
M SARALEGUL
The Euler class for flows of isometries

1. FLOWS OF ISOMETRIES

1.1 Let (M,F) be a compact (n÷1)-manifold provided with an orientable
Riemannian foliation F of dimension one. The leaves of F are the orbits of
a vector field without singularities. We say that F if a flow of isometriee

if there exists a Riemannian metric g on M and a vector field Z tangent to F
which generates a group of isonietries We always assume that Z is
a unit vector field (we only have to replace g by (g(Z,Z))1g).

1.2 Recall that a differential form w is baae—iike for F if

The cohomology of the complex of base-like forms is the baBe—like oohcwiology

of (M,F) denoted by H*(M/F); it depends only on (M,F) and not on the choice
of (g,Z).

1.3 For a flow F of isometries the oharacterietic 1—form x of F with,
respect to (g,Z) satisfies the equations

x(Z) = I and = 0;

in particular, the form dx is base-like for F. By traneverse volume form of

F (with respect to g) we mean the unique form v such that v xis
the volume form of (M,g).

1.4 According to (7], an orientable Riemannian foliation (M,F) of dim-
ension one is a flow of isometries if and only if one of the two following
equivalent conditions holds:

(a) 0;

(b) 0 [vJ H'1(M/F).
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2. INTEGRATION ALONG THE LEAVES OF A FLOW OF ISOMETRIES

2.1 Let (M,F,g,Z) be as above and let be the one—parameter group of
isometrles generated by Z. Since the group of isometries Isom(M,g) of a
compact Riemannian manifold is a compact Lie group, the closure I of
In Isom(M,g) is a compact coninutative Lie subgroup; thus, a torus.

2.2 Let c be the subcomplex of forms invariant by the action
of 1. According to the definition of I, it appears that

= 0).

The inclusion of in cZ*(M) is a homotopy equivalence (see (4)), thus

For any form E (M) the form IZU) is invariant by T and base-like for
F. This enables us to construct an integration operator aiong the of

F (see (5]):

which coninutes with d and satisfies the two following properties:

(a) it is onto; indeed, for any a we get

thus a A X and

a AX = AX + (..l)r_la A izX)

(b) Ker indeed, if = 0 for

L2a - di2a = 0, and a The other Is obvious.

2.3 To sum up, we have constructed the following snort exact sequence:

> 0.

3. GYSIN SEQUENCE AND EULER CLASS

3.1 From the above sHort sequence we get the following cohomology sequence:
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I 4
Hr(M,F) 1 >H"(M) )Hru(M,F) ._.9,+Hr+1(M,F)

which we will call the Gysin sequence of F.

As for any a E we have a A X = a, the definition of the
connecting homomorphism gives

6g[a) = [d(a A x)) = A dx] * [dx].

Then, as for Seifert fibrations, we define the Euler class of F respect
to g by: e9(F) = (dx] £ H2(M/F).

3.2 Up to a non-zero factor, this class does not depend on,the metric g.
Indeed, let (M,F,g1,Z1) and (M,F,g2,F2) be two flows of Isometries with the
same underlying Rieniannian foliation. The two Gysin sequences give

f59

+ H0(M/F) ) > ... j 1,2.

The space H0(N/F) is of dimension one, thus, by exactness, dim ker 1

and

Now e (F) and e (F) are simultaneously zero or there exists x E R - (0)

such that e (F) x e (F). In particular, the fact that the Euler class
of F with respect to the metric g vanishes does depend on the choice of
the metric g.

In the particular case of Seifert fibratlons our Euler class coincides
with the usual one, up to a non-zero factor. This factor is exactly the
length of the generic leaf of F. Then for a suitable metric we obtain the
usual Euler class of F.

VAIliSHING OF THE EULER CLASS

4.1 Next we obtain a geometrical interpretation of the vanishing of the
Euler class of F which generalizes that of (8). Some of our results are also
proved in [7) by means of invariant currents and foliated cycles.

Theorem Let M be a compact manifold with an Riemannian foliation
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F: Then the following statements are equivalent:

(1) (M,F) is a foliated bundle;
(Ii) F is a flow of isometries and eg(F) 0 for any suitable metric g;

(iii) 0 and 1* : + H"(14) is injective.

Proof (a) Suppose that (14,F) is a foliated bundle and let F + 14 B be
the fibration transverse to F. We have the following diagram:

FxR pr > R

F >14 p

where q is the canonical covering of and it is the covering given by the
suspension of the holonomy diffeomorphism h of F. Because F is Riemannian
there exists a metric on F Invariant by h. The metric = Cdt)2 is
equivarlant with respect to thus induces a metric g on N which Is a bundle-
like metric for it and makes F orthogonal to n. Therefore F Is a flow of
isometries and the characteristic form x Is equal to p*(dt). Then dx 0

and the Euler class of F with respect to g vanishes. This proves (Ii).
Conversely, let us suppose that F is a flow of Isometries with respect

to a metric g. If e9(F) 0 there exists v E suLh that dx di.
The form w = X-y satisfies

w(Z) = 1 and dw = dr-dy = 0.

By Tischler's theorem (see [9]) the foliation defined by the closed form w
can be approximated by a fibration which will again be transverse to F.

(b) Now we show that (ii) is equivalent to (iii). We first note that
a Rieniannian flow F is a flow of isometries if and only if 0 (see
1.4). ConsIder the sequence

+ > H"(M/F) + ...

for any suitable metric g. If (ii) holds, e9(F) is zero and the connecting
homomorphism is zero. Therefore is injective and (iii) is
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On the other hand, recall that for any Rietnannian foliation there exists,
complex of base-like forms of F, a Hodge theory similar to that of

theDe Rham complex of a compact manifold (see (3]). It Includes a base-like
Hodge operator * which enjoys the usual properties. Thus if we fix a suit-
able metric g on N, dx is base-like cohomologous to a base-like harmonic
form a that is, there exists y E n1(M/F) such that dx = a + dY.

To prove that (iii) implies (ii), it is enough to show that a 0. So

assume that (ill) holds and a is different from zero. The base-like harmonic
form *a dual to cx satisfies a A Xv, A positive,

A dX = *a A cx + A dy = A y).

Then t*ct A dx] =(Xv]is a non-zero class in (see 1.4). But, by
exactness of the Gysin sequence of F, we also get = 0, which
Implies A dx] (1)n2 61*a] = 0. This contradiction ends the proof.

4.2 Remark The condition (ill) is equivalent to the fact that the class
Cv) is different from zero in H"(M), where v is the transverse volume form of
(14,F,g) for a suitable metric g on

4.3 Corollary Let 14 be a compact (n+1)-manlfold provided with a flow F
of isometries. If H1(M) = 0 then the Euler class of F is non—zero.

4.4 Corollary Let N be as above. If the Euler class of F Is zero then
there exists a finite covering M of 14 which is diffeomorphic to the product
F x 51

Proof It follows from Theorem 4.1 that if the Euler class is zero then
there exists F • N _.2_4 a transverse fibration to F, defined by suspen-
sion of a diffeomorphism h of F. We can assume that F is a Seifert fibration
(see (2]). Then the holonomy of any leaf is finite, i.e., a periodic
map at any point. Now it is not difficult to see that there exists p
'such that is the identity. Consider -, Z[h] c Diff(F) the holonomy
homomorphism of F. Because is the identity we have an induced homo-
morphism Z/pZ. The associated covering 14 is a foliated bundle

holonomy is generated by = IdF; thus F x

4.5 Remarks (1) The integration operator constructed in Section 2 is a
particular case of an integration operator defined for any taut foliation.
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(ii) The example of Carriere [1] shows that a flow may admit
a transverse foliation G without being a flow os Isometries. In this case
G is not Riemannian.

(iii) There exist flows of isometries which admit non—Riemannian trans-
verse foliations and which have non—trivial Euler class [10).

5. CONTACT FLOWS AND FLOWS OF ISOMETRIES

A flow F (i.e., an orientable foliation of dimension one) defined on a com-
pact (2k+1)-rnanifold M is a contact flow if there exists a form w
such that:

(a) w is a contact form, I.e., A is a volume form on

(b) the unique vector field defined by w(Y) = I and iydw = 0 is tangent
toF.

5.1 means of the Euler class, we get a partial characterization of the
flows of isometries which are contact flows (see [8] for the compact case
and [6]).

Theorem Let M be a compact (2k+1)-manifold with a Riemannian contact flow
F. Then F is a flow of isometries and the Euler class of F is different from
zero.

Proof Let g be a bundle-like metric on (M,F). We can write g +

where (resp. is the restriction of g to the tangent bundle (resp. the
normal bundle) of F. We define a new bur.dle-'Iike metric on (M,F) by

= w w where w is the contact form given by (a). It Is not diffi-
cult to see 0 and therefore F is a flow of isometries with respect

Furthermore, dw is a base-like form and [dw) belongs to Ker If
Euler class ofF is zero, then [dw] = 0 in H2(M/F) (see Theorem 4.1.),

•and there exists y &(M/F) such that = dy. Because dw A y A
=,{O},we get

ft *y A (dw)k_l = d(w A y A (dw)k_l)

• 'and

w A dçth A y A
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Then A is not a volume form which Is In contradiction with a).

5.2 We find in [6] a converse statement for the case of geodesible flows
In three—dimensional manifolds (Including flows of isometries). Now this
gives a complete characterisation.

Theorem Let (M,F,g) be a flow of isometries on a compact Riemannian 3-mani-
fold, then the following statements are equivalent:

(I) the Euler class of F Is zero;
(ii) F Is not a contact flow.

Corollary If M is a compact Riemannian manifold with H1(M) 0, then any
Riemannian flow F on 14 Is a flow of Isometrles and a contact flow.

6. FLOWS OF ISOIIETRIES ON S3

.The Euler class enables us to classify partially the flows of isometries on
a given dompact manifold. For example, consider the family of all flows of
isometries on The Seifert fibrations have been analyzed in (8], there-
fore in order to get a complete description of these flows, it remains only
to study a one-parameter family {F, a [0,1]) which can be described as
follows. For ci E ]O,i], F Is the foliation defined in complex coordinates
by the flow

with = z1,elt z2).

For any a, is a group of isometries of 53 with to the usual
metric g. As we pointed out in Section F is also a flow of Isometries
with respect to the metric g = (g(Z ,Z)Ytg, where is the vector field
defined by

If is tIle transverse volume form of the Euler class eg (F) is
determined by the number r # 0 such that eg (F) = r by
the formula a

r= 1 dXAX,a cx

which gives

r = (isa).
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It is clear that this nunter r classifies completely the elements of the
family {Faict £

If p/q Is rational4 F is a Seifert and our Euler class
e (F) is related to the Euler class c (F) by Nicolau—Revent6s by the
9a •formula *

qc.(F) = e9(F), $

Indeed, £a(F) = [dc) for any onM whose
along the fibres of F the cohstant function 1. On the other hand, the
inte9ral of the characteristic form xa of F is the length of a regular leaf
of F, that is q. The follows by taking =
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H SUZUKf
An interpretation of the Weil operator X(y1)

INTRODUCTION

In this article, we give a cohoinology theoretic meaning to the differential
form h1 corresponding to y1 of the secondary characteristic class y1c1 (see,
e.g., [5, p. 154] of foliation. Let F be a C°—foliatton on a manifold N.
Let vB (VR) be a Bott (Riemannian) connection on the normal bundle v(F) of F
Let dE denote the exterior differential along leaves and HD'R5(N) the folia-
tion de Rham cohomology vector space (Cf. [8], [10) and [11)).

(Theorem 3.3) For a

and 2j HF6R (N) does not depend on the choice of
VD and V . The Well operator of (4] Is regarded as a multiplication
by [(hj)02J%].

In this sense, the operator x(y1) is essentially an element of l(N).
In other words, the notion of the Well operators is expanded to that of coh-
omology classes of O,*(M)

For a (U, on n U8

= log

are constant along leaves of and satisfy the cocycle condition
a B

c -c +c =0
By ay aB

on fl U . Let denote the sheaf of germs of C°'-functions constant
along leaves FJ . The tech cohomology class m(N,F) e deter-
mined by ca'led the modular cohomology class of F (see, e.g., (12])
which Is closely related to the modular function of transverse measure on
holonmay groupoid of F by (2, p.41]. One can eastablish a de type

Then we have:

(flteorme 5.4) Let (NJ) be a C'°-foliation on a compact Hausdorffpanlfold.
Then, for ((h1)01] corresponding to x(y1), we have
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•(2ii{(h1)0, =

The above formula is regarded as a new interpretation of x(y1) and also
similar meaning of X(Yj). 3 (odd) 3 Is expected.

In Section 1, we review the Well operator introduced by Heitsch and
Hurder. In Section 2, we explain the foliation de Rhani cohomology 5(M)
and in Section 3, we prove that the homomorphism induced by leaf preserving
transverse map is invariant under the leaf preserving homotopy through these
maps. In particular, we obtain the Poincare Iemaa for Then we
prove Theorem 3.3.

In Section 4, the notion of F-simple cover Is introduced and then de Rham
type isomorphism for tech cohomology is proved. In the last section,
a natural Isomorphism from to the differentiable singular cohomology

restricted to leaves is obtained. Finally Theorem 5.4 is proved.
A1l1 manifolds, maps and foliations are assumed to be classi

1. THE WElL OPERATORS

Let be a on a paracompact Hausdorff
manifold. For each point m E H, there is an open neighbourhood U of m and
we have linearly Independent on U defining F. Let ADI) be
the vector space of C°'-forms on H that is the de Rham complex of M and let

be the restriction of £ A04) to U. We set

A(M,F) £ A 0, 1

One can see easily that

A(U,F) = A(U) A A ... A

Let 1(M) be the tangent bundle of H. By the integrability condition for
tangent sub-bundle 1(F) F of 1(M) corresponding to F, we have 1-forms

on U such that
q

U Udo,. = E
'

Since we have
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o A

q u U* d(n111) A U. + A ( E U.4 A w4)
1 Li

Ud(nlu) A Up

the exterior differentiation is closed in A(M,F) and thus A(M,F) is a diff-
erential subcomplex of A(M). We denote the cohomology vector space of
A(M,F) by H*(M,F).

Let K be a local curvature matrix of a connection v on Cm—vector bundle
JI JqV on M. For any Chern monomial Cj = C1 •• of degree k on the Lie algebra

gl(q,R) of GL(q;R), we set

= A2k(M).

It is well known that, for any connection V, = 0, (see, e.g., [7, pp.
296-298]).

Let r(V) be the set of Cm—sections of a Cm-vector bundle V. Let 'v(F) be
the normal bundle of F, that is, = 1(M)/F and the dual bundle of
v(i). Let be a Bott (Riemannian) connection 'on v(F). Then we have

r(Ak(v(F)*) A Ak(M),

which Is the essential part of Bott vanishing (1, pp. 34-35].
Let ir:M x + M be the first factor projection and

VBR=Cl_t)vB+tvft

which is a connection on the vector bundle ii*v(F) v(F) x P. Define
£ 01) by

=
X

where 1(a/at) is the substitution operator of a/at and it,, is the integrat4on
over the fibre for it( . A standard computation shows that = Cj(78) -
c3 Cv ). For j odd, we have ) = 0 and hence dhj = Cj (V ).

For each k, let (r = 2((q+1)/2]-1)denote the homogeneous
part of degree k of (see, e.g., [5, p. 140]).
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We define a homomorphism

X:(A(yl,y3,...,yr)]k Hom(H*(14;F),

by the formula

x(Y)(n] (h A

* ... *y. , h h. * ... * h.is is

S

E (2j — 1) = k
9-

for ii A*(N,F) with dii = 0.
The right side is well defined because we ha'e

= c3(v8) r(v(F)*) A

therefore

d(h An) = dh A + (_l)kh A

= 0,

and for n dx with A A 0, j =

d(h A x) — dh x + (_I)kh A dx

= A dx.

The latter formula means that [h A ri] does not depend on the represe
of (n]. By making use of affine combinations of different Bott C. c"

and Riemannian connections, one can also show that (h A n] does noi
thechoices of arid is the Weil operator associ y
(Cf. (4]).

2. THE FOLIATION DR COHOMOLOGY

Let (M,F) be a codimension q Cm-foliation on a paracompact Hausdorff mani-
fold. By taking a Rieinannian metric on M, one can split the tangent bundle
T(M) into the Whitney sum
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104) F 0 V,

where V Is the orthogonal complement of F and we have the splitting of the
dual tangent bundle,

T*(M)

V is clearly +somorphic to the normal bundle v(F).
Let (x,u):U be-a local foliation chart of F. One can choose

C"-l-fonns on U, r(F*)Iu so that

is basis of for each m U. And one can also choose fields
V1i•••iVq r(V)Iu so that

is the dual basis of for Then we obtain

= i j P,

v a/au
+

E 1 a q,

where aj + 0.
Weset

A AS(r(F*))

end we have
n

A(M) E k(r(T*(M))
k=0

n
= E Ak(r(v*) •

k=O

n
S= Z Ar(T(V*)) A A (T(F*))

k=O r+s=k

= £ Ar, S(M)
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We denote Ar, SCM) simply by A'' An element of A'' is the sum of diff-
erential forms of pure Cr, s)—type.

w*fdu. A...AdU. AOk A...AOk
1 s

and the exterior derivative splits uniquely into the

s r, s+1'

Ar42, s-I Arli, S Ar. s+I
s-i iwr+l,sE ' r, s+i £

This spllttihg

d1 : Ar,

Ar,

From the relation (d1 + d2 +

and others. For fixed r(q

O,At, 0 Ar. I

____

We set Zr. s = Ker(dF: Ar, s
then Br, s c Zr, c Ar, 5

vaotor apace of (M,F) by

Z'' s/Br, s

For one leaf foliation (q = 0) on 14, we obtain clearly the ordinary s-
dimensional de Rham cohomology of II,

(14)

We define a homomorphism

I4om(H*(P4,F),

by the formula [z A Ti] where z Zr, S and '1 C A(M.F) with
dri • 0. The right side is well defined as follows: we have
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defines operators

S s-i
S Ar+i. 5,
S + Ar, s+i

dF)2=d2=0, it follows
r   0), one obtains a cochain complex,

d d
F ••• 1_> Ar. p +

Ar, s+i), 6r, S
= Im(dF: Ar, s—I + Ar, 5),

We define the foliation DR (r, s)-cohomoiogy



d(z = Cd1 d2 + dF)z + (
1)r+s1

A

= (d1 + d2)z A fl

= 0.

If ri = x A = 0, j = 1,...,q then one obtains
r+sd(zAA) =dzAA+ (-1) ZAdX

r+s=(—1) ZAn

and if z = dFa, then one gets

d(a = (d1 + d2 dF)a Afl + ( l)r+s-la A dfl

ZAfl.
Hence (z A does not depend on the choice of the representative of En)
an,d the representative z of (z).

3. THE FOLIATION DR COHOMOLOGY CLASS OF WElL OPERATOR

Let (M,F) and(M',F') be codimension q foliati'ns, and let f:M -* N' be a
transverse to F' so that F f*F'. For any point in EM, we set

in' f(m). Let (x',u') be a local foliation chart around in' EM'. One can
choose a local foliation chart (x,u) around in such that f*du,
j i,...,q. We have

q*(Ar. S(MI)) EAr, S(M)

Since f*d df*, by comparing components of pure type (r, $ + 1), it follows
that f*dF d,f*.

Let f0, f1: H + H' be C°°—maps transverse to F' so that = = F.
If there is a C°'-map H:M x R -, N' transverse to F' such that

f1(m) H(m,i) i 0,1,
H*FI =

where pr:H x R. N Is the first factor projection, then f0, f1 are called
by leaf preeerving and denoted by f0 F',F f1. H is called
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a leaf preeei'ving -

Lenina 3.1 If f0, f1: M -, M' are by leaf preserving map, then
are cochain homotopic.

Proof Let (x,u): U x pq be a chart. Local charts in
M x P of the type ((x,t),u): U x P x P) x define a codimenslon q
foliation 'In M x P. It is clear that = One can take a basis of
tangent vector fields in the foliation chart of

a/ax1,..., a/at,

and its dual basis of 1-forms

Let 10, ii: M Mx P be maps defined by

= (m,j) j = 0,1.

Since is transverse to is defined and equal to F.
Any Ar, 5(M x is written uniquely as

= p + a A dt,

where p Ar, S(M Ar" x do not contain dt. Define a
homomorphism p:A"' 5(M R) -' Ar, S_l(M) by

0, A dt) = ( 1)r+s-1 dt.

Then we have

J
a A dt),

+ (_1)r+s(ao,at) A dt + A dt)
F

+ (1)r+s

J1
A dt,

and therefore

+
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Since H: Mx I + K' defines f0 FT,F f1, we have Hij j 0,1 and

H*F' = P. Then we obtain a homomorphism = Ar, S(M) + Ar. S_l(MI)

satisfying for Ar, S(M.)

- = -

dFIVH*w

= +

As a corollary of Leema 3.1, we get the following Poincare ithich Is
as a detailed version of (10, Theorem 3.1]. A codimenslon q

foliation (M,F) is called F—contractible if there exists a q-dimensional sub-
maitifold N of 14 transverse to F and a map f:M+NcM transverse to F such that

The leaf preserving homotopy of this is called F-contraction
tof.
Corollary 3.2 Suppose that (M,F) is F—contraotibl9. If w Ar, S(14) (s   1)
and 0, then there exists such that a

Proof By Lenmia 3.1, it follows that

f*w - w a

But f Is factored by 1:14+ N and the inclusion map 1: N + 14. Since i*F = F0
is the point foliation and w E A'' 5(14)

s 1, we have 0 and hence
= a 0. Therefore one obtains w a -nw.

In SectIon 2, we have constructed an operator

5(14) HoIa(H*(M, F),

The Well operator X(y) and the homomorphism are related by the following
theorem.

Theorem 3.3 For any vB and yR on v(F), the (0, 2j - 1)-component

2J—1
of jodd > 0 is a and the cohoinologyctass

R

2j—11
CM) does not depend on the choices of V and V

Clearly we have
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2j_1])[n]

for each (n] £ H*(M,F).

Proof In Section 1, we have shown that

= EA" 2i—r r

By the definition of dF, it follows that

dF(hj)Q 2j—1 = 2j'

and hence dF(hj)O, 2j—1 = 0.

Let denote h. for the Bott connection v k = 0,1 on v(F) and h
(0) (1)denote for the Bott connection (1 - t) v B + v B on x R.

Let .ik:N + M x R be maps defined by

lk(m) (m,k) k = 0,1.

Then, by the proof of 3.1, we have

i —
14* —

%hj '0, 2j—1 "j '0, 2j—1 ''1 10'''j'O, 2j—1

= (dF'I' + 2j—P

Since 2j-1 0, it follows that

- d wfFj"J '0, 2j—1 "J '0, 2j_1 F" j'0,2j—l'

and hence does not dePend on the choice of v6.
By a similar method, elso does not depend on the choice of

J
connection on v(F).

The last statement of the theorem is obvious.

4. FOLIATION DE RHAI4 ISOMORPHISM

Let (M,F) be a codimension q a cover of H by
open sets. If an Intersection of finite open sets of El is F-contractible,
we call U an OOVQP.
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Lema 4.1 be a foliation on a paracompact Hausdorff manifold.
Every open cover U of M admits a refinement U' = which is F-simple.

Proof The tangent bundle T(M) splits into the Whitney sum 1(M) = F
F 1(F), V We take connection (resp. v") on the vector bundles
F (resp. V) and we define a connection V on 1(M) by V = vF • Vs". We call a
curve 1(t) in N v—geodesic if it satisfies vdY,dt(dY/dt) = o. VF_geodesic on

a leaf is necessarily v-geodesic on II and hence v-geodesic tangent to a leaf
Is contained In the leaf.

One can assume that every U is a neighbourhood of local foliation chart
•:U x and that, for each m N, •(m) (0,0) with some a. We

take a small q—disk c (0) x contained in U, and then take a suffic-
iently small normal open p-disk bundle E on 0q consisting of vectors tangent
to leaves such that the image Exp(E) of E by the exponential map is contained
in U

U
Let Ii' = (U.) be an open cover by Exp(E) of H and Q = n ... n

By the property of v-geodesic stated in the above, a connected component of
the intersection of a leaf and Q is v-geodesically convex (cf. (3, p. 34)).
One can assume that Uj Exp(E) c U.

Let x + be the natural projection. Obviously, it(Q) = B is an
open of 0q• Since each fibre of ir:Q B is contractible, one can con-
struct a cross—section s:B Q of and by Cm-approximation argument, one
can assume that $ is a Cm-map.

N = s,r(Q) c Q is a q-dimensional submanifold transverse to F. The con-
traction of each fibre of to the point of N along v-geodesic with respect
to its parameter gives a C'° F-contraction to Q N.

Since (U' ,. .. ,U'} is an arbitrary finite set of U' with non-empty
intersection'and n ... n is F-contractible, U' = is F-simple,

and U' is obviously a refinement of U from its construction.
Let C denote the sheaf of germs of real valued C"-function on N, constant

along leaves of F, and let denote the s-dimensional cohomology
vector space of M with coefficient C. We have the following de Rham type
isomorphism which is a special case of [10, Theorem 3.2) and is proved here
briefly by of Cl).

Theorem 4.2 There is an isomorphism C).
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Proof Let be the sheaf of germs of differential (0, s)—form. For open
cover U of M, we have a k-dimensional tech cochain vector space 40* S)

of U with coefficient 4°' and we set

Kk, S(u) =

Kr(U) = 5(U).
k+s=r

Let LKk, 5(U) K1' 5(u) denote the coboundary operator of cochain.
On the other hand, dF: A°' A°' s41 defines another operator
Kk, 5(u) + Kk, S+l(U) such that 0 and = We set

DI =

0' = (_1)kdF S(u)

D' + D'.

One can easily see that U: Kr(U) 9. Kr+l(U) is a coboundary operator, that is,
u =0.

maps

0* p Os P0
- a:A ' CM) = E A ' K ' cE K (U) K(U).

s=O 5=0 r
• B: z

k k

are defined by the natural Inclusion maps. By making use of Lenina 4.1 and
by the parallel argument of (1, pp. 16-21], we obtain isomorphisms

CM) 2 R*(K(u),

8*:H*(C(U; n;)) 2H*(K(U)'

and then by taking limit of H*(C(U;C)) for Ii, (8*Yia* defines the isomor-
phism

2 C).
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5.. MODULAR COHOMOLOGY CLASS AND X(y1)

Let (NJ) be a codimension q foliation, 0 a positive C°'-density along leaves
of F and a positive Cm-density on N. For a local foliation chart

1 I p, 1 j q, we set

=

=

Since we have

=

and Is constant along leaves, it follows that

= dF(log(1JB/DB))

on U3fl 1J8. Therefore defines a global 1-form on H which
Is obviously dF-closed. Therefore, we obtain E

On the other hand, we set

C on U U n U , the tech cochainBy ciy ctB a B y
{C8) E CF) is a cocycle and, by taking limit for Li, Its cohomology
class defines an element c which Is called the modular

claee of F and is denoted by m(M, F) (cf. [9, p. 9)).

Letmia 5.1 Let C) be the isomorphism of Theorem 4.2.
Then we have

= m(N, F).

Proof defines an element of I(0(u) and we have

{dF(log(pa/Da))} -

= /0 ))} - - dF({log(/Du)})
= _d({log(i.Ia/Da)}).
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By the definition of tech coboundary operator, it follows that

= -

= - log(1IB/DB) -

= —C
ctB

and hence

•({dflog(1/D)}] = ({CB}].

Let be a s-simplex such that the image of is contained
In a leaf of F. Let C denote the vector space overR with the basis (a }.
Then we have obviously for the boundary operator a, and obtain a
chain complex

a F a F a a F(Cs, a): Cs cs_I —3 ... C0 0,

E Rm,

One can show a Stokes type formula for a) and (A0' dF).

Lemma 5.2 Suppose that e and c A0' then one obtains

JaaF U) JGF

Proof From the usual Stokes it follows that -

I

10F + +

But We have d1 wE A2' s-i, d2w E A1' S and hence

=0

for r(F) j 1,...,i+1. Therefore we get
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JF = JaF = 0

and the conclusion is shown.
Let 0q be an open c-ball around the origin for a sufficiently small

number > 0, the standard s-simplex and any differentiable map
such A cochain E is called differentiable,
if is differentiable with respect to x. These cochains make a
cochain complex and its cohomology R) satisfies the Mayer-
Vietoris sequence property for finite open covers of N. One can define a
homomorphism 5,dF) + by

= J F
as

Lemia 5.2 shows that

=

=

that Is, A Is a cbchain map.
We have a natural isomorphism from to R) as follows.

Theorem 5.3 If F is a foliation on a compact Hausdorff manifold N, then A.
induces an Isomorphism

* H°' H5 (M
FDR ' FD

Proof Since the manifold M is compact, by Lema 4.1, one can find a finite
F-simple cover U of M by open sets. In exactly the same way as for the
differentiable singular cochaln complex, for F-contractible set E we have

= 0 for s > 0 and the natural isomorphism
By making use of Mayer-Vietoris exact sequences of and and by

analogous arguments in the proof (6, Appendix Theorem 3.1] of the isomorphism
H* (N) H*(M, one can see that the natural cochain map Induces the
Isomorphism R).

Theorem 5.4 Let (N, F) be a foliation on a compact Hausdorff manifold. Then

•we have
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x(y1) = i]),
= —m(M,F).

Proof The first equation is obvious by Theorem 3.3. Let c:(Q,1] N be a
closed piecewise on a leaf of F. By (9, Lenina 2.2 and Section 33,
one obtains

A(2ir(h1)0 1)(c) 2nh1 (c)

= -

This means by Theorem 5.3, that

(2tr(h1)0 = E

Lenina 5.1 shows the conclusion.
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I VAISMAN
Lagrangian foliations and characteristic
classes

This coninunication is a preliminary exposition concerning order gen-
eralizations of the Maslov class within the framework of the theory of sec-
ondary characteristic classes. A full version and complete proofs are
expected to appear elsewhere.

The Maslov class appeared as an obstruction to the transversal Ity of a
Lagrangian submanifold to a fixed Lagranglan foliation (3], and in
(6] it has been remarked that it is the first of a certain series of second-
ary characteristic classes. Here, we consider all these classes (using the
Chern-Simons-Bott approach) in the most general situation, and we discuss
them as transversallty obstructions. Then, we compute the classes considered
for a Lagrangian submanifold of a K*hler manifold endowed with a parallel
Lagrangian foliation, and we show that they are represented by means of
various traces of. the second fundamental form of the Lagrangian submanifold.
This generalizes a result of J.M. Morvan (8].

1. REMARKS ON LAGRANGIAN FOLIATIONS

Though this is not our main object, we start with a few remarks about
Lagrangian foliations.

A pair where V is a 2n-dimenslonal differentiable manifold (we
work in the C°°-category), and n is a nondegenerate 2-form is an airaoat
ayiwpl.otio manifold, and if = 0 it is a raanifol4. A submani-
fold H of V is Lagr'angian if dim N = n, and if induces on II the zero form.
A (distribution) foliation L0 of V is Lagrangian if it consits of Lagrangian
(planes) leaves, and we shall say that the pair (V,L0) is an (abnoat) Lagra—

ngian manifold. The typical example of a Lagranglan manifold is given by
any cotangent bundle with the foliation defined by Its fibres.

It is a basic fact that all the Lagrangian manifolds.are locally equiva-
lent (10], and this follows from

Theorem 1.1 (S. Lie). Let be a Lagrangian manifold. Then,
every point x c V a neighbourhood endowed with coordinates
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(xU.yU) = 1,...,n) such that 10 Is given by ,? = const., and
a dXa

The local coordinates of this theorem yield an atlas with transition
functions of the local form

= 1(xB), = z (xB)y'( + (1.1)

Hence, if Spl(n,R) is the group of the symplectic 2n-matrlces of the form

(A 0) )fl (tAc = Id., tAB tBA) (1.2),.:

nfl
we have

ProposItion 1.2 An almost Lagrangian manifold is a manifold endowed with
and the 'manifold 1s Lagrangian 1ff the

is Integrable.
This remark allows for the utilization of the theory of G-structures in

the study of Lagrangian manifolds.
On the other hand, the global equivalence of Lagrangian manifolds is a

difficult open problem, and we should like to indicate amethod of obtaining
global Irivariants.

In view of (1.1), it makes sense to define, on the Lagrangian manifold
(V.10), the eheaf S of germs of the functions f = + b(xB),
and it is clear that the cohomology spaces H1(V,S) will be global Lagrangian
Invariants.

Hopefully, these invariants could be computed as follows. Let 0 be the
sheaf of the functions V + R that are constant on the leaves of
L0, and let be the sheaf of germs of the projectable cross-sections of the
transversal bundle of Then, there is an inclusion i:o S, and an
epimorphism a:S q given by

a a

where sg h denotes the "c'—gradient" of the function h, and it is easy to
prove

Proposition 1.3 The sequence
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i a
(1.4)

is an exact sequence of sheaves.
Since general theory yields computation methods for H*(V,o) and

(9), the exact sequence (1.4) might provide the computation of H*(V,s).

2. SECONDARY CHARACTERISTIC CLASSES

Now, before defining Maslov classes, we need an adequate sketch of the Chern-
Simons—Bott theory of secondary characteristic classes [2], (1].

Let G be a Lie group, let g be Its Lie algebra, and let 1(G) =
be its Well algebra of the multilinear, syninetric, adg—invarlant functions
(or polynomials) g P (5]. Furthermore, let iy:P M be a G-principal bundle,
and 0,9',... be connection forms on P with the curvature forms 0,0'
In the sequel, we shall sometimes Identify the projectable forms on P with
the corresponding forms on M.

Following (1], one takes a connection 0 = theh, where (th) the
standard r-symplex, with the curvature on P x + K x and one defines

1k (G) +A2kr(M)
0 r

(A denotes the exterior forms functor) by

JAr
(f e . (2.1)

This yields
r

0" r h=O 0" h—i h+1 r
Then 4,, is the Chern—Weil homomorphiem, andthe forms in im A,, represent

0 0
the principai charaOteri8tic ciaeaee of P. The latter do not depend on theC
choice of the connection since (2.2) yields

dA f=A f-A f. (2.3)
9001

For further necessities let us also note the formula
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I ,
°t )dt, (2.4)

where = (1—t)e0 + to1, and = dt).
On the other hand, there are the transgression forms on P [2]

19f =
J

(2.5)

where Ô = d(to) + {te,te] (the bracket is in g), and = ö (mod. dt). These

forms satisfy the basic relation

d(Tef) = (2.6)

Accordingly, we have the following definitions. If f c ker , T f is
closed, and (T f] E H - (P,R) are the Chern—Simona 01138898 of (P,o). If
f ker A ker , f is closed, and f) E H - are the

o 1 001 0091
aecoridary characteristic cla8ses of (P,e0,81).

Furthermore, let be I = (sf0 s 1), let • be a connection on
P x I Mx I. and = cP/p We shall say that + is a
of and a iink Analytically, one has

=
+ ads for some

function a:P x I + g, and its curvature is

• = + (da + (95,a] - aSS)
A ds, (2.7)

where =
+ whence for f c

= + kf (dcx + [05,ci] - ' A ds. (2.8;

Now, if we denote i5:P = P x {s) c P x I, it is well known that one has
for forms of P x I

- hd + dh4 (2.9)

where h is "fibre Integration" on P x I, and applied to this gives, in
view 0f (2.8)

- = k Jf - dcx - [95,a], o(k1)))ds + exact form.(2.10)
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Particularly, by taking °o + s(o1 —es) we obtain

Theorem 2.1 The following relation always holds between Chern-Simons and
secondary characteristic classes:

f] = [1 f) - [1 f). (2.11)
8001 01 00

Similarly, if are pairs of connections and = +

ctAds are links of (x = 0,1), then (2.8) and (2.9) (on N) yield

f =k J f - -
- (2.12)

- k f f - - eO(k_l))ds + exact form.

Now, following D. Lehmann [7], we shall say that the connections 00,01
of P are f-homotopic if there is a link of such that f ker
If this happens, the integrals in (2.10) and (2.12) vanish, and we get

Theorem 2.2 If and are f—homotopic connections, respect-
ively, then [T f] = [1 ,f], and f] = , ,f].

00 e0o1

This theorem clarifies the dependency of Chern-Simons and secondary
characteristic classes on the choice of the connections.

Remark Formulas (2.10) and (2.12) yield easily the following generalizations
of the Chern-Simons and Heitsch derivation formulas (2), [4)

a(T0 f)
k 1= kf - dct5 - [05,a5], - + exact form, (2.13)

1

= k - dct5 — [05,ct5J, - ) —

0 (2.14)

- f - - 00(k_1))} + exact form,

where = = (The original formulas were for a 0.)
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3. GENERALIZED MASLOV CLASSES

Let 1T:E + M (dim 14 - rn rank E = Zn) be a eynrpl4otio ueotop bundi. with Its
structure defined by a nondegenerate cross section ci of A2E*. Then, a fibre
basis (ei,...,e2n) is aynrpiectic If it assigns to ci the canonical expression,
and these bases yield the Sp(n)-principal bundle P1 denotes
the symplectic group).

It is classical that E admits U(n)-reductions (U(n) is the unitary group),
of the structure group defined by fibre complex structure operators J, and
any two such structures are homotopically related by a family We shall
choose one such reduction, and denote by ir:U3(E) + N the U(n)—principal
sub—bundle of S(E) given by the unitary bases Jei,...,Jen) or,
in the equivalent complex form, by the bases

= — /1 (i 1,...,n). (3.1)

The characteristic classes which we have in mind are then related to the
Chern polynomials Ck C I(U(n)) defined for A E u(n) = the unitary Lie
algebra by [5]

c (A)
= (

-1 \k tr AkA. (3.2)

First of all, using a connection o on U (E) we obtain the oiaeeee
(LOCk] H (M,R), anti a simple homotopy argument shows that they depend
only on the symplectic structure of E (i.e., they do not depend on the choice
of J).

Furthermore, assume that we also have a Lagrangian aub-.bundl.e of E.
Then we can further reduce the structure group of E to the orthogonal group
0(n), and get the 0(n)—principal sub-bundle II of defined
by the unitary frames (3.1) such that e1 L0 (1 = 1,...,n). Then, it is
classical that c,k_f ker for every 0(n)—connection and, therefore,

00
we obtain Chern-Simons classes

p (E,L ) (1 c2 (E), R). (3.3)h 0 e0h- J

The classes will be called the bundle ?tzelov cZ.aeeea of (E,L0).
Since any two 0(n)-connections are C2h_1 homotopic (7), it foUows from
Theorem 2.2 that these classes do not depend on the choice of 00.
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If 00 is represented by the local equations (that UBO the Einstein
eumrdatlon convention)

(3.4)

with respect to bases (3.1) in then the global
connection form.on is defined by

, (35)

where U(n), and is the inverse matrix of It follows
from (2.5) and (3.2) that are represented by

i—c I1r I,I , =
" "

J
0.' A ($,,),' A ... (3.6)

0 2h-1 OL
(2h—2)1 (2w)

A (ö )12h_l] dt,

where are computed as shown for (2.5), and using (3.5).
Partlculai-ly, we get

18c1 d In (3.7)

and it foflows easily that is the lift to L13(E) of -(I/2)m(L), where
m(L) is usual Maslov class on the bundle L(E) of the Lagrangian subspaces
of the fibres of E (3).

Now, be one more Lagrangian sub-bundle of E, and let 01 be an
0(n)-connection on defined by the new reduction of the structure group
to 0(n) given by L1. Then, we clearly get secondary characteristic classes

= c2h1] (3.8)

and these will be called the (generalised) Z&zeiov L1 with respect
to 10. Using again the c2hl-homotopy argument, it fc'lows that
do not depend on the choice of the 0(n)-connections and, also) the
homotopy of any two adapted complex structures J to prove that
uh(E,Lo,Ll) do not depend on the choice of a.

In order to compute the Maslov classes, we represei.. again 00 by (3.4),
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and we represent 01 by similar equations = where primes denote
that we have the similar quantities associated to Instead of L0. Then,

let us take some fixed unitary bases (ci) in We shall have transition
relations of the form

= . = èj. (3.9)

and new connection forms

j ,j h jth
+

, (3.10)
+

where the matrices 3, 3' are Inverse to y, y', respectively. From (3.10),
we can further compute the curvature needed in (2.4),and, accordingly,
write down

(1)h+1 i ,11 1)

(2h—2)I JO
A

(3.1.1)
— I2

—A (oIL A ... A (e'). dt,
"2

thereby representatives of the Maslov classes [3), (6).
Particularly, by taking Cj = and in view of (3.7), we get

= (1/2)m(10,L1) where m(L0,L1) is the usual class of
with respect to
Now, we can obtain some basic properties of the Maslov classes defined

above.

Theorem 3.1 If the Lagrangian sub-bundles L1 are everywhere transversal
then all = 0.

Indeed, in this case we may choose such that = JL0, and we may
choose bases such that Je1 (I = 1,...,n), and

=
(see formulas

(3.1) and (3.9) for notation). The forms of (3.10) will then be related by
= 4 , = Consequently, the first factor in (3.11)

vanishes, and we get the conclusion.

Remark Theorem 3.1 shows that are obstructions to the transver-
sality of L0, but it is clear that the conclusion also holds if we assume
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only that 11 can be deformed via Lagrangian sub—bundles tO transversal
bundles L6,

Theorem 3.2 For Maslov classes, the fc1lowlnq ons always hold

(a) ) = ) - I ,L0) ,

(b) =

(c) + + lih(E,L2,bO) 0.

Indeed, (a) follows from (2.11); (b) follows from either (2.1) or (2.4),
and (c) follows from (2.2) or, more precisely, from

C2h_1)
=

C2h_1 - C2h_1 +

Remark Property (c) above shows that = 0 if. L0,'L1 admit a
(global) conwion transversal Lagrangian sub-bundle L2. 'Hence, these classes
are obstructions to the existence of the latter.

4. MASLOV CLASSES AND THE SECOND FUNDAMENTAL FORM

As seen in the introduction, an important transversallty problem Is that of
the transversality between a Lagrangian submanifold of a mani-
fold and a L.agrangian foliation L0 of the latter. In this case,
is a symplectic vector bundle E -* M, 10 = 10'M' L = TM are Lagrangian sub—
bundles of E, and we are interested in the transversality of these two sub—
bundles. From Section 3, we know that the ?4aBlov olassee

lJh(E,Lo,L) provide obstructions to the transversality of M and 10.
Generally, the computation%of these classes is difficult, but we can

compute them in a particular case where the results are both nice and
important since It includes V = Namefl', we shall assume that V admits
a compatible Kähler structure (J,g) such that L0 is parallel with respect
to the metric g. One can prove that g is then, necessarily, a flat Kahler
metric. Clearly, = with the "horizontal8' n-dimensional distribution
10 is of this type, and also, if N is any locally flat Riemannian manifold,
the cotangent bundle V = T*N has a natural flat structure (J,g) such
that the fibres of T*N are g-parallel.

Now, let H be a Lagrangian submanifold of the manifold (V,L0) considered
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above, and let take the bases (1 1,...,n) needed for (3.9), (3.10),
etc. to be orthonormal tangent bases of II; then take of (3.9) to be

= -/T (4.1)

Since is parallel, the connection V of induces a connection
in L0, which extends to a irs usable in the computation
of the Maslov classes, and which t have some local equations

=
(4.2)

(hence, in this case, we do not need the bases of (3.9) for the comput-

On the other hand, it is also clear that we may take the connection
needed In the computation of the Maslov classes to be defined by the connec-
tion induced by v on 14. The latter is determined by' the Gauss equations of
N, which can be written as

= + (4.3)

since is a normal basis of N. In (4.3), it' is the matrix of the
Induced connection, and Is a matrix of 1-forms which defines the

of N. AccordIngly, has the local equations

Dc1 a £j. (4.4)

Now, we obtain from (4.1), (4.2) and (4.3) that

- - ,q , (4.5)

and furtheraoi'e, the curvature needed in (3.11) can be compyted from the
Gauss—Codazzi Integrability conditions of (4.3) together with the fact that
V has zero curvature.

After this computation, we shall get from (3.11) that the representative
forms of the Maslov classes of N and are given by

o C1 (4.6)
01

which can be seen to be equivalent to the interpretation of J.M. Norvan [8],
and
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— 1
- 54 j0001 (2rr) 1••• 2h1 "1

(4.7)
k2 k2h_l

A ...AB. 1% 8i,

where are constants given by

2h-2 h+i+1 i
=

(-1) 2 (2h_2) (4.8)
h 1=0 (2h—2)! 4h-i-3 1

In other words, the Maslov classes uh(M.Lo) are given by various traces
of the second fundamental form, and we have

Theorem 4.1 Let V be a KShler manifold endowed with a parallel Lagrangian
foliation L0, and let N be a Lagrangian submanifold of V. Then the Maslov
classes ph(M,LQ) depend only on the second fundamental form of N in V, and
they vinish if N is a totally geodesic submanifold of V (and, moreover,

= 0 if M is a minimal submanifold).
We may expect to be able to use a similar method of computation for any

cotangent bundle V = T*N of a Riemannian manifold N, by replacing V with an
adequate metric almost complex connection and by replacing with a
second fundamental form. The results (except for wifl be more compli-
cated since they will involve the (non—vanishing) curvatue of
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E VOGT
Examples of circle foliations on open
3-manifolds

INTRODUCTION

In [3] D.B.A. Epstein showed that every Cr_foliation F (1 r for r = 0
see [7]) of a compact 3-manifold M by circles is to a Sei-
fert fibration on M, i.e. to a foliation which near each leaf is given by
the orbits of a locally free circle action. For non-compact M the situation
is more complicated. In [9, pp. 113-115], G. Reeb produces a F

of codimension 2 on an open subset H of x S1 x S1 with all com-

pact such that B1(F) = {x M: x is not locally bounded in x} is not empty.
Here (O,co) is the function assigning to x H the volume of the leaf
through x with respect to some Riemannian metric. Reeb assumes n 4, but
his formulae also work for n = 3. A slight variant of Reeb's example is the
real analytic example of D.S.A. Epstein in [3).

B1(F) is the "obstruction" for F being a Seifert fibration, i.e. a folia-
tion F by circles a Seifert fibration iff B1(F) = 0. (A completely ana-
logous result is true for higher dimensional foliations. See [4].)

B1(F) is the first set in the (coarse) Epstein hierarchy of bad sets of a
foliation with all leaves compact. One defines by transfinite induction for
every ordinal a > 1

fl , if a is a limit ordinal.
B =B(F)= 8<a
a a :AIB1 is not locally bounded in xl,

if ct-i exists.
IEFI = sup 01 is a countable ordinal called the length of the

Epstein hierarchy EF = {B1(F) D B2(F) . . .1 . measures how complicated
F is: B is the obstruction to FIB being a Seifert fibration.a a-i

This paper is one in a series of three. Of the other two,one is mainly
,expository and is concerned with the structure of the bad sets B. In the
last paper we show that 0 if N supports a circle foliation with
Epstein hierarchy of finite length.

Our interest in the study of circle foliations on open 3—manifolds stems
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from the following question raised by D.B.A. Epstein in [5): Can P3 be fol-
jated.by circles? The result above shows that such a foliation must have
Infinite Epstein hierarchy.

The purpose of our examples is to show the following:

(1) Many interesting spaces which do not admit Seifert fibrations admit
circle fibrations, e.g. complements of some wild knots in S3.

(2) B1(F) may have rather unpleasant topological properties even If
B2(F) = 0.

(3) There are circle with Epstein hierarchy of infinite length
(this contradicts the remark on p. 28 of [2) claiming that B2(F) = 0
for any foliation with all leaves compact of codimension 2).

(4) Describe a possible approach to put a circle foliation on P3. This
approach necessitates a countable number of extensions of certain
circle foliations from a solid torus V to a larger solid torus In which
V is trivially embedded. We show that the first two extensions can be
made. The result is a (very complicated) circle foliation F on an
open solid torus with EFI = 2.

2. VARIANTS OF REEB'S EXAMPLE

Let E' be St x S' x [-1,1) with coordinates (x ,x (x ,x ) ER2,
Letf:[-1,1)-sRbeaC-map,

1 r w, such that f1(O) = {O}. We consider on E' the Pfaffian system

{dt, dx1 + f(t)dcp}.

o(f) is non—singular on

E = E' 1, t = O}

and completely Integrable. Therefore ci(f) defines a Cr_foliation F(f) on E.
(For f(tj = t, t fO,1), we obtain Epstein's example in [3).) Here is a
more geometric description of F(f). Consider the level E5 = n (S1 x S1 x (5)).
Because of dt = 0 on F(f) each is saturated, and for s 0 E5 Is a 2-
torus foliated by the graphs of the maps - + c from

to P mod 1. For s (and therefore f(s)) close to 0, a leaf on
(for f(s) > 0) is shown in Figure 1. On E0 the leaves are of the form
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(x11x2) x S' W(O} for -1
<

< I (Figure 2). The union of these 'eaves
is B1(F(f))1 and 82(F(f)) 0.

Eo

Figure 2
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By piecing together various parts of some F(f) with Seifert fibre spaces
one obtains already some interesting circle foliations. We will describe
f'Iiations on of infinite) products of torus knots.
• s not hard h no or r. of two

admits a this the total spaces of our examples
will not carry any Seifert fibre space structure.

Let p,q be relatively prime integers. F(p1q) denotes the foliation of
S3 = {(z1,z2) E C2: + = 1) given by the orbits of the restriction
to s3 the circle action t ((z ,z ) + z1, z t ER
mod 1, on C . 'The standard torus knot kp,q is the orbit through (11,17,
11,17) of this action. F induces a Seifert fibration on the complement

of any invariant neighbourhood of q in S3. By taking
1/,'7) to be in we may obtain an of S3 q

cR3, with
the knot being the x1-axis mR3 {1x11 hand Kpq contained'in {1x11 <1).

Let V be a small tubular cylinder around kpq A {1x1! 1) whose top
and bottom are two circular disks of radius r in the planes I around'
the Intersections of these planes with the x-axis (see Figure 3). Let Z be
the union of Z' with the interior of these disks and consider the 3-manifold
260
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with boundary

D = {1x11 1) (Kp,q u Z).

aD consists of two components: aKp,q which is a solid torus with a foliation
induced from F , and an annulus. Let E c E be the union of levelsp,q +

0 s 1, and remove the cylinder E0 fl {x2 < 0} from E . Denote the
resulting space by E*. There exists a tomeomorphism h:E* D mapping E1 leaf
preserving onto 3K0 q

and having the following property: remenl,er that each
circle (x11x2) x S1x {0), 1x11 < 1, x2 > 0 is a leaf of F(f) in E*. Then h
maps for -1 < x

- each one of these leaves to a concentric circle around
(—1 ,0,0) In the plane x1 = -1 in R , and it maps for x1 < I these leaves
to concentric circles around (1,0,0) in the plane x1 = +1. The remaining
leaves (x11x2) x S1 {0}, - < x1 < of E0 are mapped onto the annulus
3Z'. (To see that such a homeomorphism exists, note that D is Just a thick-
ened rtorus with an annulus in one of Its boundary tori removed and that
any leaf of F In together with a concentric circle around (1,0,0) in
{x1 — 1) of than r represents free abel Ian generators for
H1(D).) It is that one can choose f and h in such a way that the
foliations Fp,q and h(F(f)) fit together across 3Kp,q to form a C°' circle
foliation F(p,q,f) on Np,q = {1x11 1}-Z. and that F(p,q,f) has a smooth
extension to

2 2 2
U X1 a , x2 + x3 a r

where the new leaves are simply concentric circles of radius r around
the x1-axis In the planes {x1 = c} with a 1.

Now let (p1,q1), (p2,q2),... be any finite or countably infinite sequence
of pairs of coprime integers. We can put a C°'-circle foliation on the com-
plement K of the product of the torus knots k k in thep1,q1 p2,q2
following way: K is diffeomorphic to

N ON U g N U g2 N Up3,q3

where ,x2,x3) (x1 + 2,x2,x3) and M_ • f(x1,x2,x3):x1 -1, ar}.
Foliate g1 Mpj,qj by g1(F(p1,q1,f)) and foliate 14_ by concentric circles
around the x-axls. If the sequence (p ,q ),... ends with (p ,q ), then also
foliate {x1 a 2n—11 x2 + x3 a r} by concentric circles around the
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• The second example in this section is intended to give some indication of
the possible unpleasant topological properties of the set B1(F).

Let K be a continuum in the closed unit disk D2 of R2 K is supposed to
have the following properties:

(1) aD24( is the disjoint union of n > 1 open arcs

(2) D2-.K is the union of n+1 disjoint simply connected domains
E Fr K U A., 1 = 1,...,n. (Fr denotes the0 1 1 2set theoretic boundary with respect to the topology of? .)

Such a Continuum can be constructed and it has rather peculiar
topological properties [8], §62, VI, Theorem 11, and §48]. We want to
describe an example of a F1, on D2 x S', such that B,(F1,) =

02 1(K n 0 ) x S and restrjcted\to B1 is the product foliation.
Let t. be Caratheodory's primp end compactificatlon of E ([1], 16)).

By(6], Theorem 6.6, there exists a homeomorphism + D such that
+ 0 is a entheds A1 Onto the open sotLjhe n

hemisphere D! of the unit (note that A1 is canonically a sub-
space of E'). i = 1,2,...,n. On we letFk be th. product foliation.-
FKIEI x St will be the pullback under x Id of a foliation .Ff On x
which we will now describe.

Let E* c be the submanifold of the total space £ of the
F(f) described above and let c be the circle of radius around the
origin. Then [(021 D2)u x Is .E* under the map
F: + (Cos 2ir'I', sin 2irV, •-'v , 2-2r) where r [0,1], YE? mod 1,
are polar coordinates on D2, • ER mod 1. The coordinates on E* are the ones
from abQve. If g1(s) is the distance of the circle = sfl.c from
K with respect to the standard metric of let f1: [0,1) + (O,co) be a
map the following properties:

(3) f1(O) =.O;
(4) f1 (2—s) exp(-g2(s)) for <

6) f1 is equal to some constant c1 in a neighbourhood of 1.

We take to be F*(F(f1)). Q2) x Is the union
of circles - -

Cs - cos 2 + s) D2) x S1:0 l}.
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They are the fibres of a trivial S1-bundle over D2) which can be smoothly
extended to an S1—bundle over to define F1 on all of x S'. The choice
off1 wlll.guarantee that the x ld)*F1 define circle foliations on E1xS1
which fit together with the product foliation on (K U E0) x S1 to
define a circle foliation FK. Obviously FKI(D2'..K) x S' is a (trivial)
bundle. Therefore B (F ) K x For the converse inclusion note that a
leaf on ({r = s}) x S' has at least length exp(g (s)) if we give
D x S = D x R mod I the obvious product metric.

3. ITERATIONS OF REEB'S EXAMPLE (an example with infinite hierarchy)
In this section we will prove:

Proposition For any 0 a u there exists'a C°' circle foliation Fa on a
connected open 3-manifold such that IEFaI =

Proof We already know that the statement is true for a = 0,1. To construct
a foliation of length 2, we first modify our standard example a little. The

manifolds E, E', E*, E5, -1 s 1, are defined as in the previous section.
We also use the same coordinates for E. This time we want
f: [-1,1] + [0,1] to be a C°°—map with = (-1,0]. The forniilae of the
previous section define again a foliation F(f) on E such that each of the
sets E5, E', E* is saturated. Notice that every leaf of F(f) in =

U Et intersects the annulus A = x x (0,1] for any
tE(O,1]

1(x1,x2) S at exactly one point. To fix notation we take (x11x2) = (0,1)
to define A. Let B cA be the open disk of points E with

corners (see Figure 4). Let h:g + be a homeomorphism which is a diffeo-
morphism in the complement of the corners and which maps the upper half
circle of the outside boundary of A, i.e. the set E with
0 1/2, to the lower half circle In the boundary of D2. Let B' be the
Inverse image of under h.

For a subset C of E let F(C) be the union of leaves of F(f) through points
of C. Then we define a diffeomorphism H from N = (D24 x S1 onto

as follows. For N, Is the intersection of the leaf
with the annulus
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t= 1

(cos sin x S' x 1)

in E. Furthermore, let K:N E(01) be the diffeomorphism given by

= (cos sin 2n'4', 4/3 - 4r/3)

where now (r,'i') are polar coordinates, 'v €P mod 1.
We ndw define a foliation F(f(2)) on 112 = U Ce). On u

we take the restriction of F(f), and on F(B-.B') we take (K o
The two foliations fit together. To see this, note that H*(F(f)) is
the product foliation on N = (D2'4,. x S1, and K*(F(f)IE(Q,l)) is a folia-
tion on N which, by the choice of f, can be extended to a foliation on

x S1 by taking the product foliation on S1.

Since F(f) Is an S -bundle in a neighbourhood of F(B' U = R1, 142 is a
3—manifold (with boundary). The Epstein hierarchy of F(f(2)) Is given by
B1(F(f(2))) r1(F(fl) U F(T), B2(F(f(2))) = B1(F(f)), where
• = 0 or 1/2, 0 < t < 1) is a union of two arcs (see Figure 4).

This concludes the construction of a circle foliation with Epstein hier-
archy of length 2. We note that we can plug the hole F(B') in by glueing
in a trivially fibred solid torus. But H2(112 U F(B')) Z will remain non-
trivial.
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To obtain a foliation of length 3 we repeat the process. We obtained
F(f(2)) by first removing F(S) from our standard example F(f) on and then
adding F(B'.B') with a new foliation which, up to the diffeomorphism K o
is just another copy of E(Q 1] with its foliation F(f).. This foliation
fits into the foliation on -.F(B) (with the length of the leaves growing to
infinity when approaching F(aB)) except for the points on the two leaves of

through the points = {(O,i,$,i) E4:$'O or 1/2).
This is the reason why we also remove F(C ) to obtain 142•

So to continue, we will simply replace by H ° (1(M2 fl E(01))
with its foliation (H e F(f(2)). We obtain a manifold (with boundary)
N3 c N2 with a circle foliation F(f(3)). The Epstein hierarchy of F(f(3))
is given as

B1 81(F(f)) U H °

B2 = B1(F(f)) U H e (1(B1(F(f))), B3 = B1(F(f)).

Continuing in this way, we obtain a sequence E = N1 N3 D
of 3—manifolds and a sequence of circle foliations F(f), F(f(2)), F(f(3)),...,
wittrF(f(i))living on N1 and IEF(f(i)fl = 1.

It remains to construct a circle foliation with infinite hierarchy. This
is done by simply piecing all the N1, F(f(1)) together. Notice that the
annulus Z = {(x1,x2,.,O) E: x2 >0) is contained in all N1, and
F(f(i))IZ = F(f)jZ is the trivial S1-bundle with fibres L(x ,x ) =

{ (x ,x ,+,0):0 1 }, where x + x = 1, x >0. Let V be the closed
upper half plane on with the points (2i - 1,0), 1 = 1,2,... removed.
Then consider the manifold

y xS1 u

Here u denotes union" and each is attached to V x S1 by identi-
fying Z cM1 with (21-1, 21+1) in V S1 via the diffeomorphism

(2i + Our choice of f allows us to extend the
foliations F(f(i)) to Yx by simply putting on V x S1 the product folia-
tion. Denote the resulting foliation by F(f(w)). Obviously
{ (y1,O) E Y: y1 > 2i - 1) x c B1(F(f(w))). Therefore EF(f(w))

I
= w.

Remark 1 In our example = 0. I do not know whether one can construct a
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circle foliation F on a 3-manifold with B(F) ,' 0.

Remark 2 Note that afl manifolds I I can be tn

Remark 3 Rank H2(M1) = I. We can close off in each M1 one boundary compon-
ent by adding a trivially foliated solid torus to the single compact boundary
component of M1_1-441. This shows that we may construct circle foliations
F1 on 3—manifolds W1 such that IEF1I = I and rank H2(W1) 1—1. But with
the above methods the rank of H2(W1) cannot be lowered any further. This is
because at each stage we have to remove the annulus corresponding to F(T).
In the next section we suggest a program to foliate by circles. This
program necessitates the construction of circle foliations F1 on open solid
tori with = 1, 1 = 1,2 Up to now I can only complete this
program up to 1 2.

4. ONE-PARAMETER FAMILIES OF DIFFEOMORPHISMS OF THE OPEN DISK

In this section we construct a rather complicated circle foliation F with
IEFI = 2 on an open solid torus. A motivation for this example Is the fact
that it is the second storey in the construction of a building with infinitely
many storeys which would, if completed, result in a circle foliation ofF3.

can be written as the union of an ascending sequence V0 c V1 c V2 c
of open solid tori such that is unknotted and contractible in V1f1 and
such that Vç..V1_1 is a closed solid torus minus a closed annulus in its
boundary. To be more explicit, let V0 and W1 be as in Figure 5.

W is a 3-manifold with boundary A , where A Is a meridianal annulus of
the closed solid torus the closure being taken mR . V0 is an open
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solid, torus such that n = A1. V0 Is contractible and unknotted in the
solid torus V = V0 u W • In particular, V0 and V1 Ere unknotted in

Rö. Therefore there exists a homeomorphism h:P - R which Is a diffeomor-
phism in simple closed curves on av ) mapping V onto V . Since
V0 c Vi, we obtain an ascending sequence V0c V1 = h(V0)cV2 = h (V0)c
and it is not hard to prove that = •u0 h1(V0) is homeomorphic to R

The results of the third paper in series show the following: if there
is a circle foliation F on then lEFt u , and if B(F) = 0 there exists
an ascending sequence U0 c U1 c ... of open saturated sets, each U1 a com-
ponent of some R3..8 (F) such that torus), and I11(U1) -'

is the 0-map. So the simplest possible circle foliation onR3 might
be obtained in the following way: start with a circle foliation on V0, extend
this to a circle foliation on V1, extend this to a circle foliation on V2
(after possibly some deformation of the foliation on V1). Continue this
process ad Infinitum. Whether this works I do not know. Below we shall show
that there exists a circle foliation with the required properties on V2.
(The main difficulty comes from the fact that we are not allowed, as in
the examples in the preceding sections, to drill holes to remove the polntt
where the tangent spaces to the foliation do not also note that
a circle foliation on V1 with the required property - i.e., such that each

for 0 j < i is saturated — will have Epstein hierarchy of length at
least i.)

To begin with the construction of the circle foliation on V2 we observe
that we already have an example with the required properties on V1. For
this we take the foliation F(f), where f:[-i,i] -* [0,1] is a C°°-map with

[—1,0], and restrict it to the invariant set

E E: -1 < t 0, x2 ._i_}
/7 -

We attach to this space, along its boundary E1, a solid torus V with the
product foliation in such a way that the leaves of F(f) in (they are the
sets {(x11x2)} x 51 x {0}) are homologous in E to meridians of V. The

resulting space is an open solid torus which we may identify with where
V0 corresponds to {(x,,x,,q,t) E: —i < t < 0, x., > and W correspondsI'
to E* U V, where E* denotes now the union of E(0 1) with
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E: x2 > .—L}. This example also suggests a general procedure

for passing from a foliation on V1_1 to one on deform the given foliation
on V11 in such a way that it extends to a foliation of a longitudinal
annulus A1 in then attach E*E V to U by identifying A1

with the annulus {(x E: > The result will be an open
1 /7

solid torus V, with a fo1iation meeting our requirements. The hard part is
to find the deformation of the foliation on V11. We do this now for i = 2.
Since it suffices to deform the foliation only near the boundary of V1, it
suffices to consider the thickened—up 2-torus

V1 V = E* U £ E: —1 < t < 0, x2 >
/7

which is diffeomorphic to x S1 x S1.

It will be convenient to use angular coordinates e P mod I for the
first two coordinates Cx ,x ) of E (i.e., x = cos 2irQ, x = sin 2,rO). For
( ,1) x S x S we coordinates (r,'v,s), r ,1), y,s ER mod 1.
are polar coordinates for the annulus C = {(y1,y2): +y2 < 1}ofR.

Our plan is the following. Transport F(f) Irom V1'V to x S x S

via a diffeomorphism b to have better coordinates for V1.V. Then use a
diffeomorphism d of x S1 x S1 to deform the foliation b(F(f)) into a
circle foliation which has an extension to a longitudinal annulus In
(1) xS1 x S1. Choose d to be the identity near 4) x 51 x S' so that the
construction can be extended over V.

We first describe b:V '..V (1,1) x S1 x S1. It will map each circle
(0) x S x {t) "Identically" onto the circle {r(e,t), v(o,t)} x S . Thus

it suffices to describe the maps r(O,t) and 'v(o,t). We 'iill do this first
for —1 < t 0. Then 1 < 8 < and we map the corresponding half-open disk
to the diffeomorphic set R > r , < < in

1 i 1
v'7sin2iTV

(7.1) x S such that r(e,O) = and = 8. The map on the
/7 sin 2iiO

set of points (e,t) E Si x (0,1) is more easily described with the
'help of 6.

We fill up x S'-..R by a family 1 t > 0, of disjoint simple
•closéd curves such that the following holds:

(1) For each 0 P mod 1, the radius {(r,v):v 0) Intersects each Kt in
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4+e

exactly one point (r(e,t),e) such that x (O,t] . x •.R,

(e,t) (r(e,t),e) is a diffeoinorphlsm.
(2) For each fixed t, r(o,t) is constant on the intervals + c e

and + c U - c; for e - c it is (non—strictly) increas-
I ng.

(3) For each t the set {(r(e,t),O): + c 0 — c) is a straight
horizontal line in P.

(4)

the positively oriented unit tangent vector to Kt in (r(t,o),e).
Such a family of circles exists, and it is once r(O,t)

is fixed. We define r(e,t) by (1) and ,(o,t) = e for (o,t) E
51 x (04). Notice that r(0,1) and r(e,t) 1 as t 0 for e

This finishes the descrtption of b.
me di ffeomorphlsm d of (1,1) x S' x S1 will be defined by a smooth 1-

parameter family of diffeomorpnisms, x S -.. t!.1) x S • S [0,1],
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such that and • d5 for 0 $ c 6 lithe Iden-
tity S1. The map d corresponding to d5 is
then defined by d(r9q',s)

To motivate the somewhat complicated formulae let us consider another way
to describe Reeb examples. Let cz:[O,l] + 10,1] be the restriction of a 7-
periodic c°—functlon from R to [0,1] of the form shown in Figure 7. Let

a

VI).;

V
Figure 7

8:11,1) [O,o') be a Cm-map such that 81(0) 1 + 6] for some small 6
and as r 1. Let F be the product foliation on [ ,1) x S x S
with leaves (r,'p) x S , .1) x S . Let d(r,v,s) . B(r),s).
Then the image d(F) of F under d is a circle foliation on ( ,1) x S x S
The tori {r} x' S x S are saturated with respect to d(F), the leaves on
{r} x S' x S1 become longer and longer as r goes to 1. d(F) can be extended
to the union of the two annuli {1} x S1 x where the foliation
1on these annuli is the obvious product S1-foliation. The resi4lting foliation
will be smooth if 8 grows fast enough (any exponential growth suffices).

We would like to do the same, but with the foliation b(F(f)) instead of F.
It Is an Instructive exercise to show that with the simple minded 1-parameter
families of diffeomorphisms

d5(r,'p) Cr, y + a(s) • 8(r))

above, there will be no point x S1 x S1 such that, in
• MighbowhOOd U e (I) * S $ .of is a vanfshing
victor field towards idilch this lies
in the fact that, for points E S' x wIth 0 < the
positive unit tangent 'vector to b(F) (after we have chosen an orientation



for b(F)) will converge to as r approaches 1, while for < 'v < I the
limit will be — . Is just the positive unit tangent vector field to F in
the example above and the positive unit vectors of d(F) in (r,'r,s) converge to

If r+1 and if Since in the same domain the positive unit vectors
of dC-F) converge to-h, we find in the neighbourhood of any point in

positive unit vectors V11V2 of dob(F(f)) with V1 arbitr-
arily close to and V2 arbitrarily close to-a. This indicates that wehave
to make a special effort to find a deformation which also forces the unit tan-
gent vectors of b(F(f)) at points (r,'V,s) with and into the
positive 'if direction as r approaches 1.

Let be the restriction of a Z—periodic as
indicated in Figure 8. Let a(r) be a Cm-vector fie'd on with

a(r) = 0 for r near 1, and a(r) = r(1-r) for r x S' consider
the vector field where (r,v) are the coordinates on x S

and let e5 be the corresponding 1-parameter family of diffeomorphisms. Let
u:[O,l] + [0,cxf) be the re'striction of a Z-periodic with u(O) 0 and
U(s). = s for s. Then r let & = h eCS) be our 1—parameter
family of diffeomorphisms of S where

•

h(r,'y) z + e 1—r
)

Here is equal to 0 for r near to r for r We claim
that (dob)(F(f)) has th properries. More specifically we prove:

Proposition For proper choices of F(f),
the positive unit tangent vectors of in (r,'v,s) will cj!Wei-ge to
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If (r,v,s) + (1,,0,s0) with < s0 <

Proof We first investigate the effect of the differential of 4, on the
vector fields in x St x S' for the points (r,'i',s) with

I < $ < and r Notice that in this domain a(r) = r(1-r) and a(s) = s,
and -1)) Therefore

r s.g('P)
r -r—e

d(r,'V,s) = , + e

Differentiating, we obtain
r

d ( - e

- +

d
—

r
+

r a

d ( -

r
a a

a fairly explicit description of b(F(f)). On R x it is the
product flow, and we will choose the orientation of F(f) so that the positive
unit tangent vector of b(F(f)) in R x S' is 1.. Furthermore, the 2-tori
ç x S c ((2,1) x S sR) x S correspond to the saturated 2-tori Et in

0 < t s 1, and for any > 0 the positive unit tangent vector of
b(F(f)) on points (r,'y) with < < - will be close to for
small t, while on points with + ô < < I - it will be close to
- so It will have the form

X(r,'p,s) = A(r,'P,s) + B(r,'(',s) +
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with C(r,y,s) close to +1 or -1 depending on whether 6 < 'V < - or
+ 6 'V < I — Since in this region also is bounded, the only

problem for convergence of as r ÷ I if A(r,'V,s)
is negative and r is close to 1. This hap2ens only for to and

here for the first time we have to specify the +

x S' x S1. If (r('V,t),v) is the positive unit tangent vector to in
then the of is somembat more than the

-fold of the component. For 'V r(V,t) fluctuates between
r and r1(t) with r (t) + 1 as t + 0. We choose b in such a way that
1-r1(t) e1 •f(t) small t. (This obviously puts a restraint on f. If
we choose f(t) = for small t, the above inequality can be satisfied.)
Then the negative contribution to coming from will be neg—.
ligible when compared with the contribution to — coming
for points (r,v,s) with 'V close to r close to 1, and as always

So it remains to analyze for close to 0 and 'p is
close to 0, A(r,'p,s) = 0. Since B(r,y,s) > 0 everywhere and g'('v) > k for
some k > 0, If 'p is close to 0, + as long as 'p stays in
some neighbourhood Qf 0, S and r 1.

Finally,. for 'p c, + c) the shapes of the curves cone into
play. X(r('p,t),'p,s) will be of the form (r('v,t),q')
+ • where N is chosen to make sure that X is a unit vector, and
a('V,t) is a function close to 1. It takes care of. the stretching of the curve

- c, c) x x t under the map b. By property (3) of the curves
K , the .1. component of ak(r('p,t),'p) will be the (1—r(r,t))-fold of the
component, as long as - 'p + Therefore the contribution from

(r(v,t),q')) to will be

1 r sg(i')

(
1

2) .(i +
(1 + (1—r) l-r

If £ is small enough, Ir.s.g'(v)I < I and so this number rapidly goes to +
as r + 1. So a problem for convergence can develop only when 1sIn is
not small in comparison with I while — (which is the

coefficient of in d*(&) up to a bounded factor) is not large In
son with 1 (which is the coefficient of in d*(.j)). Here wa Introduce
the second restraint on b:1-r1(t) for small t. our choice of
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f(t) ), this is possible. Then, for small enough, we have
2 If we further demand that, near g(v) (q -

where < 0, then
r('p,t)

r('r,t)

e

1 1 1 lIt2Since, for v Isin 2r4f is close to 2irjv - and = e for
small t, we obtain

r 1

) . (const. ehl't2_
)

Therefore, if the component of X(r,'Y,s) cannot be neglected in comparison
with the component, i.e., if is not very small, then
and components of are neglibly small in comparison with the
component.

Up till now we have completely ignored the -component of dob(F(f)).
But, for r close to 1, the -component of and can be
neglected in comparison with the other components. Therefore the above dis-
cussion shows that the positive unit tangent vector field of dob(F(f)) at
(r,'v,s), < s < converges (rapidly) to as r goes to 1.

As we have Indicated above, the proposition implies the main result of
this section.

Corollary There exists a circle foliation F on an open solid torus V having
the following properties. B2(F) is an annulus splitting V into two open
solid tori V1, U1 Invariant under F, where V1 V is contractible and
unknotted. B1(19V1) is again an annulus splitting V1 into two invariant open
solid tori V0, U0, and V0 c V1 is contractible and unknotted.
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RAWOLAK
Some remarks on V-G-foliations

In this short note we present two methods for dealing with some problems for
transverse structures of 6-foliations and in particular for V-G—foliations.
As examples of applications of these methods we prove two theorems. We con-
struct the graph 0f a v—G—foliation, and then study the transverse structure
on the graph. Its properties allow us to prove the following theorem.

Theorem A Let F be a transversely complete V-G-foliation. Then the leaves
of the.foliation F have the same universal covering space.

In the secend part we give definitions of transverse structures of higher
order.. They admit a foliation of the same dimension as the initial one, and
its leaves are covering spaces of the leaves of the initial foliation. We

show the following.

Theorem B A 6—foliation F a transversely projectible G—connection if
and only if the foliation of the normal bundle of order r admits a trans-
versely projectible Gr_connection.

1. PRELIMINARIES

Let Mbe a connected n—manifold1 N a q-manifold (n q) with a G—structure
B(N,G). a S-connection in the G-structure 8CN$). Let (M,F) be a

on B(N.G), and defined by a cocylce i.e.
= and are local automor-

phisms S-structure B(N,G) and affine automorphisms of the connection
v. H bq a sub—bundle of the tangent bundle TM supplementary to the
foUatim F. Let 1(H) be the frame bundle of H and denote by B(M,F.G) the

by the 6-foliation F. A G-structure obtained in
this way Is a transverse 6-structure. We denote by f1 the mapping of
B(M,F,G)1U1 into defined by f1. Let w be the connection fore of the

Then the forms glue together to define a connection & on
L(H), whiCh Is. a connection in the transverse G-structure By

we denote the corresponding differential operator on H.
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The fundamental form ö of the transverse G—structure B(M,F,G) is defined
as follows:

Let p be a transverse frame of Then

> M ) >

where + M is the natural mapping, p,:TM + H is the projection of
Th onto H along F, and is the inverse of the linear isomorphism defined
by the frame p.

For any vector we can define a vector field on B(M,F,G) called
the fundamental horizontal vector field. We demand that:

(1) =

(ii) is a horizontal vector field;
(iii) for any p E B(M,F,G). where Ft is the supplementary distri-
bution in ker to the lifted foliation

= ker

One can easily ;1(u1) = where e is the fundamental form
of the G-structure B(N,G). The mapping Is an isomor-
phism, where r is the horizontal space of the connection1w. Additionally,
if Is the fundamental horizontal vector field on B(N,G) defined by the
vector then

d
p .lp

Proposition I Let S be a section of the bundle H on constant along the
leaves of F. Then

= S,
• f1X -

where S =

Proof This foreula is obtained directly from the definltio* via the Christo-
fel —-

Let cx;(O,t] + M be a curve in a leaf of the foliation F, u(O) = x, ct(1).vy.
Then the curve u defines a mapping T of into Let y be a curve such
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that y(O) = x, d/dty(O) v Let be the curve starting at y(t), the
holono.ny lift of a to y(t). Then t ctt(l) Is a curve at y transverse to F.
the H—component of the vector d/dtctt(1)(O) we assume as the value of I on

the vector v. One can easily check that it does not depend on the choice of
the curve y. The mapping I is a linear isomorphism, and in its turn defines
an Isomorphism

Let be an adapted chart at the point x and let be an
adapted chart at the point y such that each plaque is contractible. Let
be the transverse submanifold at x and let be the transverse submanifold
at y. For any points u and v there exist the unique points
u' and v' respectively, such that the points u and u', v and v'
belong to the same plaque of or respectively.

Let be a neighbourhood of x in such that, for any point x' of
there exists the holononiy lift of the curve a to x.

Let us denote by the image by the holonomy mapping of in Let
and be the saturations of and in and Us,, respectively. By

denote the curve where is the holonomy lift of the curve
a to U', is a curve in the plaque linking u to u', is a curve in the
plaque linking v to v'. The holonomy mapping I along the curve does not
depend on the choice of the curves and 5v• We can choose curves and

in such a way that the mapping

a:Ox x X I -t M : =

is smooth, where x = x Ii: T(u') = v'}.
For any pair of points (u,v) 0,,, the curve defines the mapping

I and the mapping

T-: 1(0) x

is smooth.

Lenina t = (p)

Proof Let x = a(O) and y = ci(l), and let and be two transverse mani-
folds at x and y, respectively. Additionally,we assume that the manifold
is contained In some and in some Then the mappings and

are local diffeomorphisms. The mapping
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f(y) +f(V)
Is just the composition •.. ° for some Indices

Thus the mapping

:

is equal to g4 ... ° g. • and therefore it is an affine mapping.
01 1k—lk —

The vector fields on 1(H) or B(M,F,G) are mapped by f1 onto the
vector B(E). Then

=
•••

=

Thus

2. GRAPH OF A V-G-FOLIATION

For the convenience of the reader we recall the construction of the graph of
a foliation, due to Ch. Ehresmann and later developed by I4.E. Winkeinkemper
(4].

Let x and y be two points of the manifold P4 lying In the se leaf and
let a be a piecewise smooth curve linking x to y and contained in the same
leaf. We say that two such curves atand Bare equivalent if the holonosny
along the is trivial. The space of all such triples (x,y,(a]),
where (a] denotes the equivalence class of a In the above equivalence rela-
tion, Is called the graph of the follation.F, and we denote it by GR(F).

The topology Is introduced in the following way. Let z (x0,y0,(a]) be
any point of GR(F). Let a be a representative of (a]. Take an adapted chart
(U ) at x and an adapted chart at y such that $ :Dk X

x0, and 0q = y0. By W1 we denote the trans-
verse submanifold and by W3 the submanifold x For any
point x U1, by x. we denote the point of the plaque of x belonging to WI,
and for any point y of by Yj the point of the plaque of y belonging to

By V1 denote all the points of U1 whose plaques can be linked with a
plaque of by a chain of plaques following the curve ci. By denote the
set of points of which lie in the end plaques of the above chains. Let
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Wza be a subset of defined as follows:

= GR(F); x V1. y e=
51*3*5

where s, are curves linking the points x and y with and respect-
ively, in the corresponding plaques, and & is the holonomy lift of a to x1.
The set is well defined as the end point of be and the equivalence
class of B does not depend on the choices of the curves and s,,. .The sets

Wz,a we take as a sub-base of the topology of GR(F).
In our case, by means of these sets we can introduce a differentiable

structure (cf. [4]). In this differentiable structure they are adapted
charts for a 2k-dimensional foliation F. 'The foliation F can also be defined
as the inverse of the foliation F by the canonical projection
or p2 : GR(F) + ii, where = x and y.

The tangent bundle of the manifold GR(F) is isomorphic to the sum
F • F ® where the bundle is given by

H = {v TGR(F); H and E H};

or, in more detail, let z = (x,y,[a))EGR(F), then any tangent vector
Z is equal to (Xx.Yyi(a]). where E lxii' Y,, 1)4. In particular,
we can consider ii as

{X E TGR(F); X = (v,T(v),[a]), V H).

Let us consider the reduction L0 of the frame bundle L(GR(F)) defined by
the decomposition F s ii of the tangent bundle TGR(F). Let
z (x,y,[a]). A frame v = at z is given
by the following vectors:

VI (Vl,...,Vk) a frame at x of F,

= a frame at y of

C Il, I 1,...,q, H, H and I =

Thus (Wq)) a frame at x, and
is a frame at y. Therefore any vector tangent to 10 is

given by a curve y
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such that

= for any i = 1,...,q.

Let be the connection on H defined by the connection v. Directly from
the definition of the foliation F is a v—G—foliation, and the bundle ii can
be considered as the normal bundle of the foliation F.

Leoma 2 The napping T is an affine transformation of the connection .

Proof Let a(O) = x and a(1) = y, and let x U1 for some i and y for
some j. Then

T = = = f*(fTf1)*

= = =

01 k—lk

Thus Is an affine transformation of w.a

Definition A V-G—foliation F is called tran8veraely conrplete If fundamental
horizontal vector fields are complete for any E

Lefllna3 Letav-G-foliation F be transversely complete. Then the foliation
on the graph manifold GR(F) is transversely complete.

Proof Let be a fundamental horizontal vector field on B(M,1,G), .and
its global flow. Let w (w1,...,w ) be a frame of H at z — (x,y,[cg]). Then
each WI, I 1,...,q Is equal to where — dl and

is a frame at x of H, and w2 a frame at y.
We put

= 1+t(a)])

where the curve is obtained In the following way. Since is a leer
curve, we can lift it to a leaf curve at w1 B(N,F,G), then we take
which is a leaf curve as the vector fields are Infinitesimal lutnimorphisis
of the foliation of the fibre hendle. Next, we project this curve beck to
P4 and obtain a leaf curve, which we denote by We have to show that the
homotopy class of the curve •t(a) does not depend on the choice of the lift &.
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-The segment •(O,t]&(O) of the flow is a transverse curve to the foliation
of B94,F,G). It projects to a transverse curve to the foliation F on the
manifold N. Since the flow foliation F, the mapping

B:[O,l] x [O,t] (s,v) •+

is the holonomy lift of the curve & along •CO,t)&(O), and the projection
of onto the manifold M is the holonomy lift of the curve along the

curve r.
To complete the checking that is well defined, we recall that

= Then the mapping 1 will commute with the flow of and

indeed wilt be an element of B(M,F,G), i.e.

T,t(w1) = ,t(w2).

Since the foliation on the manifold GR(F) Is defined by a cocycle
the tangent vector to the vector

the flow is the flow of a fundamental horizmatal vector fte)d, as, of
course, this vector is horizontal, since, locafly, the cosmectioe on
B(GR(F)j,G) is given by

3. PROOF OF THEOREM A

Any two points of the manifold N can be joined by a pl.ce.lse smooth curve
whose segments are either leaf curves or projected segments of Integral
curves of fundamental horizontal vector fields. We would like tà lift these
curves to GR(?). As the horizontal bundle we assume the bundle I
which Is traflsverse to the fibre of the subeersion + N. The fibres
are covering spaces of the leaves of the foliation F (cf. (4));.

First of all, we lift leaf curves. Let y be a leaf curve. The lift of
this curve has to be tangent to the bundle ii * It cannot be tangent to
N, thus it must be tangent to Therefor the tangent vector has •to be
of the form (X,O,(c*)). Since X, the lift of the curve y to
th. point z (x,y,(cz]), where, x = a(O•) is the curve 3 t (y(t),y,

(O,t]]).
To lift a transverse curve, we need a more subtle construction. Any such

curve y Is a projection of a segment of an integral curve •(O,1](p0) of a
fundamental horizontal vector field on the manifold B(Mj,G). Take a
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COPP'i$pofldlflg of an Integral curve of th. victor field
ftC;) on the manifold B(GR(7),?,G) starting from $ point In the fibre

The projection of the curve manifold is tangent to
the bundle Il, as a and E H directly from the
definition of the vector field Additionally, as = and

= = it follows that, indeed, the vector tangent
to is tangent to H. The choice of in the fibre
corresponds to the choice of the point in the fibre

As we have shown, we can lift horizontally from H to GR(F) any curve of
the chosen type. We shall call such curves v—curves.

Lenina 4 Any v—curve y In N defines a diffiomorphism of onto
)).

Proof The horizontal lifts of V-curves depend smoothly on the initial
condition; thus, lifting the curve y to the points of the fibre
and taking the end points of the lifts, we define the mapping of
into which is a diffeomorphism.

Using the same methods as in the proof of [1, Theorem I, p. 239]. we show
the following theorem.

Theorem 1 Let G be a connected Lie group and let N be a connected manifold.
Let F be a transversely complete V-G-foliation. Then p1:GR(F) H is a
locally trivial fibre bundle, with the structure group (x0)),
where is any point of N.

As a corollary of this theorem we get our main theorem as the fibres of
are covering spaces of the leaves of the foliation F.

4. TRANSVERSE STRUCTURES OF FOLIATIONS

We present the definitions of some transverse structures and their basic
properties. More details can be found in (6].
Example 1 Transverse (p,r)-velocities (pr_jets).
Let m be a point of the manifold H. Let f:(R1',O) (M,m) be any local smooth
mapping of into N mapping 0 onto m. Let f.g be twosuch mappings and let
(U,+) be any adapted chart at m such that •:U x •(x) =

thus •2 is constant along the leaves. We shall also use the notation
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2
We say that the mappings f and g are

equlvaldnt If This Is equivalent to

91v1

for any multi-index v E lvi r, i = 1,...,q. We shall denote the number
of such indices by p(r). This equivalence relation does not depend on the
choice of an adapted chart at the point m. The equivalence class of a mapping
f we denote by The set of all equivalence classes at a point m we
denote by N and the space U NP*r(M,,) by By wr let us

m m p
denote the natural projection of into i.e. f(O). One

can easily check that for any adapted chart the set U is
() mEU

m

Isomorphic to U x and that the isomorphism is given by the mapping. Thus, if we denote the mapping defined

above by •r, ,r.( pq.p(V') the collection of all such
defined by an adapted atlas on P4 defines an atlas on the space N ' (M,F). To

see this, one has only to notice that if are two adapted charts for a
foliated manifold (Mj), the composition x x is of
the form (f 1(y,x),f,(x)), where y denotes the first n-q coordinates, x the
last q, x and x . then

, Is equal to (f,1r(f)) where
is the mapping of induced by f.

Suimning up, we have proved that is a locally trivial bundle,
whose total space admits a q.p(r) + q foliation F" projecting
by onto the initial foliation.

If p = q and we take only transverse embeddings of into P4, the above
construction gives a bundle called the transverse frame bundle of the folia-
ted manifold (M,F) and is denoted by Lr(N,,). It Is a principal fibre
bundle with the fibre

Example 2 The Ljndle of transverse A-points of (Mj)
Let A be an associative algebra over the field R with the unit I. The algebra
A is loCal If it is counutative, of finite dimension over R, and If it

a of codimension 1 suCh that 0 for
some non—negative Integer h. The smallest such h is called the height of A.
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Let R(p] be the algebra of all formal power series in
and let be the maximal ideal of R[p] of all formal power series without
constant terms. Let A be a non-trivial ideal of REp] such that R[p]/A is of
finite dimension. Then A = R[p)/A is a local algebra with the maximal ideal

= Any local algebra is isomorphic to such a local algebra (cf. [2)).
Let C(Ilj) be the algebra of germs of smooth functions constant on the

leaves of the foliation F at the point m of the manifold H. An algebra
homeomorphism + A will be called an A-point of (14,F) near to m
(or an infinitely near transverse point to m of kind A) if c(f) f(m) mod I
for every f E C(M,T). We denote by the set of all A-points of (14,7)
near to m, and by A(M,F) = u Am(M,F). The mapping Am(M*F) a-pm C 14 is
denoted by

One can prove that the set A(M,F) admits a differentiable structure such
that .UA:A(M,f) + 14 is a fibre bundle over 14 with fibre A, and that there
exists a canonically defined foliation TA of the same dimension as the folia-
tion F.

5. PROOF OF ThEOREM B

To prove Theorem B we shall use Cl. Roger's definition of the universal
Atlyah—Molino class, and therefore we consider foliations as r-structures.
First consider a pair of groupoids r1 and 12• Let M1 and be two smooth
manifolds, r1 and two groupoids on and respectively. Assume that
there exist two homeomorphisms of the groupoids F1 and

2 >r1
(1)

M2 >142

such that = , f.i = idM and r1im I c in i, yi(y1) =
2 2

The need to consider such a pair of groupoids is explained by the follow—
tng. H = be a smooth manifold, be the r-tangent bundle of 14,
H1 = TrM. Let be a given G-structure on 14. Let r2 be a groupoid of
germa of automorphisms of the G-structure P(M,G),let r1 be the groupoid of
germs of lifts of elements of F2 to 1"M, and be the r-prolongetion of the G-
structure P(14,G). It is a Gr_structure on TrM, where G' is the r-prolongation
of the group G. Let i:M + 1r14 be the zero section. Then the mapping
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defined as follows:

c r1.

The mapping we define as the natural projection. Of course, these
mappings are homeomorphisms of groupoids.

If F is a G—foliation modelled on B(N,G), then the foliation f is a Gr_

foliationmodelled on B'(N,G). Thus a G-foliation is a = r-structure for
a suitable choice of the groupoid r, and then the foliation Fr is a

structure.
Let (F1,g1) be a r1-sheaf over M1, and (f2,g2) be a r2—sheaf over A

cohomeomorphism F of F1 into over i Is called a (r1,r2)-cohomeomorphism
if, for any x N2, v E y cs1(y) 1(x),

F(g1(y)(v))

After long computations one can show the following.

Lemea 5 Any (r1,r2)-cohomeomorphlsm F of the sheaves F1 and induces a
mapping in cohomology:

F*:H*(BF1,F1) ) . (2)

As the next step of the proof let us consider the following situation.
Let ir:X Y be a continuous surjectlon, = be a covering of Y, and

p {i(1(U1)} be a covering of X. Let be a continuous functor,
F2:Y11 + r2, let F1 be another continuous functor, r1, such that the
following diagram Is conunutative

F1

Additionally, we assume that there exists a section of iT, X such
that lily We require that the diagram
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F'

F on on B(M,G) defines such a pair of functors.
We have to take Y = II, U the open covering of the dfming cocycle, r2
X = i(M,F), r1 = rr, = = V1}.

A F1-sheaf (F1,g1) defines via a sheaf F on the space X, and a
r2-sheaf (f21g2) defines via F2 sheaf F2* on Y. For the details see [3).

Leiua 6 For any (I'11r2)-cohomomorphlsm F of the sheaves F1 and and any
two cofunctors F1 and F2 such that the diagrams (3) and (4) are conrutative,
the following diagram Is comutative:

H*(X,FF1) (. H*(Br,,F1)

I (5)
F*

* V
F(

Having proved the properties contained in Leninas 5 and 6, we can complete
the proof of Theorem B. Let us remark first that as a model G—structure we
can always take a trivial G-structure, but then the manifold N does not need
to be connected.

Let N be a manifold and let P(N,G) be a trivial principal G-flbre bundle.
Letrbeagroupoid of germs of automorphisms of P(N,G). The tangent bundle
TP admits a natdral action of the group G; let Q = TP/G, let I be the tangent
bundle to N, and let I. be the associated fibre bundle with P with standard
fibre g = Lie(G). Let I., I denote the r-sheaves of germs of sections of
the fibre bundles L, Q I, respectively. Then the following sequence of
sheaves is exact:

(6)

Denote by Qr the bundle TPr,Gr over IrN, by Tr the bundle fl.rN Let
i:N -'. IrN be the zero section. We have the following conmutative diagram
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of sheavesand their (r,r")-cohomomorphisms over

o
1r

>

(7)

o Q —> 1 —4 0
In the proof of the fact that the vertical arrows, defined by the mapping
are we use the existence and properties of liftings
of vector fields (ci. [2], (6]).

From diagram (7) we get

o

I (8)

o + !2m(lA) + 0

and therefore the following diagram of long exact sequences is coirniiutatlve:

o Homrr(T",Q") Horn r(T",T') .i.).

o Homr(T,L) -t Homr(T,Q) 4 HOmr(T,T) _!4 H1(Br,Hom(LLJ).

Let us take as the sheaf F1 the sheaf Hom(TrLr) and as the sheaf
Hom(T,L). As the F over i we take the corresponding
vertical arrow. Then from diagrams (9) and (5) we get the following coirnnu-
tative diagram, taking into account that the sheaf is equal to
the sheaf and FHom(!,L) to the sheaf where
p(g") and P(g) are the associated fibre bundles with the standard fibre gr
and g, respectively:

HI(Brr,Hom(Tr,Lr))

1

•j,b (10)

HOmr(u,T) + H (Br,Hom(T,L)) >H

According to (3], the Atlyah-Mollno class of the lifted foliation
F" Is equal to
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N4[Fr] ó(Id1r).

Then

=

One can easily check, directly front the definition, that a(Id1r) = Id1.
Thus b(AM[Fr]) = A14(F).

Up till now we have considered the foliation ( as a r"-foliation. Let rr
be the groupoid of germs of automorphisms of the r-prolongation
of the G-structure P(N,G). This groupold contains the groupoid rr as an
open subgroupoid. We have also to consider the foliation as a rr-folia-
tion and look at the relations between the Atiyah-Molino classes. It Is not
difficult to check that they are equal. This last remark effectively ends
the sketch of the proof of Theorem B.
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CTJDODSON
Fibrilations and group actions

1. FIBRED MANIFOLDS

The aim of this paper is to present some results on fibred structures which
may be viewed as generalisations of fibre bundles, and to report some joint
work with D. Canarutto concerning the stability of frame bundle Incomplete-
ness which has for quantization in general relativity.

The context is thai of fibred manifolds (or surmersions) the geometry of
which, following Ures,nann, has been studied in particular by Llbertnann,

MangiarotLi iudugno, Ferraris and Francaviglia. The geometry is
quite rich becaLI3e a fibred manifold may be viewed as the least structure
needed to suv

A submersion E B. Then p has
maximum rank F Peas an open neighbourhood V and a mani-
fold with OV:V pV x over p. We shall call a

fibril. A fibred manifolds Is a commuting diagram of smooth
fibre-preservin I

p

--

B

There is a.naturäl composition of such diagrams, so yielding a category FM.
One reason for studying this category is that it admits puilbacks; in fact,
that is a consequence of the following result, which says that every finite
diagram in FM has a left limit.

Theorem The category FM is finitely left complete.

Proof It is sufficient to show that FM finite products and equalizers.
The former Is clear enough. Consider the equalizer diagram of conhinzting
squares:
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E2 < E1 —--———4

p1 = F1 > F2

82< 2 B1 1
> B2

Our candidate left limit object is E —3--> B F, say)with

E = {y E11f1(y) f2(y))

}
= {x

p1E = B, E is a smooth submanifold of E1 and p is evidently a smooth
surjection.

Take any y E, then by connutativity in the tangent diagram,

=

so p Inherits the submersion property from p1.
The morphism required for the universal property can be. obtained from

inclusions and compositions.

2. SHEAF STRUCTURES

A smooth map p:E -, B is a sheaf manifold over B if p Is an open, local diff€'-
omorphism.

The categories of sheaves on smooth manifolds and sheaf manifolds are
related via a functor which carries sheaf to sheaves of their
smooth local sections.

p
Proposition fibred manifold E —94 B is a sh€. nifold over B if p is
open and its are discrete spaces.

In the case, sheaves and sheaf actually equivalent
as a given base space, for there the 'i'1ctor, carrying sheaf
spaces to of their continuous local ar inverse which
carries sheaves to sheaf spaces of germs of :wns. However, this
Inverse is not available to us even for fibred topological spaces, because
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the latter need not have discrete fibres, Of course, the fibrils of a fibred
manifold constitute a sheaf and this may allow any coniiion algebraic structure
to be exploited.

p
Proposition Every fibred manifold E > ) B determines a sheaf SE of smooth
local sections of p.

Proof First we obtain a presheaf cofunctor

S Set : U S(U,E) = (a E EVIPa =

!

a fibred every point of E has a sectionable neigh-
bourhood over a sufficiently small base set; so SE is not empty.

Now take any open cover A) of any U 1(B). Suppose that we have
a collection S(U ,E)I cx A) with

Unu
(va,B A) 8a =

S a cx
B

Hence Gala a8i8, Then by functoriality of S

Unu Unu U Unu UaB aB a aB B
PU PIJci U8 PU

fl U8

'cx)

E ( U8

Define a:U + E : x + If x e U.
It follows that a E S(U,E) and, as required, it satisfies
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a = = a.

S determines a functor from the category of manifolds over
B to the category of sheaves over B.

3. G—FIBRILATIONS

A group—fibriZation is a fibred manifold E B with a action a over
B by a Lie group G acting as a group of fibred manifold automorphisms of E.
We shall denote this by G x E _29 E 29.4 B and call it a
Logically we might call a fibred manifold a

A of group-fibrilations is a cosmnuting diagram of smooth maps
with f a Lie group homomorphism:

GxE E > B

I
,

B'

Again we a category, under diagram compositlom. Is clOsed under
finite prodects and we can use the FM equalizer but In we cannot
obtain a suitable G-fibrilation equalizer except by takhul it with trivial
6, and likewise for puilbacks.

Proposition Let 6 x E E >B be a G-fibrilatioe.
Given a smooth curve c B and any y0 there is soma

positive 6 and a smooth curve E:(—6,6] E with pE — Moreover

is a,mth.r such curve for all smooth curves-$(—6,4] y(O) — 1.

Proof Since E 24—4 B is a fibred manifold, we can somi open neighbour-
hood V of y0, a fibril and diffeomorphism

Take 6 > 0 with c(—6,6] c pV, possible since E is a manifold.. Difine
pV x : (x,v) • v. Then,

(-6,6] E : t

293



is smooth and projects onto the restriction of c to (—s,5). Also, if y.(t) EG
then the action automorphism acts vertically so is well-defined for
the same it may leave V.

•The usefulness of this lifting is essentially measured by 6, on a scale
from zero to c; the more of the curve that can be lifted the better. It may
be of value to take the supremum of t5 over all fibril neighbourhoods of y.
Each lifted curvn determines a transport process among fibrils over the
base curve ad extends, the 3ction of G, also to their

Next we cm G-fibrilations, essentia ., the

same way . C8J.
A cclnnection on a G—fibrilation G x E E )—>B is a smooth

dimensional distribution on E

r:y -, c with TPIH

that is invai'iant under a, namely:

H H (vy€E,vg€G).agY 9 Y

We see that a G—flbrilatlon generalises the notion of a G—bundle. It has
a local product structure that is not locally trivial nor even a fibration,
since the fibres need not be homotopic. Moreover, the action of G is not
necessarily transitive nor free. However, locally a G-fibrilation has a
sufftclently simple structure to make differential analysis easy through
adapted charts. Moreover, It can support the useful geometric notion of an
invariant connection. The study of these was begun In (3) where some princ-
ipal bundle theory was adapted to obtain induced and coinduced connections
from group—fibrilatlon morphisms. Jet calculus and connection geometry on
fibred manifolds (Cf. (8], (9], (4], [7] for example, and references therein)
Is transferable to G—fibrilations which may prove a useful setting for varia-
tional problems with group syninetries.

We turn now to a result concerning a very particular type of G-fibrilatlon;
namely, a principal 6—bundle.
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4. CONNECTION-STABILITY OF BASE SINGULARITIES

It is well known that the notion of geodesic completeness is Inadequate for
pseudo-Riemannian manifolds, such as spacetimes, where It has become the
practice to lift the problem to a convenient bundle by a due to Schmidt
(10] (cf. also (2] for a detailed accountand survey). General theorems
suggest that any theory of gravity is likely to predict physical singular-
Ities In the classical geometry. Recently,.we have proved the iollowing
result for manifolds with linear connections.

Theorem Bundle-incompleteness is stable under perturbations of the connect-
ion.

The geometric details of the proof are given In (1] and they depend on
Nodugno's structure of connections (9]. This is a flbred aenifold JP/G
where In case P P(Gj4) is the frame bundle, sections of which are
connections r:P + JP invariant under G (cf. Libermann (8]). Our trick is
to use a canonical connection (cf. (5]) on the fibred manifold
6P/G x P .JP/G to obtain a bilinear form on its total space. Now, this
restricts to become a Riemannian metric on certain submenifolds which have
diffeomorphisms to the frame bundle and these become isometries for each
choice of connection. Then, If M is bundle-incomplete with respect to one
connection, it is also bundle-Incomplete with respect to a nearby connection.

This theorem has physical significance in that it lends weight to the
belief that general relativistic singularities cannot be quantized away. It
was already known from the work of Gotay and Isenberg (6] that geometric
quantization of a massless klein-Gordon scalar field on a positively curved
spacetime could not prevent the collapse of the state vector. Our result
Is more and not tied to any particular method of It
may also be useful to extend it to the case of nonlinear connections when
they can be made to induce suitable metric structures some convenient
fibred manifold total space.
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M FERRARIS & M FRANCAVIGLIA
The theory of formal connections and fibred
connections in fibred manifolds

1. INTRODUCTION

In the framework of higher order calculus of variations in a fibred manifold
Y = one often encounters fields of objects which may be naturally
identified with sections of vector bundles of the kind

T(X)

where V and I are standard functors and (p,q,r,s) are non—negative integers.
Objects of this type are called in short '(fields of) fibred tensors°,
because of their transformation properties under changes of fibred coordi-
nates In Y. As an example, we can mention Lagrangians, their vertical
differentials, momenta, etc.

The local structure of higher order calculus of variations is fairly well
understood, both at the L.agrangian and at the Hamiltonian level. However, in
many physically interesting situations one needs to deal also with global
problems, which only recently have received serious consideration and have
been given a reasonably satisfactory Penong the global problems
that have a a nuober of different interpre-
tations we r.c11 the problem of a correct global definition of the so-called

fcrm' (which bas long keen known to exist upiquely for
to exist uniquely also for higher

order mache und first ordme field theory, but recently shown to be
highly non—unique in the meat general sItuation; (2], (8], (9), (10], (11],
(12), [13], [17], (19]). -

There are of course several tediniques to handle global problems (direct
methods of globalization from local or intrinsic methods based on
sophisticated tools such as sheaf theory, cohomology, etc.): In the direct
dpproach, one of the standard procederes consists in trying to patch together
local expressions by showing that their transformation laws may be Interpreted
as transition functions of suitable bundle. A major difficulty which
arises in applications to higher order calculus of variations is hidden In
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the wide use of the so-called "formal derivative operator", which unfortun-
ately does not transform fibred tensors Into fibred tensors. More pre-
cisely, If

a fibred tensor t, the formal partial dervatives

'°2'
1' 2'"'

are no longer components of a fibred tensor. Accordingly, it Is convenient
to replace higher-order (formal) derivatives of fibred tensors with suitably
defined "formal covenant derivatives", constructed In such a that they
transform again as fibred tensors. For this purpose, one needs first to
Introduco suitable global objects which are called "forusi connections" and
then use a formal connection to define a "fibred connection" which allows
calculation of formal covariant derivatives of any ftbred tensor.

A preliminary short discussion of formal connections and fibred connections
In fibred manifolds has already been given In (2] and [5] and the purpose of
this paper is to provide a more detailed exposition of this subject. Appli-
cations to higher order calculus of variations have already been discussed In
[2], [3], (5], where the existence was shown, by an explicit construction,
of an Infinite family of Polncari-Cartan forms parametrized by a family of
"f I bred connections".

In this paper we shall first define the relevant notions in the classical
coordinate formalism and then we shall turn to more intrinsic definitions in
terths of principal fibrations and exact sequences of vector bundles. Section
2 wIll be devoted to a short discussion of preliminaries and notation; fri
SectIon 3 we shall develop the theory of formal connections and formal '(first-
order) covaniant derivatives; Sections 4 and 5 will contain the intrinsic
description of these notions.

2. PRELIMINARIES AND NOTATION

We shall here recall some standard definitions and set the notation which
will be used throughout this paper. We assume that the reader is already
familiar with differential geometry In fibred manifolds and with the theory
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of jet-prolongations (details and references may be found in [13] and [18]).
All manifold and fibred manifold structures considered here are assumed to
be smooth in the category of (paracoinpact) topological over the
reals.

Let X be a manifold and let Y = be a fibred manifold over the
manifold X. The vertioal bundle of Y IS = (Vx(Y),X,nbvy). where
Vx(Y) = Ker(Tn) c 1(Y) and the restriction to Vx(Y) of the canonical
projection V. If U = (U,Y,v) is a fibred manifold having for basis
the total space Y of Y (namely, we have a double fibration over X), then the
composition defines a fibred manifold We recall that In this
case Vx(U) stands for while stands for Ker(Tv). Whenever
there is no need to specify the basis manifold 0f the fibratlon we shall omit
the basis from the notation (writing, for example, V(Y) instead of Vx(Y)).

For any quadruple of non-negative integers (p,q,r,s) we shall also set
and we define the following family of vector

bundles

=

where Tr(X) denotes the standard tensor power of T(X). The sections of
over V will be called (fielde of) fibred teneore over Y.

For any point y £ Y we consider the space consisting of all bases
of tie vector space = and we form the union

VF(Y) u VF (Y).
yEY

This space is endowed with a natural manifold structure and it Is fibred over
Y by the canonical projection . V. Moreover, there is a canonical
action of the linear group GL(nR) (n dim(Y) - dim(X)) onto the fibres

which Induces on VF(Y) a natural structure of principal GL(n;R)-
bundle over Y. The bundle is shortly by VF[r1]
and It is called the bundle of vertical framea of Y.

The k-th order of V (where k is any non-n'egative
Integer) is denoted by iktri] Also in this case, whenever
there is no danger of confusion we shall omit the Indication Of the basis
manifold X. For any pair (r,s) of integers there is a canonical embedding
r,s r+s r SI :J (Y) J (J (V)). For any local section o:X V we denote by
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ik0.x the k-th order jet—prolongation of a.
If Z = is a further fibred manifold over X, a fibred morphism from

the fibred manifold V into the fibred manifold Z is a map F:Y + 2 such that
= rj. For any integer r 1 and any fibred morphism F:Jk(Y) + with

k > 0, we define the r-th order (holonomic) prolongation P(F) of the
morphism F, by setting

r(F) = :
jr(2) (2.1)

where JrF) .. denotes the standard r-th order jet-prolong-
ation of the fibred mornhism F.

f:Jk(Y) +R be a smooth map. There exists a unique 1-form Df over
the manifold Jk41(y) such that the following holds:

(11k+I)*(Df) a d((jko)*(f)) and — 0

for *ny (local) section a:X Y and any field of vertical vectors
+ here i(.) denotes the Interior product between

vectors and forms. The unique 1-form D? smt$sl4es the properties above
is calld the differential of the f.

For our later purposes we now turn to ltst coordinate notations which
will be used throughout the paper. Consider a flbred manifold Y, with
m = dim(X) and n — dim(Y) — dim(X). If a with 1 A •, is a
local chart of the manifold X, Its domain Is denoted By a fibred

of Y over Is denoted by = (W;xA,yi) (with x 1,...,m and

I = 1,...,n); the local coordinates associated to a fibred chart will be
called fibred coordirtatee. If = (W1 ;X1' is a further fibred chart
whose has a non-empty intersection with and

a A'A y1' =

are the corresponding transition functions, the following notation will be
used to indicate their partial derivatives:

a = a.A/axX, = (xA,yk) a

a

and so on.
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A fibred chart * of Y induces canonically in a fibred chart with
coordinates ,v1) and a fibred chart in J En], with coordinates

(here is a multi-index with 0 k). All
charti induced canonically by fibred charts of V will be called natural
fibred oharta.

For any fibred chart of Y, the formal differential Df is defined over
the domain of *k+1 and its local representation is Df = (dxf)dxA, where the
coefficients are given by

dxf af/axA • y1 (af/ay1). (2.2)

Here standard multi-index notation has been used: denotes the multi-index
(0,...,0,1,0,...,0) (with 1'in the x-th position) and sunination of multi-
indices is defined componentwise. The meaning of Df is clear from the local
expressions above. We remark that the partial differential operator is
often called the formal partial derivative with respect to the coordinate
xx.

Let us now consider any field t of fibred tensors in having

local components -

in any natural fibred chart. easy but tedious calculations show that the
local functions defined by

d ii j1,j2,... ,j
do not transform as the local components of a field of fibred tensors in

For example, we have the following transformation law for the
formal partial derivatives of the components v1 of a vertical vector field:

= + + (2.3)

This localformula Is our starting point toward the definition of formal
connections, which will be discussed In the next section.

We finally recall the following well known alternative intrinsic defini-
tions of connections in a principal G-bundle P = (P,M,1T;G), over any manifold
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M with structure group any Lie group G

(i) There exists a natural action J'(P) x G + J1(P), which is by
the first prolongation of the canonical (right) action of G onto P

This prolonged action is free and differentiable and it admits a quotient
maniftid = J1(P)/G Moreover, it can be shown that the canonical pro-
jection k N is a (surjective) submersion. The fibred manifold

= ) is an affine bundle, because the affine structure of
J1(P) over P can be shown to pass to the quotient Finally, there exists
a canonical correspondence between the space of global sections
of the bundle and thetspace of all connections of the principal bundle
P (see [7])
(ii) Given any G-bundle P, there exists a short exact sequence of vector
bundles and vector bundle morphisms over M,

0 V(P)/G -, T(P)/G 1(M) 0,

and any w 1(M) -' T(P)/G of this sequence defines a coonection of
P (and versa).

3 CONNECTIONS AND FIBRED CONNECTIONS

As we already announced in the Introduction, the of this paper is to
define a family of objects which allow replace.entOf the partial formal

of the components of any fibwed tensor by local functions which
still ha* a "fibred-tensorial behaviour Objects of this kind will be

"fibred connections' and it turns out that their major ingredient is
a of a suitably defined affine bundle over which will be

"formal connection" over Y. In order to fibred connections
derivatives of fibred tensors, be convenient

first the notion of formal covariant derivahve of a fibred morphism
+ V(Y), with k any non-negative integer Derivation of fibred

tensors vrll then be defined by standard tensorizatloft procedures.
us. consider a fibred manifold Y = together with fibred

morphiss + V(Y). For any fibred chart * of V1 we introduce a set
of local ssoeth functions + and we set by definitions

= + (3 1)
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where a V1 o F are the components of the morphism F with respect to
the given fibred chart Let us then require that the local expressions
(3.1) above define the components of a fibred tensor in Easy

calculations based on relation (2.3) tell us that the local functions
should obey the following transformation laws:

- - (3.2)

for any pair (4,,g,) of fibred charts of Y such that Dom(4,) n Dom(qs') i' 0.
It is easy to show that the relations (3.2) are invertible any satisfy

the composition property of a cocycle over the manifold 31(Y) with values
in the Lie group GL(n2.mR). Accordingly, they define the transition func-
tions of a bundle = over ,.J1(Y) Itself, which is
unique up to isomorphlsms. It is easily seen from (3.2) that this bundle
can be given a canonical structure of affine bundle over J1(Y); moreover,
whenever is affine, is the pull-back over J1(Y) of an affine
bundle over the basis X. The bundle will the bundie of
oonneotiona over fibred manifold Y; being an affine bundle, it admits
global sections + e(J'(Y)), which we shall call oonneotione
over

Turning to local coordinate expressions, let us first r.mirk that any
fibred chart g, of! induces in a canonical way a natural fibred chart of
the affine bundle C(n1], with fibred coordinates In such a
natural chart, the local representation of a formal connection over V has
then the following expression:

> (3.3)

where the functions are defined in the domain of the
given chart and transform according to (3.2).

We turn now to define the foz,w1 covariant derivative of a fibred mor-
phism. We consider then any formal connection F over ! and we set, in any
fibred chart of Y,

= + . (3.4)

where (xA,yi,va,yl,va) are the natural fibred coordinates in J1(V(Y)) Induced
by the given chart of Y. It is easily checked that the relations (3.3)
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define in fact a global vector bundle morphism over

v:J1(V(Y)) > V(Y)

which will be called a covariant derivation (associated to the formal
connection ft).

Let now F:i(Y) v(Y) be any (global) fibred morphism over V. We con-
sider the holonomic prologation p'(F) = J1(F) o and we define fibred
morphisms and v(F) by setting

V(F) * VoJ1(F) —+ v(Y) (3.5)

and

v(F) Vep'(F) Jk+l(y) >v(v) (3.6)

These flbred morphisms are respectively called the anhoionai,ic and the
fowirvzi covariant derivative of F with respect to F; they are the

unique (global) fit into the diagram, Figure 1.

V
J'(V(Y))

V(Y) . JK(y)

Figure 1
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Consider now a local section v : X • V(Y) and define Its fo1n,zi oov4wiant
derivative (with respect to as the section of V(Y) obtained by
setting

V(v) voj1(v) : X > (3J)

For any local section : x . the composition F Is a local
section of V(Y) over X. Therefore we can calculate its formal covariint
derivative, which is easily shown to satisfy the following property:

v(F = v(F)ojl(ak). (3.8)

In particular, If ak Is the jet-prolongation jk(0) of a local section
a:X • Y, relation (3.8) and Figure 1 imply the following:

v(F e jk()) v(F) jk+I(a). (3.9)

We are now in a position to define foriaal covariant derivatives of any
field of fibred tensors over V. In fact, let us first remark that standard
tensorizatlon procedures allow us to extend the notion of formal covariant
derivative to morphisms from into any bundle for any pair (p,q).
On the other hand, whenever a linear connection y is given on X, one may
calculate covariant derivatives of any tensor field over X. Accordingly,
any pair r consisting of a formal connection F over Y and of a
linear connection y over the basis X, will naturally allow us to define
formal covarlant derivatives of morphisms from into any bundle of the
form Any such pair r will be thence called a
fibred connection over V.

A standard construction then provides uniquely, for any fibered connection
r and any quadruple (p,q,r,s) of non-negative integers, a global vector
bundle morphism

(y)(q,s) (q,s) > (q,s+1)

over V, which will be called the covariant derivation (of fibred
tensors of type associated to the fibred connection r. (In the
sequel, whenever there is no danger of confusion, the of the type
(p,q,r,s,) will be omitted and we shall more simply write v). The local
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coordinate expressions for V may be easily from the definitions
given above. As an example, the expression of the relevant part of V In the

Isgivenby:

° V = + +

10)faa A I faa 6( A)
k8 'so' - ba X

where and are the natural fibred coordinates
In and respectIvely,induced by a fibred
chart of Y. The generalization of fornula (3.10) to arbitrary values of
the four Integers (p,q,r,s) is analogous to the standard one for covarlant
derivatives of arbitrary tensor fields over a manifold and to avoid con(pli-
cited expressions, It will not be reported here.

It is now easy to define also the and lioionomio fo1I'mzi

ooua2'jtint der.ivativ. of any morphism F:Jk(Y)
a conmiutative diagram by the obvious replacements in Figure 1,

which yield the following:

VoJ1(F) : (3.11)
and

Y(F)— V. p1(F) : yP(y) (3.12)

In terms of these notions, we have the following intrinsic characterization
of the operator v. Let us first remark that the set of all fibred morphisms. for all integers (k,p,q,r,s), forms a graded algebra
FE(Y) over thermals. (This algebra Is In fact the pullback over f(Y) of
the graded algebra of all fibred tensors over V.) Thee V is uniquely
characterized by the following property:

Theorem I Given any fibred connection the differential operator v
defined bj (3.12) is the unique derivation of the graded algebri fl(Y) which
satisfies the following properties:
(1) v restricted to functions coincides with the formal derivative D;
(II) v restricted to vertical vector fields coincides with the operator

V defined by (3.6);
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(lii) V restrictfd to "horizontal' tensor fields coincides with the covenant
derivation with respect to y;

(iv) V comnutes with contractions.

Proof The proof of this theorem is straightforward, by recalling that V is
local by definition and applying a classical theorem of Wilimore concerning
the extension of differential operators on tensor bundles (see, e.g., (13,
p. 50).

4. FORMAL CONNECTIONS THROUGH VERTICAL FRAMES

In this section we shall provIde a first Intridsic definition of the bundle
of formal connections, discussing an equivalent construction through

suitable quotients of jet-prolongations of the bundle
of vertical frames in 'V.

Let us then consider the principal bundle of
vertioai framee of the fibred manifold where G = GL(n,P) with
n * dlm(Y) - dim(X). We denote by A VF(Y) x G VF(Y) the canonical
(right) action G onto VF(Y). If we prolong this action with respect to
the projection we obtain a natural right action

A,; : x G 4(VF(v))

whose quotient manifold defines the bundle = The

sections of are in one-to-one correspondence with the linear connections
of the vector bundle which will be called the connection8 of Y.

Composing with we obtain a further fibred manifold
Although this Is not a principal bundle over X, we may adapt to it the above
construction. In fact, there exists a natural right action

: 4(VF(Y)) x G -9 4(VF(Y))

which is obtained by prolonging A with respect to the projection
This action Ak is free and differentiable and it admits a manifold
Kx(VF(Y)) having a natural projection over which makes
It an affine bundle over the manifold J1(Y) itself. Turning to local cal-
culations in natural fibred coordinates, one can easily show that the bundle

and the bundle constructed above admit the same transition
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functions, so that they are canonically isomorphic as affine bundles over

Since the natural composition of functions induces a (natural) eplmorphipm
between first jets of functions, there exists a natural epimorphism *

J1(VF(Y)Y) x J1(VF(Y);X)

which by restriction defines an epimorphism a from x onto
4(VF(v)). It Is not hard to show that this epimorphism is equivariant under
the prolonged actions and so that it passes to the quotients and
defines uniquely a natural epimorphism which fits into the coninutative
diagram, Figure 2

K9

x (Y) (VF(V)) C(J1 (Y))

Figure 2

A local coordinate description of the projection & may be given as follows.
Let us fix a fibred chart (W;xA,yl) of V and let us denote by (xA,yl,yl,

and ,y1 ) respectively the induced fibred coordinates in
x and Kx(VF(Y)). Then the epimorphism & reads as follows:

(4.1)

from which it is immediately seen that & is in fact an affine morphism of
affine bundles over J'(Y).

5. FORMAL CONNECTIONS AS SPLITTINGS OF EXACT SEQUENCES

We give here a further description of formal connections, in terms of splitt-
ing of exact sequences of bundles. Let us then consider the exact diagram
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of vector bundles and vector bundle morphisms over the manifold V shown in
Figure 3, where G is the group which acts naturally on VF(Y)C i1
and are natural einbeddings; (with I = 1.2,3,4) are natural projections.

(VF(Y))/G V., (VF(Y))/G

1 1
® 0 T(VF(Y)WG Q

I
0 -ø Vx (Y) 7(Y) - 0

-0 0

Figure 3

We then define affine bundles (C1(Y),Y,c1) Ci = 1,2,3,4) by setting

C1(Y) = {r1 (Vx(VF(Y))/G) ey(Vx(v))* I ° Id1)

c2(Y) {r2 (T(VF(Y))/G) (T(Y))* iT2 F2 Id2)

c3(Y) = {r3 1(Y) I Tf3 = Id3)

c4(Y) {r4 (T(vF(Y))/G) (T(x))* I F4 = id4)

and taking for c1 the natural projections onto Y (here Id1 are abbreviations
for the appropriate identity mappings). From these definitions It follows
directly that the spaces r(c1) of all global sections r1:Y C1(Y) coincide
with the spaces S1(r,) of all splittings of the four exact lines of Figure 3.

We remark the following:

(1) The splittings r1:V(Y) Vx(VG(Y))/G of the first short exact column
(I.e., the elements of rCc1)) allow definition of covariant derivatives of
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vertical tensor fields along "vertical directions". For this reason they
might be called very vertical connections. Since they have nQ direct rele-
vance to our present purposes they will not be discussed here.

(ii) The splittings r2:T(Y) + T(VF(Y))/G (I.e., the elements of
coincide with the vertlcal connections over V which have already been defined
in Section 4 above.

(iii) The splittings r3:n*(T(X)) 1(Y) (i.e., the elements of r(c3))may be
called nonlinear connections (or "generalized connections") over the fibred
manifold V. They have been considered by several authors, also in view of
their possible application to physical field theories (see, e.g., [15]).
(iv) The splittings r4:n*(T(x)) T(YF(Y))/G (i.e., the elements of r(c4))
will be called here formal preoonnectione over V. In fact, as we shall see
below, although they do not correspond directly to formal connections, it is
exactly this row of the diagram which allows us to define formal connections
over V. The rest of this section will be devoted to a discussion of this
claim.

We have the following:

Proposition I There are canonical projections C1(Y) and
C3(Y) which define affine bundle structures.

Proof From the exactness of Figure 3 we have

• im(11) = ker(,r4) = ker(ir3 °

=

so that a canonical projection + C1(Y), may be defined by setting

r2 (5.1)

All the bundles and mappings involved are affine and easy calculations show
that also the fibration (C2(Y),C1(Yh4) defines an affine bundle over the
manifold C1(Y).

Let us then define a mapping : C4(Y) + C3(Y) by setting

o r4. (5.2)
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From the coninutativity of Figure 3 and our definitions above, see that
is well defined and turns out to be an affine surjective submersion, so

that is an affine bundle over C3(Y).

We have also the following result:
PropositIon 2 For any fibred manifold Y there exists a canonical epimorphism
j:C2(Y) x + c4(Y), defined by

JU'211'3) r2 ° r3.

Proof Since is a splitting of (2) and is a splitting of (3), the
composition is well defined and provides us with an injective mapping from

into T(VF(Y))/G. Owing to the coninutativity of Figure 1 we have
also iT3 ° it4. This implies that ° is a splitting of (4). Sur-
jectivity of j is easily shown in local coordinates (see E6]).

Finally, we state the following:
Theorem 2 There exist canonical isomorphisms A:C3(Y) + J1(Y) and
MC4(Y) + C(J1(v)) of affine bundles over Y, such that Figure 4 is coninut-
ati ye.

C2(Y) -4

Pr1
C4(Y)

A

C1(Y) 93(Y) - J'(y)

I I
Figure 4

Proof Let us first recall that an equivalent definition of first—order jets
of a fibred manifold Z = assures the existence of a canonical one-
to-one correspondence between global sections + J1(Z) and splittings

T(Z) of the canonical exact sequence
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• 0 V(Z) 1(Z) > 1(X) - 0.

Accordingly, there exists a canonical one—to—one correspondence between
splittings r3:n*(T(X)) T(Y) and global sections a:Y J1(Y), defines
uniquely a canonical ,isomorphism x:C3(Y) J1(Y) of affine bundles over V.
By analogy, from the above definition of C4(Y) one can see that
there exists a canonical one-to-one correspondence between splittings.
r4:n*(T*(X)) T(VF(Y))/G and global sections a:V 4(VF(V))/G,
turn provides a canOnical isomorphism A:C4(V) + e(J'(Y)).

It is imediate to see that it projects Onto A, i.e., the following holds:

Therefore these affine isomorphisms fit into Figure 4 and make its right-hand
square comutative. The rest of Figure 4 is coninutative by virtue of Pro-
positions I and 2 above.

We are now in a position to explain the terminology "formal preconnectionsTM
we used above to denote the splittings r4 of (4), by showing how they allow
one to construct an important sub-family of formal connections over Y.

For this purpose, let us first consider the exact coninutative diagram
(Figure 5) of vector bundles and vector bundle morphisms over J1(Y), which
is obtained by over J1(Y) of the conmiutative Figure 3. DefIne

(VFrfl)/G)

'I I
o —0 0

I, I II
o L 0

o
Figure 5
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then affine bundles over J1(Y) by setting

1

'

(1 1,2,3,4), so that their global sections Jt(Y) + C(Jt(Y)) can be
canonically identified to the splittings of the fourexact lines of Figure 5
(numbered as in Figure 3). From the definition of pull-back bundles, it
follows that any section r1:J1(Y) + C1(J1(Y)) may be canonically and uniquely
Identified to a function : J1(Y) which satisfies the relation

i.e., such that Figure 6 is coimnutative.

Jl(Y) C1(Y)

V

Figure 6

We remark that all pull-backs where is any section of
are sections of the bundles C1(ri1), although the converse Is not true (i.e.,
not all sections of are pull—backs). In particular, the short
exact sequence

0 0

admits infinitely many splittings

which form a space, say much larger than the space of pull-backs
of all splittings r4:rI*(T(X)) T(VF(Y))/G.

- Let us now recall that there exists a canonical embedding
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I :

which is in a. splitting of thd short exact sequence

0 0.

This Implies that all me buncfle C3(J1(Y)) + Jt(Y) admits a canonical
section

K3 : J1(Y)

the mapping 1(3 ': C3(V) associated to K3 satisfies the
relation

(5.3)

where x:C3(Y) -* J1(Y) is the canonical isomorphism described in Theorem 2
above. As c.nsequence of (5.3), it follows that there is no section
r3:Y se coincides with 1(3..

We claim the following:

Theorem 3 There are infinitely many splittings r4 S4(111) which are not
pull—backs and which satisfy the following relation

113 ° r4 K3,

namely, they are projected onto the canonical section 1(3. Moreover, the
space of all these splittings r4 c is in one—to-one correspondence
with the space of all formal connections over V.

Proof Let us first recall that the formal connections over V are by
definition the sections of the affine bundle so that they are the only
functions ?:J1(Y) which fit into the coranutative diagram, Figure
7. Let us also recall that there exists a isomor'phism of affine
bundles over Y, A:C4(V) C(J1(v)), so that all sections r4:J1(Y) C4(J1(Y))
may be uniquely and canonically identified (through A) to all functions

+ which fit into the couvautative diagram, Figure 8.
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'4

Figure 7

r4

Figure 8

However, there are infinitely many functions ?4:J1(Y) . C(J1(Y)) which
fit into Figure 8 but do not make also Figure 7 coninutatlve (i.e., which are
not formal connections). For example, if r :Y -. C CV) is a splitting of

the mapping r4 uniquely associated to its pull-back (ri0)*(r4)eS4(ri )
cannot make Figure 7

Using relation (5.3), recalling the definition of and the above
identification, it is easy to see that a splitting r4 is projected onto the
canonical section 1(3 (i.e., its satisfies (5.4)) if and only if its associated
function makes Figure 7 coninutative. Accordingly, to generate the whole
family of splittings F4 satisfying relation (5.4) amounts to constructing
them out of all formal connections, which are infinitely many. Finally, the
fact that all splittings satisfying (5.4) are not pull-backs follows trivially
from our remark above that the canonical section K3 is not a pull-back as
well.
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Remark A formal construction which allows us to generate the whole set of
splittings satisfying relation (5.4) through the existence of a surjective
mapping from 52(n1) onto will be discussed elsewhere (see [6]), where
we shall also give local coordinate descriptions of all the notions introduced
In this paper.
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J GANCARZEWICZ
Horizontal lift of connections to a natural
vector bundle
0. INTRODUCTION

Let 1T:E + N be a vector field and D be a connection in E, that is,

D 1(N) x E 3 (X,s) E

is a mapping (where 1(M) denotes the module of vector fields of class on

N and E denotes the module of sections of class of E) which satisfies the
following conditions:

Dfx + gys = f D>5 + 9 DySi

Dx(S + 5') + DxS',

Dx(fS) = x(f) S + f
for all vector fields X, V on H, all functions f, g on H and all sections s,
s' of E.

In Section 1 we recall the basic properties of a connection in a vector
bundle E. In particular, we define the horizontal lift of vector fields from
N to E.

In Section 2 we study vector fields on E.
At first, for each section a of the dual vector bundle E* we define a

function a on E. This family of functions is very important in the study of
vector fields on E because two vector fields X and V on E such that X() =
Y() for all a coincide on E (see Proposition 2.1). We prove (Proposition
2.2) that the horizontal lift xD of a vector field X from N toE verifies
the formula

D

Secondly, we define a vertical lift of sections of E. If s is a section
of E then we define a vertical vector field on £ called the vertical lift
of s. This vertical lift generalizes the previous definitions due to K.Yano,
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S. Kobayashi, S. Ishihara (8], (9], (Ii] in the case of tangent bundles and
due to K. Yano and E.M, Patterson [12], [13] In the case of cotangent bundles.
Our definition generalizes also the horizontal lift of tensor fields to ten-
sor bundles (see [4]). The vector field verifies the, condition (Propos-
ition 2.8)

=

for every section a of E*, where fV
is the vertical lift of a function

f from N to E.
In Section 2 we define also a vertical vector field (R(X,Y))° on £, where

R(X.Y) 0 Dy - 0y 0 Dx -

is the curvature transformation of D. This vector field satisfies the
following condition (ProposItion 2.10)

(R(X,Y)) (a) R(X,Y)c,

for each section a of E*. This vector field generalizes the constructions
due to K. Yano, S. Y.obayashi, S. Ishihara and EM. Patterson (8), (9), (10),
(11], (12), (13] in the case of taigent and cotangent bundles.

Next we study properUes of these vector fields on E. We have the follow-
Ing formelas (ProposItions 2.9, 2.13, 2.14):

txD.yD] (X,Y)D + (R(X,Y))°

= (Dxs)!'

0

for all vector fields X, V on N and all sections s s' of E.
In SectIon 3 we define the horizontal lift of connections of order r to a

natural vector bundle 'and we study its properties. Let ir:E N be a natural
vector bundle. According to the theorem of R.S. Palais and C.-L. Terng (7],
E Is an associated vector jndle to FrN for some r, where denotes
the principal fibre bundle of frames of order r. Let r be a connection of
order r on N, that Is, r is a connection In F'M. For a such conpection r we
define a linear connection on a manifold E called the horizontal lift of F
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to E. This connection V satisfies the conditions (Theorem 3.1)

= (vxY)D
x

5V (Ds)V
X

=sV sV

for all vector fields X, Y on M and all sections s, s' of E, where v is the
linear part of I' and D is the covarlant derivation of sections of E deter-
mined by the connection r (see R. Crittenden (1)).

This construction generalizes the horizontal lifts of linear connections
to tangent and cotangent bundles (see K. Yano, S Ishihara and E.M. Patterson
[9), (10), (13]) and also the horizontal lifts of linear connections to
vector bundles associated with the principal fibre bundle of linear frames
(3).

Next we study properties of the horizontal lift of connections of order r.
Our results generalize the results obtained by K. Yano, S. Ishihara and E.M.
Patterson (9], (10]. (13) in the case of tangent and cotangent bundles.

The results of this paper can be generalized for an arbitrary natural
bundle (no vector bundle). In this case we need another characterization of
vertical vector fields on a natural bundle (in the construction of sV the
fact that £ Is a vector bundle Is Important). This generalization be

published spparately.

1. PRELIMINARIES: CONNECTIONS IN A VECTOR BUNDLE

Let ,r:E + N be a vector bundle. We denote by E the module of all sections of
class C" of E and by X(M) (resp. 11(E)) the module of all vector fields of
class C" on N (rasp. on E). A connection In E is a mapping

D:X(M) E 3 (X,s) —> DxS E E

satisfying the following conditions:

DfX + g (1.1)

+ s') = + Dxs'i (1.2)
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Dx(fs) = X(f) S + f (1.3)

for all vectof fields X, V on 14, all functions f g of class on M and all
sections s, sa of E.

Let ,:EIU + U x RN be a trivialization of E and let El,...,EN be the
canonical base of RN. We consider sections of EIU defined by

(1.4)

a = 1,...,N. p ,...,p are called the adapted sections to the trivialization
4. If (U,x is a chart on 14, then there are (uniquely determined)
functions on U such that

bna (1.5)

where is the canonical frame associated to (U,x1,...,x").
The mapping 0 can be prolonged to a connection in the bundle

denoted also by 0. This prolongation satisfies the following conditions:

Dx(t 8 t') = Dxt 8 t' + t 9 (1.6)

= X(f), (1.7)

= (1.8)

for all XE X(M), t t, and f where is
the operator of contraction.

Let be sections of E*JU such that pl(x),PN(x) form the dual
base to pl(x),...,pN(x) for every point x of U, where are the
adapted sections to a trivialization of From the conditions (1.6) -
(1.8) we obtain

t We use the following convention: the Indexes i, i, k,... run from 1 to
n, and the indexes a, b, c,... run from I to N.
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pa
— rIb (1.9)

for any chart on M.
Let y:(a,b) + M be a curve of class and let J(E) be the set of all

sections of E defined along y, that is, an element of J(E) is a mapping
s:(a,b) • E (of class such that 1TOS = y. For every curve y, a connect-
ion D in E defines a mapping

J(E) J(E)

called the covarlant derivation along If s = 5a ° y) is an element
of then for a chart on N we have

D1s = {d 5a
+

d i Sb) (1.10)

where o y, i = 1,...,n. From (1.10) we have:

P:oj,ositlon 1.1 If y:(a,b) -, M Is a curve and y is an element of =

1T (y(t0)), to (a,b), then there is one and only one section s
such that

s(t0) y, (1.11)

= 0. (1.12)

Let y be a fixed element of E and x = n(y). We denote by the set of
all velocity vectors (0), where s:(-c, +c) E is a section along y 1to S

satisfying the conditions (1.11) and (1.12) with t = 0.
Let •:EIU + U x R be a trivialization and let (U,x ,...,x ) be a chart

on N. Now we can define a chart on E called an induced chart,
where

x1(y) = x1(ir(y)),
(1.13)

=

for all y Let al,....an.s1.....6N be the canonical frame associ-
ated to the induced chart. If X = is a velocity vector of y and s is
the unique section defined along y satisfying the conditions (1.11) and
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(1.12), then
= - (1.14)

This implies that:

Proposition 1.2 is a vector subspace of and

where ker is the subspace of vertical vectors. In
particular, d?j&:FY is an isomorphism.

Let X be a vector field on M. Using Proposition 1.2 we can define its
horizontal lift by the formula

xD(y) = (1.15)

It is easy to verify:

Proposition 1.3 If X,Y are vector fields on M, and f, g are functions on M,
then

(fx + = fV xD + 9V

where fV = f ° and = gori are vertical lifts of f and g.
From (1.15) and (1.14) we have

- X1(1T(y)) (1.16)

for any induced chart on E.

2. VECTOR FIELDS ON C

Let a:M -, be a section of the. dual vector bundle E*. a defines a function
on E by the formula

. (2.1)

for every point y of E. (We observe that is an element of that
is, is a linear mapping R.) Using an induced chart it is easy
to verify
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c(y) — (y, 2.2

where = . Thus is a function of class on E. We have the
following proposition.

Proposition 2.1 If o' are sections of E* and f, g are functions on 14,
then

= + gV

where fY = is the vertical lift of f.
The proof is trivial. This family of functions is very important to

the study of vector fields on E because we

Proposition 2.2 Let and be vector fields of class C°' on E. If X() =
for every section a of E*, then =

Proof It is sufficient to show that the equality X(cj) = 0 for every section
a of E* implies X = 0. Let

=

be the of X with respect to an induced chart on E. From (2.2)
we obtain

—1
+Ia a

for all functions aa,a 1,...,N, on U. This_implies that a 0 and = 0
for I = 1,...,n and a = 1,...,N, that is, X = 0.

This proposition signifies that vector fields on E are uniquely determined
by their actions on the functions of type a, where a is a section of E*. We

have:

ProposItion 2.3 If X is a vector field on 14 and a is a section of E*, then

Proof Let a aa
a '!Pom (t.16), (2.2) and (1.9) we have
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= - t'ia ab

A vector field on E is called projectable on 14 if there Is a vector
field X on N such that

o = X °

X is called projection of and X is uniquely determined by L The set of
all projectable vector fields on N is a Lie algebra and the projection
mapping Is a Lie algebra homomorphism. We have the following proposition
(3].

2.4 Let X and be vector fields on K and E respectively. is
projectable on M and X is its projection if and only if, for each function
f on H, we have

= (Xf)V,

where fe" — foir is the vertical lift of f.
A vector field on E is called vertical if, for each point y of E,

is a vertical vector, that is belongs to VIE. A vertical vector field
on E is projectable on II and its projection is zero. Thus, by Proposition
2.4, we have (see (3]):

Corollary 2.5 Let be a vector field on E. X is vertical if and only if
= 0 for each function f on M.

Corollary 2.6 If X is a vector field on N and f is a function on M, then

(Xf)".

Since = ,i1(,T(y)) is a vector space, there is for each point y of E
a natural isomorphism

= -__- > (2.3)
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If • E is a section of E, then we can define a vector field
s E, by the formula

(2.4)

(2.5)

sections.
generalizes the definitions of vertical lifts of vector

fields to the tangent bundle (K. Yano, S. Kobayashi and S. Ishihara [8], [9],
[11]) and vertical lifts of 1—forms to the cotangent bundle (K. Yano and
E.M. Patterson [12), [13]). Our definition generalizes also the definition
of vertical lifts of tensor introduced by J. Gancarzewicz and N. Rahmani (2].
We have

Pr.oposition 2.7 If s, SS are sections of E and f, g are functions on 14, then

(fs + gss)V fV sV 9V

s is a section of E,a is a section of E*and f is a
function on 14, then we have

5V(fV) = 0,

where a•s is the function on P4 defined by the formula (a•s)(x)

Proof From (2.5).and (2.2) we have

6a(Ob
5a

°a

The second formula is a consequence of Corollary 2.5.

Proposition 2.9 If s, s' are sections of E and X is a vector field on
then

5'Vj
=

=
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Proof Let a be a section of E*. According to Proposition 2.8 we have

_SIV(SV(;))

= 0.

Thue, by Proposition 2.2, = o.
According to Propositions 2.8, 2.3 and Corollary 2.6 we have

xD(Sv(;)) - sV(XD())

Dx(O.S) —

Usingithe formula Dx(a.s) = we obtain

a•DXS

and hence, by Proposition 2.2,

Remark Propositions 2.7, 2.8 and 2.9 generalize the analogical proposition
shown in (2], (3], [8], [9], (10], [11], [12], [13].

We will introduce a new vertical vector field on E using the following
proposition.

Prpposition 2.10 Let A:E* be a vec; bundle homomorphism which covers
the identity on 14; that is, the diagram

A
E*

is ,ve and "ie restrictions of fibres of E* are Ihen
there one and on'y one vector field on E such that, for every section
a of (*, we have

..
= A e a.

Proof The uniqueness of A° is a Proposition 2.2. To prove
the existence of A° we consider a vector field
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= +

on EIU with coordinates with respect to an induced chart. For a
section of E*, by (2.2) we have

=
? +

a abA(p ) =Abp , (2.7)

then Aou = (Ca and hence, using (2.2), we have

=
0a (2.8)

Thus, if we set

=
= (2.9)

the equality = is verified for every section a Thus we
have constructed a vector field on EIU such that = A°a for all a.
— Using two charts(U,x1) and (U',x1 ) we can construct two vector fields
X and X' on EIU and EIU' respectively. For any section a of E*I(U n U') =
(E*IU) n we have

— — — —

X(o) = Aoa X'(a)

and hence, according to Proposition 2.2, X and X' coincide on EI(U n U').
Thus, using an atlas on N, we can define a (global) vector field A° on E
such that = Aoa.

This construction generalizes the operation y defined by K. Yano, S.
Kobayashi, S. Ishihara and E.M. Patterson [8], [9), [11), [12) in the case
of tangent and cotangent bundles and also the lift ( )° defined by J. Gancar-
zewicz and N. Rahmani [23 in the case of tensor bundles.

According to (2.9) we have:

Corollary 2.11 A° is a vertical vector field on E. If (U,x1) is a chart on
N, then

A° = yb
6a
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with respect to the induced chart, where are defined by (2.7).
From Proposition 2.4 we obtain:

Corollary 2.12 If f is a function on M, then A0(fV) = 0.
We have the following properties of A°.

Proposition 2.13 If A, B:E* E* are vector bundle $ is a
section of E and X is a vector fie'd on 14, then

(XD,A0) = (DxA)°,

ISV,AD3 = (A*oSf',

CAD,BO) = (A,B]°,

where A*:E + E is a homeo.norphism of vector bundles such that Is the
transposed mapping of A e B — B o A.

Proof Let a be a section of E*. Using Propositions 2.3 and 2.10 we have

[XD,AD)() -

= Dx(A00) —

A a section of E* Q E. Aoo is obtained from A and a by
the tensor product and contraction, thus using (1.6) - (1.8) we have

Dx(A0a) (DxA)0a +

or -

(XD,A0](;) (DxA)oa

= (DxA)°().

Hence, according to PropositIon 2.2, we obtain the first formula.
Using 2.8, 2.10 and Corollary 2.12 we have

[$v,Ao](;) -
I Cs(Aoa)-A((a.s))

= ((sAoa).s)V.
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On the other hand, from (2.1) and (2.7), we obtain

(Aoa).s = Sa(AO)

= 5a
°b

= ab(Aos)

= a• (A*os)

and hence

=

=

that is, 15V AD] =

The verification of the last formula of our proposition is by analogy.
Let X and V be two vector fields on M. We denote by

R(X.Y) Dx 0 — o Dx — Dtxy) E* (2.10)

R(X,V) is called the curvature transformation of the connection 0. From

(1.1) - (1.3) (we have the same formulas for sections of E*) we obtain

R(X,Y)(a+ a') = R(X,V)cr + R(X,V)o'

R(X,Y)(fa) = f R(X,Y)o

for all sections a, a' of E* and any function f, and hence, R(X,Y) can be
considered as a vector bundle homeomorphism R(X,Y):E* ....-._> The vector
field (R(X,Y))° is important for the characterization of the vertical com-
ponent of [XD,YD]. We have

Proposition 2.14 If X and V are two vector fields on M, then

= tx,y3D + (R(X,Y))°,

where R(X,V) is the curvature transformation of 0 defined by (2.10).

Proof Let be a section of E*. Using Propositions 2.3, 2.10 and formula
(2.10) we have
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- YD(xD(.))

DDyO)Dy(Dxo)

= R(X,Y)o +

0—= [X,Y] (a) + (R(X,Y)) (a),

and hence, using Proposition 2.2, we obtain our formula.

3. HORIZONTAL LIFTING OF CONNECTIONS TO A NATURAL VECTOR BUNDLE

Let •:E + M be a natural vector bundle. If q,:M ÷ N is a local diffeomorphism,
then we denote by E the induced mapping. For each point x of M,

= E,(X) and is an isomorphism, where 111(x) is the
fibre of E. By the theorem of R.S.
a number r such that, for all local diffeomorphisms •, q,:M M and every
pointx of M, the equality = implies IEX = The smallest
number r satisfying this property is called order of E.

Let r be the order of E. We suppose that r 1. The vector bundle E is
isomorphic to an associated fibre bundle with FrM (see (7], (6]), where FrM
is the principal fibre bundle of frames of order r, that is,

F"M q is a diffeomorphism of a neighbourhood of 0 in
into some open subset of N).

Let F be the standard fibre of E. We denote by x F E the canonical
mapping for the associated fibre bundle E.

Let I' be a connection in the principal fibre bundle FrM (r is called
connection of order r on H). r determines a horizontal distribution on E.
If y = 4(p,z) is a point of E, then

= (3.1)

where E, = e(p,z).
The connection I' determines the covarlant derivation of sections of

associated fibre bundles with FrM. In particular, we have the covariant
derivation

D:x(M) x E3(X,s) ——> E
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df sections of E. It is well known that D satisfies conditions (1.1) - (1.3),
that is, using the terminology of Section 1, D is a connection in £ (see
(1]). It is easy to verify that the distribution H defined by (3.1) is the
same as the distribution r defined in Section 1 for the connection D. Hence,
the horizontal lift of vector fields with respect to D with the
usual horizontal lift of vector fields with respect to the connection r of
order r on II.

Let + ESM, s r, be the natural projection, = Using
this projection, for a given connection of order r on ti we can Induce a
connection of order s, s r. In particular, the given connection r 'of

order r on H induces a linear connection on H called linear part of r. We

denote by v the covariant derivation of vector fields with respect to the
linear part of r.

The main theorem of this paper Is the following one.

Theorem 3.1 Let be a connection of order r on H. If w:E + H is a natural
vector bundle of order t, then there is one and only one linear connection

on the manifold £ such that

(32)
x

V
D

sV = (3.3)

= 0 (3.4)

sy —0 (3.5)

for all vector fields X, Y on N and all sections s, S of E, V Is the
covarlant derivation of vector fields on H with respect to the linear part
of r and 0 Isthe covarlant derivation of sections of E with respect to r.

To prove this theorem we need the following leura.

Lemma 3,2 Let r be a connection of order r on H and be a llneas Connection
on E. For a chart (U,x1) on H we denote by

Va1 = ak + r1j (3.6)
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aa a. + 1'ia

+ rai 6b (3.8)

= 1'ab a. + rab 6c

the Christoffel symbols of v with respect to the induced chart on E. If
conditions (3.2) - (3.5) are satisfied, then

= (3.10)

= + 1'jb - rkb)yb (3.11)

= 0 (3.12)

= (3.13)

= 0 (3.14)

= (3.15)

1'ab = (3.16)

1'ab = (3.17)

where rJk are the symbols of the linear part of r and rlb are
defined by (1.5).

Proof Let be the adapted section of E to the induced chart.
According to (2.5) we have

V
= (3.18)

Now formulas (3.18), (3.5) and (3.9) imply (3.16) and (3.17). Next from
(1.16) we have

— (3.19)
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and hence, using (3.16), (3.17), (3.8) and (3.4), we obtain (3.14) and (3.15).
Using (3.7), (3.19) and (3.18) we can calculate

— V — b cv =v o -r. y V a

=

On the other hand, using (1.5) and (2.5) we obtain

V b
'5b

Thus the equality (3.3) implies (3.12) and (3.13). Finally, using (3.19)
and (3.12) — (3.17) we calculate

D a. c d
V = j °a C

=
aj a äb

= — ya
6b

Hence, formulas (3.7) and (3.2) imply (3.10) and (3.11). The proof of our
is finished.

Proof of Theorem 3.1 The uniqueness of a linear connection V on E satisfy-
ing conditions (3.2) - (3.5) is clear because, according to Lenina 3.2, the
Christoffel symbols of V are uniquely determined by the given connection r
of order r. Thus we need to prove only the existence of V.

Let (U,x1) be a chart on H. We can define a linear connection v on EtU
such that its Christoffel symbols with respect to the induced chart are
given by formulas (3.10) - (3.17). This linear connection V on verifies
the conditions
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—

D
—

¼Va1
3j

— V D3

— 0 I (3.20)
V

V a1 0

• V
V

Pb

for i,j = 1,...,n and a,b = 1,...,N. Using the propositions of Sections 1
and 2 it is easy to prove that

— 0

x

D
S (3.21)

x

= o
S S

for all vector fields X, Y on U and all sections s, s' of EIU. We show only
the first formula of (3.21). Let X and V be vector fields on U. If we
denote by

X X1 a1, V = a1

the coordinates of X and V with respect to the chart (U,x1), then according
to Proposition 1.3 we have

x0 3D = (yl)V 3D

and hence, using Propositions 1.3, Corollary 2.6 and the first equality of
(3.20), we obtain

D
y0 (xi)V {aD((yi)V) + (y.3)V

x J

= {(ay.J)V + (yJ)V (V a)Dl

= {X' + y3 Va aJ}D
=

1
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The other formulas of (3.21) are verified by analogy.
Tf (U,x') and (U',x' ) are two charts on M, then we can define two linear

v and respectively on EIU and Elu'. From (3.21) we have

D D_m D

x x

sV = (D = v0
x x

x0 = o

= 0

for all vector fields X, Y on U fl U, and all sections s, s' of EI(U n U') =
(E ) n Hence, by Lefihia 3.11 the linear connections and

coincide on EI(U n Ii').
Using an atlas onM we can define a linear connection on E. This con-

nection verifies the conditions (3.2) — (3.5) and the proof is complete.
The linear connection on E verifying conditions (3.2) - (3.5) is called

the horizontal lift of r from 14 to E. The following three corollaries are
imediate consequences of Theorem 3.1.

Corollary 3.3 (K. Yano, S. Ishihara [10], [9)). If v is a linear connection
on M, then there is one and only one linear connection v on TM such that

VH V = VH
yV

= (vy)v

xv xv

for all vector fields X and Y on M, where xH is the horizontal lift of X to
TM with respect to V..

Corollary 3 4 (K Yano, E.M. Patterson [13], (9)). If V is a linear
connection on M, then there is one and only one linear connection on

such that

H H
= (v4)V

x xH. V

V(DVW
=0
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for all vector fields X, V on N and all 1—forms on M, where is the
horizontal lift of X to T*M with respect to V.

Corollary 3.5 (J. Gancarzewicz, N. Rahmani [3]). If E is a vector bundle
associated to the principal fibre bundle IN of linear frames and V is a
linear connection on N, then there is one and only one linear connection
on E such that

— ,H_ H — V
H - '

H
S

—x x

x'l = a

for all vector fields X, V on N and all sections s, s' of E, where is
the horizontal lift of )C to E with respect to v.

Next we will study the torsion tensor and the curvature tensor of the
horizontal lift of a connection of order r to any natural vector bundle of
order r (r is arbitrary). We have the following properties of these tensors.

ition 3.6 Let E be a vector bundle associated to and let r be
a connection of order r on N. If is the horizontal lift of r to E and
is the torsion tensor of v, then we have

= (T(x,v))0 — (R(x,V))°

= = 0

for all vector fields X, V on N and all sections s, of E, where T is the
torsion tensor of the linear part of v and R(X,Y) is the curvature trans-
formation of r defined by (2.10).

Proof Using Theorem 3.1 and Proposition 2.10 we have

=
0 - D

-
x V

= (vxY)° - - EX,Y]D -

= (T(x,Y))D - (R(X,Y))°.

Next, using Theorem 3.1 and Proposition 2.9 we obtain
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=
D

sV - - [xDSV]
x

= (Dxs)V - (Ds)V = 0

= v - - [SVsSV)
S S'

= 0.

To calculate the curvature tensor of V we need the following lema.

Lema 3.7 If V is the horizontal lift of a connection of order r to E and
A:E* + is a vector bundle homomorphism, then

A

for every vector field X on M and every section s of E.

Proof Using an induced chart, according to Corollary 2.11 and formula (2.5)
we have

- .,b
tS )'i ia b

and hence, by we obtain

A° =

=0

A° =
— -

=0
Now we have

Proposit on 3 8 If V is the horizontal lift of a on

M to d vecto bundle with FrM and R is the curvature tensor of v,
then
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(r(X,Y)Z)0

(R(X,Y)s}V

= = 0

for all vector fields X, V. Z on M and all sections s, S'
is the curvature transformation of r defined by (2.10) and r(x,'.
curvature tensor of the linear part of r.

Proof Using Theorem 3.1, Proposition 2.14 and Lemma 3.7 we have

=
D

10) - -
x V V X (X,Y)

= (vx(vyZ))D — -

-
(R,X,Y))D

= (r(X,Y)Z)D,

D
sV) - D D 0

X V V X [X,YJ

(Dy(oxs))" - y]S)

S

(R(X,Y) )°

=

Using Proposition 2.9 we can calculate

0 , 0

0

for all vector fields X, V. Z on M and all sections s, s', of E. This
remark finishes the proof of our proposition.

From Proposition 3.6 we have:
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.Progosltion 3.9 Let V be the horizontal lift of a connection r of order r
to a vector bundle E associated with FrM. If the linear part of r is without
torsion, then Is without torsion If and only if the curvature transform-
ation R(X,Y) is zero for all vector fields X, V on N.

From Proposition 3.8 we have:

Proposition 3.10 Let be the horizontal lift of a connection r of order r
on N to a vector bundle E associated with FrM. Then the linear connection
Is without curvature (that is, = 0) if and only if the curvature trans-
formation R(X,Y) of r defined by (2.10) is zero for all vector fields X and
YonM.

To prove this proposition it is sufficient to observe that if the curva-
ture transformation R(X,Y) of r is zero then the linear part of r Is without
curvature.

Propositions 3.9 and 3.10 generalize the analogic propositions proved by
K. Yano, S. Ishihara in the case of tangent bundles (10], (9], by K. Yano,
E.M. Patterson In the case of cotangent bundles (13], [9) and by .3. Gancar-
zewlcz, N. Rahmani (3) In the case of a vector bundle associated with the
principal fibre bundle of linear frames.
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