition (E), alors $F(a) = \frac{F(0) + F(1)}{2}$. La réciproque est-elle vraie ?
- 3) Dans cette question, on envisage deux autres fonctions particulières.
 - a) La fonction f est définie pour tout réel x de [0; 1] par $f(x) = e^x$. Vérifier que la condition (E) est remplie pour un unique réel a et donner sa valeur.
 - **b)** La fonction f définie pour tout réel x de [0; 1] par $f(x) = \frac{1}{(x+2)^2}$. Vérifier que la valeur $a = \frac{2}{5}$ convient.

Partie B - Utilisation d'une suite pour déterminer une valeur approchée de a

Dans cette partie, on considère la fonction f définie pour tout réel x de [0; 1] par $f(x) = 4 - 3x^2$.

1) Démontrer que si a est un réel satisfaisant la condition (E), alors a est solution de l'équation :

$$x = \frac{x^3}{4} + \frac{3}{8}.$$

Dans la suite de l'exercice, on admettra que cette équation a une unique solution dans l'intervalle [0; 1]. On note a cette solution.

- 2) On considère la fonction g définie pour tout réel x de [0; 1] par $g(x) = \frac{x^3}{4} + \frac{3}{8}$ et la suite (u_n) définie par : $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = g(u_n)$.
 - a) Calculer u_1 .
 - **b**) Démontrer que la fonction g est croissante sur l'intervalle [0; 1].
 - c) Démontrer par récurrence que, pour tout entier naturel n, on a $0 \le u_n \le u_{n+1} \le 1$.
 - d) Prouver que la suite (u_n) est convergente. À l'aide des opérations sur les limites, prouver que la limite est a.
 - e) On admet que le réel a vérifie l'inégalité $0 < a u_{10} < 10^{-9}$. Calculer u_{10} à 10^{-8} près.