M SARALEGUI
'The Euler class for ﬂows of isometries

1. FLOWS OF ISOMETRIES

1.1 Let (M,F} be a compact (n+1)-manifold provided with an orientable
Riemannian foliation F of dimension one. The leaves of F are the orbits of
a vector field without singularities. We say that F if a flow of fsometries
if there exists a Riemannian metric g on M and a vector field Z tangent to F
which generates a group of isometries (Wt)ten' We always assume that Z is

a unit vector field (we only have to replace g by (g{Z,2))" g)

1.2 Recall that a differential form w € Q*(M) is base-like for F if

“iqw = 0 and 1,dw = 0,

i

The cohomology of the complex of base-1ike forms is the baee-like cohomology
of (M,F) denoted by H*(M/F); it depends only on (M,F) and not on the choice
of (g,Z),

1.3 For a flow F of isometries the characteristic 1-form x of F with
respect to (g,2) satisfies the equations

X(Z) = 1 and izdx = 0;

in particular, the form dX is base-like for F. By transverese wolume form of
F (with respect to g} we mean the unique form v € q"(M/F) such that v A X is
the volume form of {M,g).

1.4 According to [71, an orientable Riemannian foliation (M,F) of dim-
ension one is a flow of isometries if and only if one of the two following
equivalent conditions holds:

(a) HM(M/F) # 0;
(b) 0 # [v] € HP(W/F).
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2. [INTEGRATION ALONG THE LEAVES OF A FLOW OF ISOMETRIES

2.1 Let (M,F,g,Z) be as above and let (wt)iea be the one-parameter group of
jsometries generated by Z. Since the group of isometries Isom(M,g) of a
compact Riemannian manifold is a compact Lie group, the closure T of (q,t)ten
in Isom{M,g) is a compact commutative Lie subgroup; thus, a torus.

2.2 Let I9*(M) < ¢*(N) be the subcomplex of forms invariant by the action
of T. According to the definition of T, it appears that

I7*(M) = {we€ @ (M)/Lyw = 0},

The inclusion of IQ*{M) in o*(M) is a homatopy equivalence (see [4]), thus
H*(TI(M)) = H*(M).
For any form o € 10 (M) the form iz” is invariant by T and base-like for

F. This enables us to construct an <ntegration operator along the leaves of
F (see [5])):

foeen™ g oy s o™ own,
9
which commutes with d and satisfies the two following properties:
{a) it is onto; indeed, for any « € nr'i(H/F) we get {
LyfaAX) = Lo AX +aALX=aAdigx . o,
thus a A X € I (M) and

t aAXs (-1)"“'(iza AX + (1) T A iX) = a.

(b) Ker 7[9

1zda 3 Lza - diza =0, and a € nr"(M/F). The othey inclusion is obvious.

= gr(HfF}; indeed, if }-a =0 for ¢ C*Iﬂr(H) then

2.3 To sum up, we have constructed the following snort exact sequence:
0+ 2 (WF) —— 12"(W) jﬂ—a e - 0.

3. GYSIN SEQUENCE AND EULER CLASS

3.1 From the above shiort sequence we get the following cohomology sequence:

221



. 5
e » HOOWE) s W (M) —J'ian""(wr) -9_->H'”"’1(n/r)

which we will call the Gysin sequence of F.
As for any o € nr'1(M/F), we have } a A X = a, the definition of the

connecting homomorphism Gg gives 9

4led = [d(a A x)] = 1" A dxd = (-1)[ad + [dx.

Then, as for Seifert fibrations, we define the Euler clase of F with respect
to g by: eg(F) = [dX] € H(WF).

3.2 Up to a non-zero factor, this class does not depend onthe metric g.
Indeed, let (H,F.g1.2‘) and (H.F,gz.Fz) be two flows of isometries with the
same underlying Riemannian foliation. The two Gysin sequences give

vee 2 OE) —2 s ey 2y M) > .. § e 1,20

The space H°(M/F) is of dimension one, thus, by exactness, dim Ker i* < 1
and

= i* = .
In 691 Ker In 692

Now "g (F) and eg (F) are simu)taneously zero or there exists ) € R - {0}
§ 2
such that eg‘(F) . ) egz(F). In particular, the fact that the Euler class

of F with respect to the metric g vanishes does not depend on the choice of
the metri¢ g.

In the particular case of Seifert fibrations our Euler class coincides
with the usual one, up to a non-zero factor. This factor is exactly the
length of the generic leaf of F. Then for a suitable metric we obtain the
usual Euler class of F.

-

4, YANISHING Of THE EULER CLASS e

4.1 HNext we obtain a geometrical interpretation of the vanishing of the
Euler class of F which generalizes that of [8]. Sope‘of our results are also
. proved in [7] by means of invariant currents and foliated cycles.

Theorem Let M be a compact manifold with an orientabie Riemannian foliation
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F: Then the following statements are equivalent:
(1) (M,F) is a foliated bundle;
(1i) F 1is a flow of isometries and eg(F) = 0 for any‘suitab1e metric 9;
(i11) W (WF)# 0 and i* : HN(M/F) » H'(M) is injective.

Proof (a) Suppose that (M,F) is a foliated bundle and let F + M -B> B be |
the fibration transverse to F. MWe have the following comwutative diagram:

F xR L)R

SENE

'
F—> N—L— s

where q is the canonical covéring of 31 and T is the covering given by the

suspension of the holonomy diffeomorphism h of F. Because F is Riemannian

there exists a metric gp on F invariant by h, The metric ﬁ = gF.+ (dt)2 is

equivariant with respect to w, thus induces a metric g on M which is a bundle-

1ike metric for n and makes F orthogonal to =. Therefore F is a fiow of

isometries and the characteristic form X fs equal to p*(dt). Then dx = 0

and the Euler class of F with respect to g vanishes. This proves (ii).
Conversely, let us suppose that F is a flow of isometries with respect

to & metric 9. If eg(F) = ( there exists Y € Q‘(H/F) sqi: that dx = dy,

The form o = X-y satisfies .

w(Z) = 1 and dp = dx-dy = 0.

By Tischler's theorem (see [9]) the foliation defined by the closed form w
can be approximated by a fibration which will again be transverse to F,

{b) MNow we show that (ii) is equivalent to {iii). MWe first note that
a Riemannian flow F is a flow of isometries if and only if H"(M/F) £ 0 (see
1.4). Consider the sequence .

5 .
o+ H720F) —3 1 F) s M) ...

for any suitable metric g. If (ii) holds, e (F) is zero and the connecting
homomorphism is zero. Therefore i* is injective and (iii) is fulfilled.
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On the other hand, recall that for any Riemannian foliation there exists,
¥or the complex of base-like forms of F, a Hodge theory similar to that of
the De Rham complex of a compact manifold (see [3]). It includes a base-like
Hodge operator * which enjoys the usual properties. Thus if we fix a suit-
able metr:c g on M, dx is base-like cohomologous to a base-like harmonic !
forma €Q (H/F), that is, there exists v € n (M/F) such that dX = o + dY.

To prove that (iii) implies (ii), it is enough to show that a = 0, So
assume that (iii) holds and o is different from zero. The base-like harmonic
form *a € g™ 2(N/F) dua) to a satisfies a A *o = A, A € °(M/F) positive,

*o AdX = *a Ao + *a A dy = 1v+(-1)n-2d(*u AY).

Then [*a A dX] = [Mv]is a non;zero class in HP(M/F) (see 1.4), But, by '
exactness of the Gysin sequence of F, we also get & (H"'Z(H/F)) e 0, which
implies [*a A dX] = (-1)"'2 Gg[*u] = 0, This contradiction ends the proof.

4,2 Remark The condition (iii) is equivalent to the fact that the class
[v] is different from zero in H"(M), where v is the transverse volume form of
(M,F,g) for a suitable metric g on M.*

4.3 Corollary Let M be a compact (n+1)-manifold provided with a flow F
of isometries, If H1{M) = 0 then the Euler class of F is non-zero.

4.4 Corollary Let M be as above., If the Euler class of F is zero then
there'exfsts 2 finite covering M of M which is diffeomorphic to the product
Fx$§.

Proof It follows from Theorem 4.1 that if the Euler class is zero then

there exists F -~ M -2 S , & transverse fibration to F, defined by suspen-
sion of a diffeomorphism h of F. We can assume that F is a Seifert fibration
(see [2]). Then the holonomy of any leaf is finite, i.e., h is a periodic
map at any point., Now it is not difficult to see that there exists p € N
such that hP is the identity. Consider y: m,M + Z[h] < DifF(F) the holonomy
homomorphism of F. Because hP is the 1dent1ty we have an induced homo-
morphism {: n1M + Z/pZ. The associated covering m:M > M is a foliated bundle
whose holonomy is generated by hP = Idps thus M = F x §'.

4,5 Remarks (i) The integration operator constructed in Section 2 is a
particular case of an integration operator defined for any taut foliation,
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4

(i1) The example of Carriere [1] shows that a Riemannian flow may admit ¢
a transverse foliation G without being a flow os isometries. In this case :
G is not Riemannian, ‘

(i1i) There exist flows of isometries which admit non-Riemannian trans-
verse foliations and which have non-trivial Euler class {10].

5. CONTACT FLOWS AND FLOWS OF ISOMETRIES '

A flow ¥ (i.e,, an orientable foliation of dimension one) defined on a com-

pact (2k+1)-manifold M is a contact flow if there exists a form u € Q‘(M)
such that:

(a) w is a contact form, i.e., w A (dm)k is a volume form on M;

(b) the unique vector field defined by w(Y) = 1 and i dy = 0 1s tangent
to F.

5.1 _By means of the Euler class, we get a partial characterization of the

flows of isometries which are contact flows (see [8] for the compact case
and d1so [6]).

Theorem .Let M be a compact (2k+!1)-manifold with a Riemannian contact flow
F. Then F is a flow of isometries and the Euler class of F is different from

Zero.
$

Proof Let g be a bundle-1ike metric on (M,F), We can write g = 97 * 9y
where g, (resp. gN) is the restriction of g to the tangent bupdle (resp. the
normal bundle} of F. We define a new burdle-like metric on (M,F) by
g =w Ozw ' gy» where w is the contact form given by (a). It is not diffi-
cult to see that'Ly E = 0 and therefore F is a flow of isometries with respect
Eo g.1 Furthermore, do is a base-like form and [dw] belongs to Ker i*, If
the Euler class of F is zero, then [dw] = 0 in Hz(M/F} (see Theorem 4.t,),

. and there exists Y.E 91{M/F) such that dw = dy. Because dw A y A (dw)k-1 €

2 ey =_ {0}, we get

o Ady A (do)¥T = diw Ay A (d)*) o

' -anél-

w A (dQ)K,= did Ay A (da)* ). ' )
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Then w A (dm)k is not a volume form which is in contradiction with a).

5.2 We find in [6] a converse statement for the case of geodesible flows
in three-dimensional manifolds (including flows of isometries)}. Now this
gives a2 complete characterisation.

Theorem Let (M,F,g) be a flow of isometries on a compact Riemannian 3-mani-
fold, then the following statements are equivalent:

(i} the Euler class of F is zero;

(ii) F 1s not a contact flow.

Corollary If M is a compact Riemannian manifold with H1(M) a 0, then any
Riemannian flow F on M is a flow of fsometries and a contact flow,

*

6. FLOWS OF ISOMETRIES ON 8° !

The Euler class enables us to classify partially the flows of isometries on
a given ¢ompact manifold. For example, consider the family of all flows of
jsometries on 53. The Seifert fibrations have been analyzed in [8], there-
fore in order to get a complete description of these flows, it remains only
to study a one-parameter family {F&. a € {0,1]} which can be described as
follows. For o € 10,11, Fa is the foliation defined in complex coordinates
by the flow

w% . 80+ 8% with ﬁ:{z‘,zz) = (e'0t z,.e1t 2,).

For any a, ("’t)tal is a group of isometries of 83 with respget to the usual
metric g. As we pointed out in Section 1, F is also a flow of isometries
with respect to the metric 9 (g(Z o2 )) g, where 2 is the vector field
umaw(hw

If v, is the transverse volume form of (F v9, } the Euler class e_ (F) is
determined by the number Py # 0 such that e (F} =r [v ]. We compu%e r, by
the formula %

1

r“""ﬂ'— dx ﬂx,
¢ vol($ 9, Isa

which gives
= (1%a).
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It is clear that this number ry classifies completely the elements of the
family {F .o € J0,1)). !

If o p/q is rational, F is a Seifert fibration and our Euler class
e (F) is related to the Eu]er class e (F) ddiwned by Nicolau-Reventds by the
formula : :
’qﬁ (F) = e (F) :

Indeed, € (F) = [dg ] e Hz($3/F4) for any one form £y on-M whose 1ntqgral
\ along the fibres of F is the constant funct1on 1. On the other hand, the -
- integral of the character1st1c form Xy of F is the length of a regular leaf
of Fa tha; is q. The result follows by taking ; %xu;
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H SUZUK:i

An interpretation of the Weil operator X(y,)

INTRODUCTION

In this article, we give a cohomology theoretic meaning to the differential
form h; corresponding to y; of the secondary characteristic class yic, (see,
e.g., (5, p. 154] of foliation. Let F be a C"~foliation on a manifold M,
Let ¢¥° (va) be a Bott (Riemannian) connectfon on the normal bundle v(F) of F,
Let dp denote the exterior differential along leaves and H" s(ll) the folfa-
tion de Rham cohomology vector space (cf. [8), [10) and [11])

(theorem 3.3) For any 7 and v . ghez(o ,2j~1)~-component (hj)0 231 of hj is a
dg-cocyde, and L7hidg 5541 € Repp 3-V(M) does not depend on the chotce of

and vR The Wei’ OpArator x(y ) of (4] is regarded as a multiplication
by £(h;)g 5,130

In this sense, the operator x(yl) is essentially an element of H III(I‘I).
In other words, the notion of the Weil operators is expanded to that of coh-
omology classes of Hgfm*(ﬂ) .

For a Toxl %i. . chart (U, x5 uj). C"-functions on U_n Ug # ¢

caB = log |det(au§j3ug)‘|

are constant along leaves of FIu T and satisfy the cocycle condition
a B

Coy ~ Coy * Cag = O

. on U n UB nu. Let c denote the sheaf of germs of (™ -functions constant
along leaves FTU . The Zech cohomology class m(M,F) € ! (H.C ) deter-
mined by {c } ¥s ca?‘led the modular cohomlogy class of F (see, e.g.. [12])
which {s c1ose1y related to the modular function $ of transverse measure on
holonomy groupoid of F by [2, p.41). One can eastablish a de Rham typé

1smrphi5n-mj2&‘(\n) g 'ﬁ‘(ll:c;). Then we have:

‘ {Theorme 5.4) Let (M,F) be a C ~foliation on a compact Mausdorff panifold.
Then, for [(h1)°"] corresponding to x(y‘). we have
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@(21‘[[("1)0. 1]) = 'H(M.F).

The above formula is regarded as a new interpretaiion of x(r1) and also
similar meaning of x(y ), j (odd) 2 3 is expected,

In Section 1, we review the Weil operator introduced by Heitsch and
Hurder. In Section 2, we explain the foliation de Rham cohomology “;oi (W)
and in Section 3, we prove that the homomorphism induced by leaf preserving
transverse map is invariant under the leaf preserving homotopy through these
maps. In particular, we obtain the Poincare lemma for H s(H) Then we
prove Theorem 3.3,

In Section 4, the notion of F-simple cover is introduced and then de Rham
type isomorphism for Lech cohomology H*(MiC7) is proved. In the last section,
a natural isomorphism from H?DR{H) to the d1fferent1ab1e singular cohomology

D(H.R) restricted to leaves is obtained. Finally Theorem 5.4 is proved.

AL manifolds, maps and foliations are assumed to be class c™.

1. THE WEIL OPERATORS

Let (u:?5 be a ("-foliation of codimension q on a paracompact Hausdorff C™-
manifold. For each point m € M, there is an open neighbourhood U of m and
we have linearly independent 1-fonms\p?.....mg on U defining F. Let A{M) be
the vector space of C -forms on M that s the de Rham complex of H and iet
"IU be the restriction of n € A(M) to U. We set

AMMLF) = {n € AMY(ny) A g =0, § = 1,00s0).
One can see easily that

MULF) = AU) A 0y A oee A uge

Let T(M) be the tangent bundle of M. By the integrability condition for
tangent sub-bundle T{F) = F of T(M) corresponding to F, we have 1-forms
{ng} on U such that

vo9 oy U
d = 4 i.
T gy 1Y
Since we have »
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0 =d{(nf,,) m?)
q
= d(n],) A me + (n]y) A (jEI w?j A wg)
= din[y) o),

the exterior differentiation is closed in A(M,F) and thus A{M,F) is a diff-
erential subcomplex of A(M). We denote the cohomology vector space of
A(H.F) by H*(H,F). '

Let K be a local curvature matrix of a connection ¥V on c”-vector bundle
VonM, For any Chern monomial ¢y = ci‘...cqq of degree k on the Lie algebra

g1(q;R) of GL(q;R), we set
cJ(V) = cJ(K) € AZk(M).

It is well known that, for any comnection v, ch(v) = 0, (see, e.g., [7, pp.
296-298]),

Let (V) be the set of C -sections of a C -vector bundle V, Let w(F) be
the normal bundle of F, that is, v(F) = T(M)/F and v(F)* the dual bundle of
v(F). Let VB(VR) be a Bott (Riemannian) connection on v(F). Then we have

cJ(VB) € P(Ak(U(F)*) A Ak(H),_

which is the essential part of Bott vanishing (1, pp. 34-35].
Let m:M x R - M be the first factor projection and

vBR R

e (1-t)7% ety t €R

which is a connection on the vector bundle n*v(F) 3 w(F) x R, Define
hy € 231 (m) by

1
hJ o Io i(a/atlcj(vaa)dt

= ﬂ*(cj(vsn)lu x I)l

where i(3/3t) is the substitution operator of 3/at and n, is the integration
over the fibre for »{, .. A sﬁandard computation shows that dh = cJ(VB)-
< Ca ). For j odd, we have cJ(v ) = 0 and hence dh; = cj(v ). : :
For each k, let la(y1,y3....,y )] (r = 2{(q+1)/2)-1)denote the homogeneous
part of degree k of Alyy,¥ss.0uyy,) & H*(g1(q;R), 0 ) (see, e.g., [5, p. 140]).
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We define a homomorphism

X:EALY;aYgueero, )]y = Hom(HE(MZF), HORK(H))
by the formula

X(y)(n] = {h a n]

- ad d = h ] e s h-
y= YJ1 A A st. = hJ1 A A i

s
) (ij ~1) =k
g=1

for n € A*(M,F) with dn = 0,
The right side is well defined because we have

dhy = c,(v°) € T(W(F)*) A AW,
therefore
dth an) =dh an+ (-13% A dn
=0,
and for n = d\ with A a wg a0, j=1,...,9,
dh a 2) =dhar s (-1)% A da
= (-1)% A aa.

The latter formula means that (h a n] does not depend on the represe> -+ i
n of [n]. By making use of affine combinations of different Bott ¢. -~ o
and Riemannian connections, one can also show that [h A n)] does not ' 2nd -
the *choices of va and ;R. X(y) is called the Weil operator associ-ia 'y
{(cf. [4]).

2. THE FOLIATION DR COHOMQLOGY

tet (M,F} be a codimension q C -foliation on a paracompact Hausdorff mani-
fold, By taking a Riemannian metric on M, one can split the tangent bundle
T(M) into the Whitney sum
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T(M) = FeV,

where V is the orthogonal complement of F and we have the splitting of the
dual tdngent bundle, |

T*(M} = V* @ F*,

v is clearly ¥somorphic to the normal bundle u{F), _
~ tet (x,u):U - RP x RY be-a local foliation chart of F. Ome can choose
-cw"1'f0rﬂls Oﬂ U, e1.....ep e TtF*)'U 50 that

{01.....99. du1,...,duq}
s a basis of T*(M) for each m € U. And one can also choose C"-vector fields

\\'1,...,\’ E F(V)Iu S0 that

q

[a/ax1’0-0|a!axpt V1’0'05Vq]

is the-dual basis of Tm(M) for {91,...,6 du,..;.,duq}. Then we obtain

pi

q
ej = dxd‘f afl ajadua 15j¢ Q.

P
Vu L Bfal.la + j£1 baJaI(axj 1 sSas q.

where 'ja’ baj are C -functions satisfying aja + buj = 0,
We set

AT S(M) = AT(PEVY)) A A3 (D(FH))

znd we have
"ok
A{M) = £ A (P(T™(M))
k=0
n 'k
z T A(r(v*) @ T(F*})
k=0
n r 5
s f I A (T(V*)) A AT(T(F*))
k=0 res=k
= 5 A" S,
0sr+ssn
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We denote A"* S(M) simpiy by A"* 5. An element of A" * s the sum of diff-
erential forms of pure (r, s)-type,

= L L d L] e LE K ] e
‘ w fduJ1 A A qu A k1 A A O

and the exterior derivative duw splits uniquely into the sum

du = w + W

r+2, s-1 * mr+1, s r, 5+1’

, € Ar+2. s-1’ c Ar+1. s, w € AT s+1‘

“re2, s- 1,s

This splittihg defines operators

d1 . ATs S *_Ar+2. s=1
dz:A"s+Ar+" s,
d: AT S AT St
£ 2 _ 2 . 2 2
rom the relagion (d1 + d2 + dF) =d" =0, it follows that d, =0, dF =
and others. For fixed r(q 2 r 2 0), one obtains a cochain complex,

d d d
oA 0 Byt _E, L Es APy, '

We set 2 % « Ker(d: A" 5+ A" $YT) T S upm(g,: AT 5T 40 8,
then B> Sc 2™ Sc A" 5. We define the foliation OR (r, s)-cohomology
veastor space of (M,F) by

4Fs S pls 8
Hegr M) = 27 °/8

For one Yeaf foliation (q = 0) on M, we obtain clearly the ordinary s-
dimensional de Rham cohomology of M,

» S
Hepa® (M) = HOL(M).
We define a homomorphism
X: HFDR (M) = Hom(H*(M,F), HD *(M)) o

by the formula X([zJ)[N] = [z A n] where z € Z"* 5 and n € A(M,F) with
dn = 0, The right side is well defined as follows: we have
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a(z An) = (d1 +4d, + dF)z A+ (-1)"*52

A dn

=r(d1 + dz)z AN
300

i = 0, j =1,...,9 then one obtains

d{z A )) =dz A ) + (_1)r+sz A da

If n =dx, A A du

- (-1)r+sz AN
and if 2 = dFa, then one gets
d(a an) =(d; +d,+d)aane+ (-1)"*5a A oy
s=IAN.
Hence [z A nJ does not depend on the choice of the representative n of [n]
and the representative z of [z].

3, THE FOLIATION DR COHOMOLOGY CLASS OF WEIL OPERATOR

Let (M,F) and(M',F') be codimension q foliaticns, and let f:M + M* be a
-C'dmnp transverse to F' so that F = f*F', For any point m € M, we set

m' = f(m), Let (x',u’) be a local foliation chart around m* € M', One can
choose a local folfation chart {x,u) around m such that duJ = f*du&.
J=1,...,4. We have '

Tpe (AT S0Y) < AT S,

Since f*d = df*, by comparing components of pure type {r, s + 1}, it follows
that f*dF = de*.

Let fy, f,: M+ M be C -maps transverse to F' so that f3F' = f1F' = F,
If there is a C’qmap H:M x R+ M' transverse to F' such that

fi(u) = H{m,i) ie=0,1,
N*F' = n*F,
where w:M x R+ M is the first factor projection, then fO' f1 are called
ﬁn-hamotupic by leaf preserving map and denoted by fo FF f1. H is called
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28 leaf preserving "= homotapy.

Lemma 3.1 If fy, f,: M M are ¢™-homotopic by leaf preserving map, then
5 f“* are cochain homotopic.

Proof Let (x,u): U+ R® x RY be a Jocal_ foliation chart. Local charts in
M x R of the type ((x,t)},u): UxR + ®R? x R) x R define a codimension q
foliation F5n M x R. It is clear that «*F = F. One can take a basis of
tangent vector fields in the local foliation chart of F,

3/Myseney 3/3X50 3/3L, VyyeolnVy
and its dual basis of 1-forms

91""'°p’ dt, du1....,duq.
Let 10, i‘: M+ M x R be maps defined by
. i;(m) = (m,3) J=0,1.

Since i. is transverse to F, 13? is defined and equal to F,
Any y € A? (M x R) is written uniquely as

v =p+oadt,

where p € AT S(M x R), g € AT s'1(M x R) do not contain dt. Define a
homomorphism yiAT S(M x R} » A s'1(M) by

{
¥ = 0, (g A dt) = (~1)*5"! Joo A dt.
Then we have
{
dpty = d ((-1)"S"" I o A dt),
8
%#=?Mﬁ+(4fﬁwwnlaﬂ+dﬁ A dt)
1
= [D]B + ('1)”5 J dFa A dt,
0
and therefore
dety + ?de - [p]; - i - g,
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Since H: M x 1 » M' defines fo F‘f F f1. we have Hij = f., j = 0,1 and
. -
*F' = F. Then we obtain a homomorphism A = wHe*: A™* S(M) » A" S~1(w)
satisfying for v € AT S(NY)

L

flo - T = W% - ifH%
= dF'I'H*w + whitdw

= dpt + M.

As a corollary of Lewma 3.1, we get the following Poincare lemma which is
considered as a detailed version of (10, Theoren.:i.i]. A codimension q
foliation (M,F) is called F—contractible if there exists a g-dimensional sub-
manifold N of M transverse to F and a map f:M-+NKcW transverse to F such that

f F?,F 'id". The leaf preserving homotopy of this is called F-ocontraotion
to f.

Corollary 3.2 Suppose that (M,F) is F-contraotible. If w € A* °(N) (s 2 1)
and dFm = 0, then there exists n € A" s-i(") such that = dF“‘

Proof By Lemma 3.1, it follows that
o -ws= d,,an.

But f is factored by f:M » N and the inclusion map f: N> M. Since i*F = Fy

§s the point foliation and w € A'* 5(N) s 2 1, we have i* = 0 and hence

f*y = %i%y = 0. Therefore one obtains w = dpn, n = -Au,
In Section 2, we have constructed an operator

b3

x:Hl (M) > Hom(He(M, F), Heos(M)).

The Meil operator X(y) and the homoworphism X are related by the following
theorem.

Theorem 3.3 For any VB and vR on v(F), the (0, 2j - 1)-component

(h;) of h,, j odd > 0 is a d_-cocycle and the cohomology class
Jj’o, 2j-1 Jo 2§-1 F . B

[(hj)o’ 21_11 € Heap (M) does not depend on the choices of Vv and .

Clearly we have
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X(Yj)[ﬂ] = )-(([(hj)g' 2j_1])[n]
for each [n] € HWX(K,F).

Proof In Section 1, we have shown that

r, 2j-r

dhj-cj(va)e LA rJ.

By the definition of d, it follows that

dF(hj)ﬂ, 23.1 = (dhj)o’ 2j0

and hence dF(hj)n, 2§-1 = 0

(k)
Let hgk) denote h.i for the Bott conmnection ¢ B k = 0,1 on v(F) and ﬁ

denote h‘j for the Bott connection (1 - t)(gr)B + t \17)3 on w(F) = w(F) xR.
Let _ik:ﬂ + M x R be maps defined by

'lk(ll} = (m,k) k =0,1,
Then, by the proof of Lemma 3.1, we have
(1) (0) * %
(i g, 25-1 = thy Vg, 5.1 = Uy = igdhydg 94

= (drq + ?df)(ﬁj}o’ 2j'1'

Since ‘F‘ﬁj’o, 25-1 = 0 it follows that

(1) - 0} =
(h§ g, 24-1 = 57 g, 2500 = 4p¥lBydg ooy
and hence [(h;])o 2j-1] € Hgﬁkzj'itn) does not depend on the choice of vB.
By a similar metl’mod, [(hj)o 2j-1] a1s0 does not depend on the choice of
’ -
Riemannian connection J‘ on vw(F).
The last statement of the theorem is obvious.

&, FOLIATION DE RMAM ISOMORPHISM

Let (M,F) be a codimension q C -foliation and U = {U} a cover of M by
open sets, If an intersection of finite open sets of U is F-contractible,
we call U an F-simple cover,
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[}
Lemma 4.1 Let (M,F) be a foliation on a paracompact Hausdorff manifold.
Every open cover U of M admits a refinement U' = {U:} which is F-simple.

Proof The tangent bundle T(M} splits 1nto the Hh1tney sum T(M) = F &- 9“‘

F = T(F) V = y(F). We take connection W {resp. ¢ ) on the vector bundles
F (resp. V) and we define a connection Vv on T(M) by v = vF @ vv. We call a
curve y(t) in M v-geodesic if it satisfies de/dt(dy/dt) = 0. vF_geodesic on
a leaf is necessarily v-geodesic on M and hence V-geodesic tangent to a leaf
is contained in the leaf.

One can assume that every U is a neighbourhood of local foliation chart
¢ U cllp qu and that, for each me M, ¢ {m) = (0,0) with some o, We
take a small q-disk D% c {0} x RI conta1ned in Uys and then take a suffic-
tently small normal open p-disk bundle E on 0 consisting of vectors tangent
to leaves such that the image Exp(€) of E by the exponential map is contained
in Ua' v

Let U* = {UJ.} be an open cover by Exp{E) of Mand { = u‘%i n...n Ujkn.
By the property of v-geodesic stated in the above, a connected component of
the intersection of a leaf and Q is v-geodesically convex {cf. [3, p. 34]}).

One can assume that Ué = Exp(E) c»Ua.
1
tet w:RP x RY + RY pe the natural projection. Obviously, w(Q) = B is an

open set of 0. Since each fibre of n:Q + B is contractible, one can con-
struct a cross-section s:B + Q of n and by C -approximation argument, one
can assume that s is a C -map.

N =sn{Q) « Q is a g-dimensional submanifold transverse to F. The con-
traction of each fibre of « to the point of N along v-geodesic with respect
to its parameter gives a { F-contraction to sm: Q + N.

Since {Uj ye ...U'} is an arbitrary finite set of U' with non-empty

.1ntersection1and Uj n eee N U; is F-contractible, U' = {U'} is F-simple,
" | k
and U* is obviously a refinément of U from its construction.

Let c denote the sheaf of germs of real valued C -function on M, constant
along leaves of F, and let K*(M; CF) denote the s-dimensional tecn cohomology
vector space of M with coefficient CF We have the following de Rham type
isomorphism which is a special case of [10, Theorem 3.2] and is proved here
briefly by arguments of {1].

Theorem 4.2 There is an isomorphism &: HFDR (M)
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Proof Let AT’ © be the sheaf of germs of differential (0, s)~form. For open
cover U of M, we have a k-dimensional Yech cochain vector space EX(u; A %)

of U with coefficient AV %, and we set

KK S(u) = B(u; A0 5y,

Ky = £ K Squ).
kes=r

Let 5:Kk’ s(u) -+ Kk*" s(u) denote the coboundary operator of Eech cochain.
On the other hand dy: A% 5, 4% S*! Gefines another operator
de: K S(u) o+ kk» s“'(u) such that d= « 0 and d¥ = ddp. Ve set

D' = d

D* = (-1)"«:F on k& S(u)
b=0'+0"

One can easily see that D: k"(u) - k"'

52 - 0.

Cochain maps
/

e

(U) is a coboundary operator, that is,

-

p p
wh "y s £ A S e @ Sy o kM) = K(u).
s=0 s=0 r

- g: B(UsCY) - z e - : ks Oy k(u)

are defined by the natural inclusion maps. 8y making use of Lesma 4.1 and
by the paralilel argument of [1, pp. 16-21], we obtain isomorphisms

a*: H T s 2 H'(k(u), D),
ge:He(Cuy £)) 2 ue(k(u), D).

and then by taking Vimit of H*(C(usC})) for u, (6*) 1a* defines the isomor-
phism °

s:Hppe (4) & He(hs €3).
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5. MODULAR COHOMOLOGY CLASS AND x(y,)

‘Let (M,F) be a codimension q foliation, D a positive C -density along leaves
of F and y a positive C -density on M. For a local foliation chart
(Ups 35> UPDs 151 5P, 15550, we set

Mg = wl3/3%y 0000 ,0/0%), 3/BUys.. 0 00/00 ),
. = D(a/axi,...,a/axp).
Since we have

ugfD, = ldet(aul/aud)|uy/0,

and auB/au“ is constant along leaves, it follows that
dgtlog{u /D )} = dF(log(uB!DB))

on U, N Ug. Therefore {dF(IOg(p /D, ))} defines a global 1-form on M which
is obviously dg-closed. Therefore, we obtain [dF(log(p /D )] € Ho 1(H)
On the other hand, we set .

.- 8,0
caB = log|det(auj/auk)|

on U, nUg. Since Cy = C .+ Cg=00nU nU;nU , the tech cochain

{c } e B(u; C;) is a cocycle and, by taking limit for U, its cohomology
class defines an element [(C ,}] ¢ Hn. cF), which is called the modular
aohomology olaes of F and is denoted by m{M, F} (cf. [9, p. 9]).

Lemma 5.1 Let o: H FDR (M) = H (M; Co ) be the isomorphism of Theovem 4.2.
Then we have

¢[{dF(|09(ua/Dal}] = m{M, F}.
Proof [log(pa/Da)} defines an element of KD(UJ and we have

{dg(1og(u /D.))} - Bi{loglu /D )})
v
= {4g(logu,/0))} - d({log( /D )}) - dc({loglu_/D )})

- -d({109(u /D )3).
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By the definition of Yech coboundary operator, it follows that
(d((10g( /B,)1)) 5 = Yogluy/D) - Toglu /0 )
. NP . B/ &
= log(uB/DB) 109(;38/08) logldet(‘auj/auk)l
= -CGB

and hence
e[({d 109{u !D 1M = [{C 1].

Let o be a [ -singular s-simplex such that the image of o is contauned
in a leaf of F. Let CF denpte the vector space over R with the basis {0 }
Then we have obviously aC c:C - for the boundary operator 3, and obta1n a
chain complex

ek, 2): F 2 2 * Fao
S )i = € =3 € = ... —> g+ 0,
CE =' ; Rm, (Ph =R).
meM

One can show a Stokes type formula for (C:. 3) and (Ao’ s’ d

Lemma 5.2 Suppose that o € ts+1 and u € Ao'

Fl-

., then one obtains
W= d.w.

J 2of LF P

Proof From the usual Stokes formula, it follows that
w e I d
IQOF oF

= IGF (d1m + dzw + de).

2, s-1

But we have d, w € A 1, s

dzw € A * 7 and hence

d'w(x.1jn- . 'xs+1) = dzﬂ)(Xi pras ,X
=0

s+1)

for X; € r(F) j = 1,...,5+1. Therefore we get
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LF do = Jar dp = 0

and the conclusion is shown.

et 0% < R9 be an open ¢-ball around the origin for a sufficiently smail
number ¢ > 0, A% the standard s-simplex and oF.quAs-»ﬂ any differentiable map
such that oF(x}-c |{X}’<BSECF xed¥., A cochain E € C is called differentiable,
if £(o, (x)) is differentuable with respect to x. These cochains make a
cocha'ln complex (CFD.G) and its cohomology TH (H R) satisfies the Mayer-
Vietoris sequence property for finite open covers of M. One can define a
homomorphism A:(Ao' s,dF) > (C;D.al by

umw§=JFm.
g
S
Lemma 5.2 shows that

aw)lor,q) = Aw(aal,,)

= Mdp)(ag ),

that is, A is a cbchain map.
We have a natural isomorphism from HFDR (M) to Hmlll R) as follows.

Theorem 5.3 1If F is a foliation on a compact Hausdorff manifold M, then X
induces an isomorphism '

. w0 Stay = WS Im-

Proof Since the manifold M is compact, by Lemma 4.1, one can find a finite
F-simple cover U of M by open sets. In exactly the same way as for the )
61fferent1able singular cochain complex, for F-contractible sat £ we have
Mo (ER=H}3.S(E) = 0 for s > 0 and the natural isomorphisn HepR(E) 3 HEg(EsR)
By making use of Mayer-Vietoris exact sequences of HFDR and W: 0 and by .
analogous argumnts in the proof [6, Appendix Theorem 3.1] of the isomrpmsm
“DR(") = H,J(M6 R), one can see that the natural cochain map induces the
isomorphism Heso®(N) = HZ (M R).

Theorem 5.4 Let (M, F) be a foliation on a compact Hausdorff manifold. Then
we have
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X(¥|) = i([ih')o‘ 1])!

°(2“[(h1)0, 1]} = -M(“,F).

Proof The first equation is obvious by Theorem 3.3. Let c:{0,1] +Mbe a

closed piecewise C™-curve on a leaf of F. By [9, Lemma 2.2 and Section 3],
one obtains

M2n(hy)g 4)c) = 2uh, (c)

s - A{dFUOQ(ua/Da))}(C).

This means by Theorem 5.3, that

(2nlhy)g 43 = -Cidg(toglu /0 111 € Hlao' ().

Lemma 5.1 shows the conclusion.
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1 VAISMAN .
Lagrangian foliations and characteristic
classes

This communication is a preliminary exposition concerning higher order gen-
eralizations of the Maslov class within the framework of the theory of sec-
ondary characteristic classes. A full version and complete proofs are
expected to appear elsewhere.

The Maslov class appeared as an obstruction to the transversality of a
Lagrangian submanifold to a fixed Lagrangian foliation in R?n [3), and in
[6] it has been remarked that it is the first of a certain series of second-
ary characteristic classes. Here, we consider all these classes {using the
Chern-5imons-Bott approach) in the most general situation, and we discuss
them as transversality obstrictions., Then, we compute the classes considered
for a Lagrangian submanifold of a Kdhler manifold endowed with a parallel
Lagrangian foliation, and we show that they are represented by means of
various traces of.the second fundamental form of the Lagrangian submanifold.
This generalizes a result of J.M. Morvan [8].

1. REMARKS ON LAGRANGIAN FOLIATIONS

Though this is not our main object, we start with a few remarks about
Lagrangian foliations. N

A pair (VZ“.Q) where ¥ is a 2n-dimensional differentiable manifold (we
work in the C -category), and  is a nondegenerate 2-form is an almost
sympleotic manifold, and i1f do = 0 it is a sympléctic manifold. A submani-
fold M of V is Lagrangian if dim M = n, and if Q@ induces on M the zero form.
A (distribution) foliation Ly of V is Zagrangian if it consits of Lagrangian
(planes) leaves, and we shall say that the pair (V.Lg) is an (almost) Zagra-
ngian manifold. The typical example of a Lagrangian manifold is given by
any cotangent bundle with the folfation defined by its fibres.

It is a basic fact that all the Lagrangian manifolds.are locally equiva-
lent [10], and this follows from

Theorem 1.1 (S. Lie). Let (VZ".Q.LG) be a Lagrangian sanifold. Then,
every point x € ¥ has a neighbourhood Ux endowed with locel coordinates
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(x“.ya) (@ = 1,...,n) such that Ly is given by x* = const., and
n-z 1u A dy®.

'I'he local coordinates of this theorem yield an atlas with transition
functions of the local form

o _ 3%xBy, 7 - 3" (xB)y + o (xB). (1.1) .,
. Y 3){ f

Hence, if SpL{n R} is the group of the symplectic 2n-matrices of the form

44

(“ 0)}“ (*ac = 14., *aB = tea), (1.2).
¢/ In '

=s{

S
n
we have

Proposition 1.2 "An almost Lagrangian manifold is a manifold endowed with 2
Spl.{n R)-structure, and the uanifold is Lagrangian iff the SpL(nJR)- structure
is integrable.

This remark allows for the utilization of the theory of G-structures in :
the study of Lagrangian manifolds.

On the other hand, the global equivalence of Lagrangian manifolds is a
difficult open problem, and we should 1ike to indicate a-method of obtaining
global? tnvariants.

In view of (1.1), it makes sense to define, on the Lagrangian manifold
(v, LO)' the basic sheaf S of germs of the functwns f = zaau(xB)y + b(x8),
and it is clear that the cohomology spaces I-l (V,S) will be global Lagrangian
invarfants.

Hopefully, these invariants could be computed as follows. Let & be the
sheaf of germs of the functions V - R that are constant on the leaves of
Lo and let ¥ be the sheaf of germs of the proaectab‘le cross-sections of the
transversal bundle of l.n Then, there is an inclusion i:¢ + S, and an
epimorphism ¢:S + ¢ given by

olz a (x¥)y® « b(x?)) = £ a (xF)(sq 5™, (1:3)
a Q ' s

where sg h denotes the "Q-gradient” of the function h, and it is easy to
prove

Proposition 1.3 The sequence
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i' g .
0+¢+S+yp=+0 . (1.4)
is an exact sequence of sheaves,

Since general fo]iaf’on theory yields computation methods for H*(V,¢) and
H*(V,p) [9], the exact sequence (1.4) might provide the computation of H*(V,S).

2, SECONDARY CHARACTERISTIC CLASSES

Now, before defining Maslov classes, we need an adequate sketch of the Chern-
Simons-Bott theory of secondary characteristic classes [2], (11.
Let G be a Lie group, let g be its Lie algebra, and let I1(G) = k:h-lk(s)

be its Weil algebra of the multilinear, symmetric, adg-invariant functions
(or polynomials) g ~ R {5]. Furthermore, let w:P + M be a G~principal bundle,
and 9,8',... be connection forms on P with the curvature forms 0,6',... .
In the sequel, we shal) sometimes identify the projectable forms on P with
the corresponding forms on M,

Following [1], one takes a connection 6 = Eo t},6), where (th) € 4" = the
standard r-symplex, with the curvature &, on P x A" + M x s’ » and one defines

b ... :IF(8)~AT(H)

0 r
" (A denotes the exterior forms functor) by

. ~(K) k ‘
A f e J #5™%)), (f € 1%G)). . - (2.1)
00...9'_ Al“
This yields
d £ 1 (P f "(2.2)
A - t - a - - L 4
89+++6n  hed 80+ *Oh-1%he1 **-Op

Then Aoo is the Chern-Weil homomorphiem, and the forms in im A represent
B9
the prineipal characteristic classee of P. The latter do not depend on the

choice of the connection since (2.2) yields
da f=a f-a f. (2.3)
o8y | ey ey

For further necessities let us aiso note the formuta
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1
- s =(k=1)

where § = (1-t)ay + to,, and 9, = Ol(mod. dt).

On the other hand, there are the transgression forms on P [2]

1

Tf - I £y -k J £(0,5. K yat (2.5)
A :

where § = d(te) + [te,te] (the bracket is in g), and §, = C (mod. dt). These

forms satisfy the basic relation

d(Tof) = waf. ' (2.6)

Accordingly, we have the following definitions. 1f f € ker ae, Tef is
¢losed, and [Tef] € HZk-i(P.R) are the Chern~-Simona classes of (P,8). If

fekera nkern, .8, fis closed, and [a, , f1 € H5"'(MR) are the
0 1" "8pb 081 ‘

secondary characteristic classes of (P,8, ,91).

Furthermore, let be 1 = {s/0 5 s < 1}, let ¢ be a connection on
PxI->MxI, and 8, = ¢/P x {s}" We shall say that ¢ is a deformation
of 8g and a link of BysBye Analytically, one has ¢ = es + ds for some
function a:P x 1 » g, and its curvature is

BBS
$ = 05 + (da + [Bs,a] e ) A ds, (2.7)

. k
where o = des + [es.es], whence for £ ¢ 1" {G)

(K)y . ¢o (K) % (k-1 ~

f(e' ") 'l"(l(})s ) + kf (da + [Ers,u] s ° Cq )) ads. (2.8,

Now, if we denote is:P =P x {(s}ebPx1I, it is well known that one has
for forms of P x [

0% - 1§ = hd + dn, ' (2.9)

L

where h is "fibre 1ﬁfegration“ on P x 1, and applied to T
view of (2.8)

¢f. this gives, in

. f-T f=k 'f (335 « doe - [B,,0] O(k")))ds + exact form.(2,10)
0 0 o \8 g% Vg AL
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Particularly, by taking ¢ = 6, + s(e, -90) we obtain

Theorem 2.1 The following relation always holds between Chern-Simons and
secondary characteristic classes:

n*[Ae o fl = [T f] - [T fl. (2.11)
0"1 1 0
Similarly, if (e 8, ), (eo.e } are pairs of connections and b, e: +

a, ds are links of 61’ B' (» = 0,1), then (2.8) and {2.9) (on M) yield

1
1 3¢
_ N 1(k-1))d
eoef“eoe*:,f'k[f(as day - (9504,

0 (2.12)
T Hk-1)
-k [0 f (as dan - [9s s]’ )ds + exact form.

Now, following D. Lehmann [7], we shall say that the connections 601+
of P are f-homotopice if there is a link ¢ of 8994 such that f € ker ﬁ¢.
If this happens, the integrals in (2.10) and (2.12) vanish, and we get

Theorem 2.2 If (90,96) and (91,9;) are f-homotopic connections, respect-
ively, then [T, f] = [T ,f], and [& fl = (A,,..f].
' 8 8 9981 8364

This theorem clarifies the dependency of Chern-Simons and secondary
characteristic classes on the choice of the connections,

Remark Formulas (2.10} and (2.12) yjeld easily the following generalizations
of the Chern-Simons and Heitsch derivation formulas [2], [4]

20
s . s _ (k 1) .

3(h 0, F) - 1
8.6 a0

$'Ss _ _ s _ _ral 1(k-1)

S5 .k {f(—a? do) - [0},l1, o] )
0 (2.14)
¥ .0 lk-1)
- f (1?' das - [e ]. )} + exact form,
where a_ = a/, _ .onet+ (The original formulas were for a = 0.)

249



3. GENERALIZED MASLOV CLASSES

Let m:€ > M (dim M - m, rank E = 2n) be a gymplectic veotor bundle with its
structure defined by a nondegenerate cross section Q of Azs*. Then, 2 fibre
basis (e1.....ezn) is symplectic if it assigns to Q the canonical expression,
and these bases yield the Sp(n)-principal bundle w:S(E) . M (5p{n) denotes
the symplectic group).

It is classical that E admits U(n)-reductions {U{n) is the unitary group),
of the structure group defined by fibre complex structure operators J, and
any two such structures are homotopically related by a family Js’ We shall
choose one such reduction, and denote by n:uJ(E) + M the U(n)-principal
sub-bundle of S(E)} given by the unitary bases (e1,...,en, Je,.....Jen) or,
in the equivalent complex form, by the bases

e, = ey -v=13e)/¥Z (i =1,...,n). (3.4)
The characteristic classes which we have in mind are then related to the

Chern polynomials ¢, € I{U(n)) defined for A € u(n) = the unitary Lie
algebra by [5] '

G () = (=L )k tr %A, | (3.2)
2w =1

First of a]l using & connection e on U, (E) we obtain the Chern clasees

[a ck] € H {M;R), and a simple homotopy argument shows that they depend

only on the symplectic structure of E (i.e., they do not depend on the choice

of J).

Furthermore, assume that we also have a Lagrangian sub-bundle Lo of E.
Then we can further reduce the structure group of E to the orthogonal group
0{n), and get the 0(n)-principal sub-bundle w:uJ(E,Lu) > M of ui(E), defined
by the unitary frames {3.1) such that e, € L0 (i =1,...,n). Then, it is
classical that Copt € ker Aeo for every 0{n)-connection 8gs and, therefore,
we obtain Chern-Simons classes

(Eslg) = [Ty o) € W3, (e), m). (3.3)

The classes “h(E’LO) will be called the bundle Maelov classes Of (E.Lo).
Since any two O(n)-connections are czh_i-homntopic £7], it follows from
Theorem 2.2 that these classes do not depend on the choice of 6
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If 8 is represented by the local equations (that uee the-Binstein
summation comvention) '

06, = of & Gl +u}=0tge ey (3.4)

with respect to bases (3.1) in uJ{E,LD), then the corr;lpon&ing global
connection form.on u (E) is defined by

Bg =0} d!,'h +nh£ﬂ'h ) &" (3.5)

where (gg) € U(n), and ﬁlg) is the inverse matrix of (agls
from (2.5) and (3.2) that uh(E.LD) are represented by b,

,. it follows

12
(Bt)jz A sae (3.6)

SR ) i’z S | b Jiee-donat My
8°2h-1 (2n-2)1 (2Pt 0L ety %

i 2n-1
san N (e ) ] dt’
t 3oh-1
where é% are computed as shown for (2.5), and using (3.5).
Particularly, we get

Tgc1 = ./_f d In det (g‘}} (3.7)
and it follows easily that y(E,L) s the 1ift to UJ(E) of -(1/2)m(L), where
m{L)} s thé& usual Maslov class on the bundle L(E) of the Lagrangian subspaces
of the fibres of E (3].

Now, let-l.1 be one more Lagrangian sub-bundle of E, and let 9, be an
0(n)~connection on uJ(E) defined by the new reduction of the structure group
to 0(n) given by l.1. Then, we clearly get secondary characteristic classes

=3 g), (3.8)

up{Eulgily) = (8g 0, 2n-17 € M
and these will be called the (generalised) Maslov cizses.. of L, with respect
to L. Using again the ¢op.1~homotopy argument, it fo'lows that “h(E*La'Lﬂ
do not depend on the choice of the O(n)-connections €pr and, also, the
homotopy of any two adapted complex structures J allow. & to prove that
uh(E.Lo,L1) do not depend on the choice of .

In order to compute the Maslov classes, we represei.. again 8p by (3.4),
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and we represent 6, by similar equations DE; = m;J €, where primes denote
that we have the similar quantities associated to L1 instead of Lo. Then,
let us take some fixed unitary bases [ei) in uJ(E). We shall have transition
relations of the form

€ ® Yg €j 2 & F 71 j' | (3.9)
and new connection forms
(0 ) ﬂ 3%Y1 z »

(0,) qj.a;.jdﬂ" s gyt ot

(3.10)

where the matrices B, B' are inverse to vy, y', respectively. From (3.10),
we can further compute the curvature ét needed in (2.4),and, accordingly,
write down

e J [ Jredmma

A c .
898y 2h-1  (op-2)1 (22! LERRERPTI® Bt PR I
(3.11)

A (Bt)j A dcae A (et th 1] dt,

thereby ddtaining representatives of the Maslov classes [3], [6].
Particularly, by taking ¢, = 51. and in view of (3.7), we get
u,iEoLo-l ) = (1/2)m(L0.L ) where m(LU,L ) is the usual Maslov class of
1 with respect to L0
Now, we can obtain some basic properties of the Maslov classes defined
above. .

Theorem 3.1 If the Lagrangian sub-bundles L, L, are everywhere transversal
then all uh(E.Lo.L1) = 0,

Indeed, in this case we may choose J such that L1 = JLO. and we may
choose bases such that e; = Je; (i = 1,...,n), and g; = e (see formulas
(3.1) and {3.9) for notation). The forms of (3.10) will than be related by
mij = m{, u{ uﬂ s n'j = mj. Consequently, the first factor in (3.11)

1 1
vanishes, and we get the conclusion,

Remark Theorem 3.1 shows that “h(E'LO’Li) are obstructions to the transver-
sality of Lo. L1. but it is clear that the conclusion also holds if we assume
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only that Los L1 can be deformed via Lagrangian sub-bundles to transversal
bundles Lﬁ. L,

Theorem 3.2 For Maslov classes, the focllowing =" ‘ons always hold

(ﬂ) ﬂ*uh(E,LO,L1) = phtﬁfiij m uhIE’LUJ;
(b) Uh(E’LU’L1) = 'Uh(E!L1iL0);
{c) l.lh(Etl-ool-1) + uh(EsL1 :L2) + uh(E'LZ'LU) = 0.

Indeed, (a) follows from (2.11); (b) follows from either (2.1} or (2.4),
and (c) follows from (2.2) or, more precisely, from

d{a Con_q) = A Cop_q - & Cop_q *+ 4 Cop_q+
303132 ~2h“1 3132 2h 1 3002 Zh 1 8081 2h 1

Remark Property (¢) above shows that uh(E,LU,L1) = 0 if-Lung1'adn1t a.
{global) common transversal Lagrangian sub-bundie LZ‘ 'Hence, thesd ‘classes
are obstructions to the existence of the latter.

4. MASLOV CLASSES AND THE SECOND FUNDAMENTAL FORM 2

As seen in the introduction, an important transversality problem is that of
the transveérsality between a Lagrangian submanifold M" of a symplectic mani-
fold V2", and a Lagrangian foliation Ly of the latter. In this case, TV/,
is a symplectic vector bundle £ + M, I.0 = LO’H' L = TM are Lagrangian sub-
bundles of £, and we are interested in the transversality of these two sub-
bundles. From Section 3, we know that the Maslov otasses wy(MiLg) 8"
uh(E,LO.L) provide obstructions to the transversality of M and Lo-

Generally, the computation of these classes is difficult, but we can
compute them in a particular case where the results are both nice and
important since it includes V =IR2". Namelly, we shall assume that V admits
a compatible Kdhler structure (J,g) such that Ly is paraliel with respect
to the metric g. One can prove that ¢ is then, necessarily, a flat Kdhler
metric. CIearIygiﬂzn = t" with the “horizontal® n-dimensional distribution
LU is of this type, and also, if N is any locally flat Riemannian manifold,
the cotangent bundie V = T*N has a natural flat K2hler structure (J,9) such
that the fibres of T*N are g-parallel.

Now, let M be a Lagrangian submanifold of the manifold (V.Lu) considered
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above, and let us take the bases e} (i = 1,...,n) needed for (3.9), {3.10),
etc. to be orthonormal tangent bases of M; then take €5 of (3.9) to be

g5 = {e; - /=Y JE%)/” (4.1)

Since Lo is parallel, the Levi-C<vita connection ¥ of g induces a connection
in "0' which extends to a connecti.cn 95 in uJ(E) usable in the computation
of the Maslov classes, and which .+ t have some local equations

- d
Dei = 1|'i€j ‘ (4‘2)

{hence, in this case, we do not need the bases Ej of (3.9) for the comput-
a.ion).

On the other hand, it is also clear that we may take the connection 01
needed in the computation of the Maslov classes to be defined by the connec-
tion induced by v on M. The latter is determined by the Gauss equations of
M, which can be written as

vej = wjd o) + l(e), | (4.3)

since (Jei) is a normal basis of M. In (4.3), ' is the matrix of the
induced connection, and g is a matrix of 1-forms which defines the gacond
fundamantal form of M. Accordingly, 8, has the Yocal equations

Dey = ﬂij €5 (4.4)

Now, we obtain from (4.1), (4.2) and (4.3) that
wij - t# = - /Y B{ ' (4.5)

and furthermore, the curvature needed in {3.11) can be compyted from the
Gauss-Codazzi integrability conditions of (4.3) together with the fact that
v has zero curvature, '

After this computation, we shall get from (3.11) that the representative
forms of the Maslov classes of M and Ly are given by

-1 .3

which can be seen to be equivalent to the interpretation of J.M. Morvan (8],
and ‘
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j i
1 Jyeedopy Ny
c = =T Y § B
&000' Zh'l (2“) fi".iZh"" jl

(4.7)
k i k i
2 2 2h-1 2h-1
AB: AB, A +0e AB A B
2 Tk Soh-1 " Koh-t
where W, are constants given by
2h-2  _ yheisd i )
R (-1) 2 (Zh z) (4.8)
i=0 (2h-2)! 4h-i-3 i

In other words, the Maslov classes uh(H.LO) are given by various traces
of the second fundamental form, and we have

Theorem 4.1 Let V be 2 Kdhler manifold endowed with a parallel Lagrangian
foliation LO' and let M be a Lagrangian submanifold of V. Then the Maslov
classes uh(H.LU) depend only on the second fundamental form of M in V, and
they vanish if M is a totally geodesic submanifold of V (and, moreover,

uy = 0 if M is a minimal submanifold).

We may expect to be able to use a similar method of computation for any
cotangent bundle V = T*N of a Riemannian manifold N, by replacing Vv with an
adequate metric almost complex connection v, and by replacing g with a ¥-
second fundamental form. The results {except for u') will be more compli-
cated since they will involve the (non-vanishing) curvatuce of V.
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E VOGT
Examples of circle foliations on open
3-manifolds

INTRODUCTION

In (3] D.B.A. Epstein showed that every ¢’ -foliation F (lgrse, forr=29
see {7]) of a compact 3-manifold M by c¢ircles is Cr-diffeomorphic to a Sei-
fert fibration on M, i.e. to a foliation which near each leaf is given by
the orbits of a locally free circle action. For non-compact M the situation
is more complicated. In [9, pp. 113-115], G. Reeb produces a C -foliation F
of codimension 2 on an open subset M of '.S""2 x 51 x S1 with all Jeaves com-
pact such that B,(F) = {x € M: ) is not locally bounded in x} is not empty.
Here x:M + (0,») is the function assigning to x € M the volume of the leaf
through x with respect to some Riemannian metric. Reeb assumes n 2 4, but
his formulae also work for n = 3, A slight variant of Reeb's example is the
real amalytic example of D.B.A. Epstein in [3].

B,(F) is the "obstruction" for F being a Seifert fibration, i.e. a folia-
tion F by circles i§ a Seifert fibration iff 81(F) = @. (A completely ana-
logous result is true for higher dimensional foliations. See [4].)

Bl(F) is the first set in the (coarse) Epstein hierarchy of bad sets of a
foliation with all leaves compact. One defines by transfinite induction for
every ordinal o > 1

n BB . if o is a limit ordinal.

BG = BG(F) = f<a
{x€B__, 37«|3,1_1 is not locally bounded in x},

. if a-i exists.

{EF| = sup {0:B  # P} is a countable ordinal called the length of the
Epstein hierarchy EF = {B1(F) > Ba(F) 2 ...} . |EF| measures how complicated
F is: 8 1is the obstruction to F|B _, being a Seifert fibration.

This paper is one in a series of three, Of the other two,one is mainly
£Lxpository and is concerned with the structure of the bad sets Bh‘ In the "
last paper we show that ﬁ*(n) £ 0 if M supports a circle foliation with
Epstein hierarchy of finite length.

Our interest in the study of circle foliations on open 3-manifolds Stems
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from the following question raised by D.B.A. Epstein in [5}: Can R® be fol-
fated- by circles? The result above shows that such a foliation must have
infinite Epstein hierarchy.

" The purpose of our examples is to show the following:

(1) Many interesting spaces which do not admit Seifert fibrations admit
circle fibrations, e.g. complements of some wild knots in 53_

(2) 81(F) may have rather unpleasant topological properties even if
BZ(F) = P.

(3) There are circle fdliations with Epstein hierarchy of infinite length
(this contradicts the remark on p. 28 of [2] claiming that BZ(F) = f
for any foliation with all leaves compact of codimension 2).

(4) Describe a possible approach to put a circle foliation on Ra. This
approach necessitates a countable number of extensions of certain
circle foliations from a solid torus V to a larger solid torus in which
¥ is trivially embedded. We show that the first two extensions can be
made. The result is a {very complicated) circle foliation F on an
open solid torus with |EF| =

2. VARIANTS OF REEB'S EXAMPLE

Let E' be 51 X S x [~1,1] with coordinates (x1.xz,¢.t) (x1 »Xp ) ERZ
ol = Lo €Rmod 1, and ¢ € [-1,1). Letf[‘l1]+RheaC-map.

1 §r 5w, such that f (0) = {0}. We consider on E' the Pfaffian system

ﬁ(f) = {lﬂ1s|ﬂ2} = {dts dx1 + f(t)d¢}'

a(f) 1s non-singular on
E=£ \{(X1.X2,¢.t1 € E':|x1| =1, ts= 0}

and completely integrable. Therefore Q(f) defines a c"-foliation F(f) on E.
(For £(t} = t, t € {0,1], we obtain Epstein's example in [3].) Here is a

more geometric description of F(f). Consider the level E,=EnN (S1 xS1 x {s}).
Because of dt = 0 on F(f) each E, s saturated, and for s 0 E 152 2-
torus fo'liated by the graphs of the maps ¢ (x1,x2) ﬂ%}--x‘ + ¢ from

51 cR toRmod 1. For s {and therefore f(s)) close to 0, a leaf on Es

(for £(s) > 0} is shown in Figure 1. On Ey the leaves are of the form
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{xt,x ) x S‘l %0} for -1 < Ay <1 (Figure 2). The union of these leaves

, .
is B,(F(F)), and B,(F()) = A

Part of €, , 8> 0
XX

Q0T

Partof E,



By piecing together various parts of some F(f) with Seifert fibre spaces
one obtains already some interesting circle foliations. We will describe
frliations on the somlement of (possihl; infinite) products of torus keots.

s not hard t¢ se. B * 10 copiamzal of 3 produ ¢ of two non-trivia:

.3 admits a Seifert fioration and thus the total spaces of our examples
will not carry any Seifert fibre space structure.

Let p,q be relatively prime integers. F(p,q) denotes the foliation of
S3 =3{(z1.22) € CZ: 2151 + ZZEZ = 1} given bg ;:e orhit; $f the restriction
to $° of the circle action t - ((z,,2,) + (e TP gy, T z,)), t €R
wod 1, on tz.  The standard torus knot kp'q is the orbit through (1//2,

1//2) of this action. Fp’q induces a Seifert fibration gn the complement

Kp’ of any invariant tubular neighbourhood of kp. in §7, By taking

(1/37. 1//Z) to be = in 53 we may obtain an embedding of 53 ~ kIJ c:R3. with
the knot being the x -axis in R ~ {ix;j 2 t}and Kp'q contained in {[x,[<1}.

K, leaf in 3K

Xy =—1 Z Figure 3 Xy =1

Let Z' be a small tubular cylinder around K q 4] {|x1| S 1} whose top
and bottom are two circular disks of radius r in the planes |x1| = 1 around
the intersections of these planes with the x-axis (see Figure 3). Let Z be
the union of Z' with the interior of these disks and consider the 3-manifold
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with boundary
-]
D= {|x1| s 1y~ (Kp’q v Z).

aD consists of two components: aKp’ whicﬁ is a solid torus with a foliation
induced from Fp'q, and an annulus. Let E c E be the union+of levels

Es' 0gs s 1, and remove the cylinder E0 n {x2 < 0} from £E°. Denote the
resulting space by E*. There exists a homeomorphism h:E* + D mapping E1 leaf
preserving onto 5 .q and having the following property: remember that each
circle (x‘.xz) x S| x {03}, |x1| <1, Xy > Q is a leaf of F(f) in E*. Then h
maps for -1 < X $ =% each one of these leaves to a concentric circle around
{(~1,0,0) in the plane Xy = -1 ians. and it maps for %'s Xy < 1 these leaves
to concentric circles around (1,0,0) in the plane Xy = +1. The remaining
leaves (x1.12) x 5' » (0}, - % < Xy < %5 of I-:0 are mapped onto the annulus
3Z'. (To see that such a homeomorphism exists, note that D is just a thick-
ened ;ftorus with an annulus in one of its boundary tori removed and that
any leaf of Fp,q in axp,q together with a concentric circle around (1,0,0) in
{x1 = 1} of radius greater than r represents free abelian generators for
H,(D).) It 4s clear’ that one can choose f and h in such a way that the
foliations Fp.q and h(F(f)) fit together across aKp.q to form a C” circle
foliation F(p,q,f) on Mg ° {Ix4] s 11\Z, and that F(p,q,f) has a smooth
extension to

“p,q U {(x1.x2,x3): |x|| e 1, x% + xg 2 rz}

‘ where the new leaves are simply concentric circles of radius ¢z r around
the xl-axis in the planes {x| = ¢} with |c] 2 1.

Now let (p1.q1). (P»+95).... be any finite or countably infinite sequence
of pairs of coprime integers. We can put a C"-circle folfation on the com-
plement K of the product of the torus knots k_ . , k seee in the

Piuq1 P29,
following way: K is diffeomorphic to
2
MU "pl’ql Ug “bz*qz ug Hpa’q3 U... ‘
where g{x "‘2"‘3) = (X, + 2.x2,x3) and M_ = [(x'.xz.xs):x1 < -1, *§+*§ 2r}.
Folfate o' My, qq by o'(F(p,,q,,f)) and foliate M_ by concentric circles
around the x-axis. If the sequence (p1.q').... ends with (pn,qn), then also

foliate {x, 2 2n-1, xg + xg 2 r} by concentric circles around the ..-axis.
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' The second example in this section is intended to give some indication of
the possible unpleasant topological properties of the set .B'(F).

_Let K be a continuum in the closed unit disk 0% of RZ. K is sypposed to
have the following properties:

(1) SDZ\K is the disjoint union of n > 1 open arcs A,,...,An;

(2) BZ\K is the union of n+1 disjoint simply connected domains EO’EP'”'En
such that fr ED = K and Fr Ei =Ky &1.. i=1,...,n. (Fr denotes the
set theoretic boundary with respect to the topology afltz.)

Such & continuum can easily be constructed and it has rather pecul iar
topological properties [8]), §62, VI, Theorem 11, and 548]. We want to
describe an example of a circla"foliation FK on 52 x s'. such that B|(FK) =
(K n 62) X s' and FK restricted:to B1 i$ the product foliation.

Let Ei be Caratheodory's prime end compactification of E; (011, [61).

By (6], Thegrem 6.6, there exists a homeomorphism “’i‘Ei +> D2 such that |
o¢1E;Ey + 0% is a diffeomorphisil‘\m o4[A; embeds A, onto the opem. soythetn
hemispherg D_ of the unit circleb (note that A, is canonically a sub-
space of £}, 1 = 1.2,...,1. (EquK)xs' we et 7, be the prodict foliation, -
FxlE'l x § will be the pullback under ¢4 % id ofva foliation .F{ on 02 x 's’
which we will now describe.

Let £* < €' be the submanifold of the total space & of the Beeb pexample
F(f) described above gnd Tet % p? < be the circle of radius % around the
origin. Then [(05J 0%) v 0'3 x 5! s diffeomorphic to £+ under the map
F: (r.§.¢) + (cos 2n¥, sin 2n¥, ¢-¥ , 2-2r) where {r,¥), r € [0,1], ¥€R mod 1,
are polar coordinates on Dz. ¢ cRmod 1, The coordinates on E* are the ones
from abave. If g.(s) is the distance of the circle @{1({r s})-e E; from
K with respect to the standard metric of Rz, let fi: [0,1] + [0,=) be a C"-
uap uith the following properties: '

3 £ -0
(4) f (2-5) 5 exp(-g}z(s)) for Jz $s <1

&) .fi is equal to some constant c; (s exp(-g;a(%)) in a neighbourhood of 1,

e take FIE(BR369)unl1xs' to be F(F(£.)). F,13G} 0%) x 5! 45 the unson
of circles

G, « ((3y.y - 3?1- cos 2 w¥ +s) € a5 D%) x sT:0 s ¥ s 1)
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They are the fibres of a trivial S'-bundle over a(z-Dzl which can be smaothly
extended to an § -bund\e over %-Dz to define Fi on all of D2 X 51 The choige
of £, will guarantee that the (¢i % 'ld)"'l-',l define circle foliations on1£i><s
which fit smocihiy together with the product fol1ation on (KU € ) xS to
define a circle foliation ¥ . Obviously F |(D 2%) x 8! is a (trivia]) s!-
bundle. Therefore 81(FK] c K x S'. For the converse inclusion note that a
leaf on ¢i ({r s}) x S! has at least length exp(gi (s)) if we give

D2 1 D x R mod 1 the obvious product metric.

3. ITERATIONS OF REEB'S EXAMPLE (an example with infinite hierarchy)

In this section we will prove:

Proposition For any 0 S a S w there exists a " circle folfation F& on a
connected open 3-manifold such that |EF | = a.

Proof We already know that the statement is true for a = 0,1. To construct
a foliation of length 2, we first modify our standard example a little. The
manifolds E, S* E*, Es -1sss i, are defined as in the previous section.
We also use the same coordinates (xi.x2.¢.t) for E. This time we want

f: [~1,1] + [0,1] to be a C -map with f_ (0) = [-1,0]. The formulae of the
previous section define again a foliation F(f) on E such that each of the
sets E_, €', E* is saturated. Notice that every leaf of F(f) in E(D 1 =

U Et intersects the annulus A = {(x1.x2)} X 51 x (0,11 for any'
te(0,1] ",
(xi.xz) € S  at exactly one point. To fix notation we take (xi,xz) = (0,1)

to define A, Let B < A be the open disk of points (0,1,¢,t) € E with
0<¢p<t/2and 0 <t < 1. The closure B of B in E is a smooth disk with 4
corners (see Figure 4). Let h:B +.02 be a homeomorphism which is a diffeo-
morphism in the complement of the corners and which maps the upper half
circle €' of the outside boundary of A, i.e. the set (0.1,4,1) € E with

05 ¢ s 1/2, to the lower half circle in the boundary of D°, Let B' be the
inverse image of }-Dz under h,

For a subset C of E let F(C) be the union of leaves of F(f) through points
of C. Then we define a diffeomorphism H from N = (D ‘E‘D ) x S1 onto
F(B~B') as follows. For (y,z) € N, H(y,£) is the intersection of the leaf
F({h~Y(y)3) with the annulus
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Figure 4

(cos 2nE, sin 2wE) x S1 x [0, 1)
in £, Furthermore, let K:N - 'r:(0 1 be the diffeomorphism given by
]
K({r,v},e} = (cos 2n¥, sin 2n¥, &~v, 4/3 - 4r/3)

where now (r,¥) € B\} B are polar coordinates, ¥ € Rmod 1.

We ndw define a foliation F(f(2)) on M, = E"F(B* v ¢*). On E'NF(B v C*)
we take the restriction of F(f), and on F(B<B') we take (K o H-1}*(F(f)|Em'u).
The two foliations fit together, To see this, note that H*(F(f)) is '
the product foliation on N = (széfﬁz) x S', and K*(F(f)IE(0.1]} is a folia-
tion on N which, by the choice of f, can be extended to a foliation on -
(20°0%) x §! by taking the product foliation on (20°0%)% §'.

Since F(f) is an 51-bund1e in a neighbourhood of F(B' U ¢ty = R1, M2 is a
3-manifold (with boundary). The Epstein hierarchy of F(f(2)) is given by
By (F(f(2})} = P (F(£)) U F(T), B,(F(f(2))) = B,(F(f)), where T={(0,1,4,t):
$=0or 1/2, 0 <t < 1) is a union of two arcs (see Figure 4).

This concludes the construction of a circle foliation with Epstein hier-
archy of length 2. We note that we can plug the hole F(B') in “2 by glueing
in a trivially fibred solid torus. But HZ(H2 U F(B'})) =Z will remain non-
trivial.
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To obtain a foliation of length 3 we repeat the above process. We obtained
F(£(2)) by first removing F(B) from our standard example F(f) on £, and then
adding F(B<B') with a new foliation which, up to the diffeomorphism K o K™,
.~ is just another copy of E¢y 4y < E* with its foliation F(f). This foliation
fits into the foliation on E*F(B) (with the length of the leaves growing to
infinity when approaching F(3B)) except for the points on the two leaves of
F(£)] (E'~F(B)) through the points h™'((1,0)) = {(0,1,6,1) € E*:¢=0 or 172,
This is the reason why we also remove F(C') to obtain My

So to continuve, we will s1mp]y replace F(B~B') by H = K~ (M2 n E(O 1])
with its foliation (H ° K L F(f(2)}). We obtain a manifold {with b0undary)
"3 c:M2 with a circlie foliation F(f(3)). The £pste1n hierarchy of F(f(3))
is given as

. = By CF(F)) u H = KM(B, (F(F(2)))),
B, = B,(F(f)) U H o K"(B‘(F(f))), B, = B, (F(f)).

Continuing in this way, we obtain a sequence E = M1:: M2 ) M3 D os.e
of 3-manifolds and a sequence of circle foliations F(f}, F(f(2)), F(f(3)),..,
with- F(f(1))iving on M, and {EF(f(i))] = .

It remains to construct a circle foliation with infinite hierarchy. This
is done by simply piecing all the M., F(f(i)) together. Notice that the
annulus Z = {(x1,x2,qh0] € E: Xy > 0} is contained in all Mi, and
F(F(1))|Z = F(F)|Z is the trivial s'-bundle with fibres Lx,,x,) =
£ (xy4%50 0,0):0 5 6 % ;}, where x’ + x5 = 1, x, > 0. Let ¥ be the closed
upper half plane on R™ with the points (2i -~ 1,0), i = 1,2,... removed.

Then consider the manifold

My=Y xs'u U M/e.
i=1
Here U denotes “disjoint union" and each Mi is attached to Y «x S1 by identi-
fying Z < M, with (2i-1, 2i+1) x s' in ¥ «'s' via tna diffeonorphism
(x1sx2"h°) + (20 + x4, .¢) Our choice of f allows us to extend the
foliations F(f(i)) to Y«x S by simply putting on Y x S the product folia-
tion. Denote the resulting foliation by F(f(w)). Obviously

{{yy0) € ¥y, > 2i - 1) x 8" < B (F(f(w)). Therefore | EF(f(w)} | = u,

Remark 1 In our example B, = . 1 do not know whether one can construct a
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circle foliation F on a 3-manifold with BM(F) 0.
Remark 2 MNote that atl manifolds N, | 5 1 5, can be embedded in 8.

Remark 3 Rank H,(M.) = i. We can close off in each M, one boundary compon-
ent by adding a trivially foliated solid torus to the single compact boundary
component of M, ,~M.. This shows that we may construct circle foliations

F; on 3-manifolds W, such that |EF,| = i and rank Hy(W,} = i-1. But with

the above methods the rank of Hz("i) cannot be lowered any further. This is
because at each stage we have to remove the annulus corresponding to F(T).

In the next section we suggest a program to foIiateIH; by circles. This
program necessitates the construction of circle foljations F1 on open solid
tori with |EFi| i, 1 =1,2,... . Up to now I can only complete this
program up to { = 2.

4. ONE-PARAMETER FAMILIES OF DIFFEOMORPHISMS OF THE OPEN D1SK

In this section we construct a rather complicated circle foliation F with

|EF|{ = 2 on an open solid torus. A motivation for this example is the fact

that it is the second storey in the construction of a building with infinitely

" many storeys which would, if completed, result in a circle foliation of Ra.
R can be written as the union of an ascending sequence Vo<V, c V, < ...

of open solid tori such that V, is unknotted and contractible in Vet and

such that V,~V, , is a closed solid torus minus a closed annulus in its

boundary. To be more explicit, let ?0 and H1 be as in Figure 5.

Figure 5

H1 is a 3-manifold with boundary A,, where A1 is a weridianal annulus of
the closed solid torus ﬁ,. the cosure being taken in R;. Vu is an open
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50114, sorus such that "u n Ry =A. Yy is contractible and unknotted in the
opan solid torus V =Vy U H1. In particular, ¥y and V, dre unknotted in
R". Therefore there exists a homeomorphism h.lit3 R which 1s a diffeomor-
phism inIR.x(z simpte closed curves on avuy mapping ¥V, onto 11 S1nce
VO < Vi. we obtain an ascending sequence Voic \l1 = h{V ):vz = h (v0)3=
and it is not hard to prove that ¥, = l_! h (\lo) is homeomorph1c toR".

The results of the third paper in this series show the following: if there
is a circle foliation F on R then |EF| 2 w , and if B (F) = @ there exists
an ascending sequence U0 :»U1': ... of open saturated sets. each U a com-

ponent of soweiR \B (F) such that H,(U ) = H,(solid torus), and H (U ) »
Q4

H1(Ui+1) is the 0-map. So the simplest possible circle foliation on‘R might
be obtained in the following way: start with a circle foliation on vo. extend
this to a circle foliation on V,, extend this to a circle foliation on Vz
{after possibly some deformation of the foliation on v1). Continue this
process ad infinitum, Whether this works [ do not know. Below we shall show
that there exists a circle foliation with the required properties on Vz.
(The main difficulty comes from the fact that we are not allowed, as in
the examples in the preceding sections, to drill holes to remove the pointg
where the tangent spaces to the foliation do not converge; also note that
a circle foliation on Vi with the required property - {.e., such that each
vj for 0 5 j < 9§ is saturated - will have.Epstein hierarchy of length at -
least i.)

To begin with the construction of the circle foliation on Vz we observe
that we already have an example with the required properties on V1 For
this we take the foliation F(f), where f:[~1,1] » [0,1] is a C -map with
f (0) [-1,0], and restrict it to the invariant set

EN{{Xy Xpubst) € E: <1 < £ 50, %, 5.71;} .
We attach to this space, along its boundary E1. a solid torus V with the
product foliation 1n such a way that the leaves of F(f) in E (they are the
sets {(x1,x2)} x ! {0}) are homologous in E to meridians of V. The
resulting space is an open solid torus which we may identify with V1. where

Vg corresponds to {(x1.x2,¢.t) eE:-1<t<0, > Xg > ;E—J and W corresponds

to E* U V, where E* denotes now the union of E(D 1) with

267



{(x1,x2,¢.0) € E: Xo > —%e}. This example also suggests a general procedure
v
for passing from a foliation on v1_1 to one on V‘: deform the given foliation

on Vy_y 1n such a way that it extends to a foliation of a longitudinal

annulus Ai in CLPE then attach E*E1gav Y to Vi-1 v Ai by identifying Ai

with the annulus {(x,,xz,¢,0) € E: Xy > -%TJ. The result will be an open
4

s01id torus vi with a foliation meeting our requirements. The hard part is

to find the deformation of the foliation on V, ,. We do this now for i = 2,
Since it suffices to deform the foliation only near the boundary of Vs it
suffices to consider the thickened-up 2-torus

Vg~ Vo= EY U (g Xpatt) € E: -1 < £ <0, x2>7;_—}

which is diffeomorphic to E%.1) X S‘ x S'.

It will be convenient to use angular coordinates 8 € R mod 1 for the
f1rst two coordinates (x1,x2) of E (i.e., X, = ¢€0s Zue. X, = sin 216). For

Ez,1) « s' x s1 we i:ke coordinates (r,¥,s), r ¢ [2,1) ¥,s €ERmod 1. (r,v)
are potar coordinates for the annulus C = {(y1.y2) % s y? + yg <1} onR2

Our plan is the following. Transport F(f) #rom v,«u to E%,1) x sl xs!

via a diffeomorphism b to have better coordinates for ¥ \V Then use a
diffeomorphism d of [231) x S X s1 to deform the foﬂ1ation b{F(f)) into a
circle foliation which has an extension to a longitudina)l annulus in
(1) x's' x 5. choose d to be the identity near {5} x ' x §' so that the
construction can be extended over V.

Ve first describe b: WV + [2,1) x 8" x s It Wit mep each circle
{8) » §' x {t) *identically” onto the circle {r(s,t), ¥(e,t)} x S'. Thus
1t suffices to descr1be the maps r(6,t) and ¥(0,t). We will do this first
for =1 <t 5 0. Then E‘C 8 < F‘ and we map the correSpond1ng ha]f-open disk

to the diffeomorphic set R = {{r,¥):1>prz —1
' /‘z Sin 21T'f
and ¥(6,0) = 6. The map on the

.g<?<§} in’

{ 1 '

[w,1) x S such that r(a8,0) =
2 vZ sin 2u8

remaining set of points (8,t) € S! x (0,1) is more easily described with the

‘help of Figyre 6..
Me £il1 wp Ez.%) « sha by a family K., 1 2 t > 0, of disjoint simple
-closed curves such that the following holds:

(1} For each 6 € R mod 1, the radius {(r,¥):¥ = 6} intersects each Kt i
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(2)

(3)

(4)

Figure 6

exactly one point (r(e,t),0) such that S‘I x (0.:l] + [%.1) x SS1 R,
(o,t) + (r(e,t),8) is a diffeomorphism,

For each fixed t, r{p,t) is constant on the intervals % +c58 s%-e

and % +e€s08 g— - g3 for -} €05 g- - ¢ it-is (non-strictly) increas-
ing.

For each t g 112. the set {(r{o,t),8): &4» €csS6s g- - g} is a straight
horizontal line in R,

Foreachts%and%-%ses%h;-,

1 {(1-0y 2+ 3 4
T )

the positively oriented unit tangent vector to Ke in {r(t,8}),8).

Such a family of circles exists, and it is reasonably unique once r(0,t)

is fixed, We define r{e,t) by (1) and ¥(e,t) = 6 for tHé points (6,t) €
S1 x (0.1}]. MNotice that r{0,1) = “1_; and r{o,t) + 1 as t + 0 for % $8s g-
This finishes the description of b.

The diffeomorphism d of [,1) x S' x ' will be defined by a smooth 1-

parameter family of diffeomorpnisms, ds:[%,ﬂ x S1 -+ [%.1), x S‘. s € [0,1],
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such that d? = da1and dy g *dg for 0 g5 <8 and_‘lu‘ga,_gqaty_gs is the iden-
tity neari{z] x S, The map d corresponding to tr!q‘ 'lspa_rggo,t,gf"famﬂy ds is
then defined by d(r,¥,s) = (d (r,¢),s),. e

To motivate the somewhat complicated formulae let us consider another way
to describe Reeb examples. Let a:[0,1] - [0,1] be the restriction of a Z-

periodic C°-function from R to [0,1] of the form shown in Figure 7. Let

Figure 7

a::%,1) * [0,=) be a C™-map such that g”'(0) = [z, 7 + 61 for some small ¢
and g{r) 2= as r » 1. Let F be the product foliation on [},1) X S1 x §!
with leaves (r,¥) x S', (r,¥) € [31) x S'. Lot d(r,¥,s) = (r,sa(s) §(r),s).
Then the image d(F) of F under d is a circle foljation on [%,1) x S1 x 51.
The tori {r} % S‘I x S1 are saturated with respect to d(F), and the leaves on
' {r} x S‘l x s! become longer and longer as r goes to 1, d{F) can be extended
to the union of the two annuli {1} x S1 % (s'x{o,%}), where the foliation
‘on these annuli is the obvious product S‘-fo'liation. The resulting foliation
will be smooth if g grows fast enough (any exponential growth suffices),
We would like to do the same, but with the foliation b{F{f)) instead of F.
It is an instructive exercise to show that with the simple minded 1-parameter

femilies of diffeomorphisms

d(r,¢) = (r, ¥ + afs) « 8(r))

of [é-.l) x ! above, thare. will be no poing ’p, 4) x s! x s such that, in

8 neighbourhood U {1} = g! x5! of th!kmm.sghn s a nowhere vanfshing
vector field towards which (dob)(F(f)) converges, The rdison fbr this 1des
in the fact that, for poinﬁs {ry¥,s) € [1}.1)‘x SI x S‘ with 0 < ¥ < %-, the
positive unit tangent 'vector ‘to b(F) (after we have chosen an orientation
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for b(F}) will converge to 2 as r approaches 1, while for % < ¥ <1 the

1
Vimit will be - -2 . g.’s- is just the positive unit tangent vector field to F in

the example abovgsand the positive unit vectors of d(F) in (r,¥,s) converge to
1 r+1and if 0<s <), Since in the same domain the positive unit vectors
of d(~F} converge to-£%3 we find in the neighbourhood of any point in
{1}xs1x(0.%4 positive unit tangent vectors V‘.Vz of dob(F(f)) with V, arbitr-
arily close to -5%; and v, arbitrarily close to -5%. This indicates that we-have
to make a special effort to find a deformation which also forces the unit tan-
gent vectors of b(F(f)) at points (r,¥,s) with é<?<1 and D<s <% into the
positive ¥ direction as r approaches 1.

Let g:[0,1]+[-1,1] be the restriction of a Z-periodic C -function as
indicated in Figure 8. Let a(r) % be a ¢ -vector field on [%.1] with

')
14 ~

Figure 8

a{r} =0 for r near ;3 and alr) = r(t-r) for r 2 %u On Eé,1) x S consider
the vector field g(?)-a{r)oga, where (r,¥) are the coordinates on [%,t} X S‘.
and let e be the corresponding 1-parameter family of diffeomorphisms, Let
a:[0,1] + £0,=) be the restriction of a Z-periodic ﬂ”ﬁlnp with «(0) = 0 and
af{s). = s for %-g S. < %. Then we let d. = h o ea(s) be our {-parameter
family of diffeomorphisms of [3,1) » &' where

- _8(r)

hir,v) = (r.% + e—T:F- ) .

Here B(r) is equal to & for r near % and rqual tor for r :z %ﬁ We claim

that (dob)(F{f)) has th;\iquired properries. More specifically we prove:

Proposition for proper choices oF‘bg‘tx?nd g and for an orientation of F(f),
the positive unit tangent vectors of (dob)}{F(f)) in (r,¥,s) will converge to

-

e
. S aem 2N

- -



3

2 §f (r,9,s) = (1,?0.50) with &-< S < &

oY

Proof We first investigate the effect of d,, the differential of d, on the

. . t 1 . .
vector fields 5%5 g%, g% in Qé,1) x § % $ for the points (r,¥,s) with

%.< s < g-and rz %u Notice that in this domain a{r) = r{1-r) and als) = s,
and r.es-g(*)/(1+r(es’g(w)-1)) 2-%. Therefore

s.g(¥) Y ¢S-9(¥)
d(r,v,s) = {—¢ , ¥+ eT-F .S

1+r(es'g(?)-l)

Differentiating, we obtain

s+g(¥) s.q(¥) - 3°9(Y)
d, 3 - e 2 . e = 2
( ﬁ‘(r"{'ss)) (11‘!’(35‘9('{’)_1))2 or * We T
d,(..?. )= r(1-r)eseg (1) 65" 9¥) 5
awl(”’WsSJ (1+r(e3 9 ¥ 1))2 ar
L e5°9{¥)
+ {1 + e -r . Tg? . sg.(w),esg(w)] é% .
seg{¥)
dof 2 _rit-r).g(¥)-e 3
*( QSI(P’?,S)) (1+r(esog _1))2 "
= es+a(Y) .
* T;F 9(?)'95'9{?).e r §% + {% .

We have a fairly explicit description of b{(F(f)). On R x S1 it is the
product flow, and we will choose the orientation of F(f} so that the positive
unit tangent vector of b{F(f})) in R x s is g%. Furthermore, the 2-turi

Kt X 5?': (E%,1) x S'\R) X S1 correspond to the saturated 2-tori Et in

V,\M, 0<tg 1, and for any 6 > 0 the positive unit tangent vector of
b(F(f)) on points (r,¥) on Ke with § < ¥ « ; - & will be close to g% for
small t, while on points (r,¥) with 5+ § < ¥ < | - 8 it will be close to

- &, s0 1t will have the form

X(r,v,s) = A(r,v,s) g% + B(r,v,s) g%-+ c(r,¥,s)

r
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with C(r,¥,s) close to +i or -1 depending on whether § <¥< 2 -~ or

]
,}4 d<¥ <) -5, Since in this region also 2 3 ‘P(T} is bounded, the only
problem for convergence of d, (X(r,y,s)) to % as r + 1 cev ioove if Alr,¥,s)

is negative and r is ¢lose to 1. This hapoens only for ¥ <:cse to 1. and
here for the f1rst time we have to specify the diffeomorphism b: ‘J ~¥ - [-2-.1)
x s x S If T (r(v,t).w) is the positive unit tangent vector to Ky in
(r(y,t),v), then the —-component of X{r(y,t},¥,s) is somewhat more than the

sin 2n¥ _¢51d of the EF component. For g- SYs g, r(y,t) fluctuates between

t) and r‘(t) with rO(t) +tast s+ 0. We choose b in such a way that
) 1 r‘1(t) > e /t f(t) for small t. (This obviously puts a restraint on f, If

we choose f(t) = e -1/t2 for small t the above inequality can be satisfied.)
Then the negative contribution to = a‘, coming from d, (A{r,¥, s)—] will be neg-_
ligible when compared with the contribution to - 3‘, coming fron d, (C(r,¥ s)g)
for points {r,v,s) with v close to F’ r close to 1, and as alweys 'G'(“g'

So it remains to anmalyze d_ (X{r,v,s)) for y close to 0 and%- When v is
close to 0, Alr,v,s) = 0, Since B{r,v,s) > 0 everywhere and g*{¥} > k for
some k > 0, if ¥ is close to 0 d (x(r,'y,s)) > — 3 as Yong as ¥ stays in
some neighbourhood of 0, s¢€ {F’ E)‘ and v + 1,

Finally,. for v € ('2' ~ €, 2- + ¢) the shapes of the curves Kst.on'e into
pla:{. zx(r(?.t).w,s] will be of the form N(r(‘l’.t).v.s)(a(v.t)-ﬂ- (r(v,t),¥)

+ -s—¥rt-”’f- . -5%- , where N is chosen to make sure that X is a umit vector, and
a(tr,t) 1s a function close to 1, It takes care of the stretching of the curve
(‘Z - €, 2. +g) x {¢g} x t under the map b. By property {3) of the curves
Kys the 3 w5 Component of ak[r(w t),¥) will be the (1-r(¥,t))-fold of the
component as Jong as a; - ? £ Ys % % Therefore the contribution from

d (T {r(v,t),¥)) to 3¢ Will be

Y

! r_.ss(Y)
1 7 _ esg(?) 1_—‘,0
(——-————-—(1 : (1-.-)2) (1 + (1-r.s-g'{¥}) —rv - e ) .

If ¢ is small enough, |[r-s-g'(¥)| < 1 and so this number rapidly goes to + =
as r+ 1, So a problem for convergence can develop only when I%ﬂt is
not small in cornpamson mth { while |g('¥)[-er’“ -r {which is the
coefficient of =5 in d { ) up to a bounded factor} is not large in compari-
son with 1 (uhich is the Coeff1C1ent of -2 in d,(-—)} Here we introduce
the second restraint on b: 1-r1(t) '”E for smal‘l t. Wth our choice of
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u

Ay £ ‘
f(t]% -1/t ) this is possible. Then, for e small enough. we have
1-ry t) s 2 e*1/t, [f we further demand that, near 2-. g{y) = (v - %)Bn;(‘v),
where ]r(-z-) < 0, then

r{y,t)
|g(‘l’)|. l"("l’!t) ..e|-l"(‘l’,E)
1-r(y,t)
1 11/t
1eb. e 1,3 %eift
{9l 7 2 const. [(¥Y.- %)7| e .
1 . 1 R
Since, for ¥ near w, [sin 2ny| is close to 2s{¥ - x| and Ty - © for

small t, we obtain - *

in 2ny LA NIRRT
I’—‘y&,l'—ls(rf—,. jo0) -7 ) - (eonst, e/ )

Therefore, if the couponent of X{r,¥,s) cannot be neglected in comparison
with the "E component. 1.e.. if Is—‘-g-(%'f-l is not very small, then the?—-
and = a ~ components of d,,( ) are neglibly small in comparison with the =-
component.

Up till naw we have completely ignored the —- -component of dob(F(f))
But, for r close to 1, the -- -component of d ( ), 1||,(w),, and d ( ) can be
neglected {n comparison with the other components. Therefore the above dis=
cussion shows that the positive unit tangent vector field of deb{F(f)) at
(r ¥,8), B' <$ < g- converges (rapidly) to .= a as r goes to 1.

As we have indicated above, the prOposition implies the main result of
this section,

F1j

Corollary There exists a circle foliation F on an open selid torus V having
the following properties. BZ(F) is an annulus splitting V into two open
solid tori i IJ' invariant under F, where V¥ is contractible and
unknotted, B,(FW') is again an annulus splitting VI into two invariant open
so)id tord Vu, UO’ and \fo < V‘ is contractible and unknotted.
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R A WOLAK
Some remarks on V-G-fohations

In this short note we present two methods for dealing with some ﬁroblems for
transverse structures of G-foliations and in particular for v-G-foliations.
As examples of applications of these methods we prove two theorems. We con-
struct the graph of a v-G-foliation, and then study the transverse structure
on the graph. Its properties allow us to prove the following theorem.

Theorem A Let F be a transversely complete v-G-foliation. Then the leaves
of the foliation ¥ have the same universal covering space.

In the second part we give definitions of transverse structures of higher
order. They admit a foliation of the same dimension as the initial one, and
its leaves are covering spaces of the leaves of the initial foliation. We
show the following.

Theorem B A G-foliation ¥ admi4s a transversely projectible G-comnection if
and only if the foliation F' of the normal bundle of order r admits a trans-
versely projectible ¢ -connection.

1. PRELININARIES

Let N be a comnected n-manifold, N a g-manifold (n 2 q) with a G-structure
B(R.G). -+ ko819 98 a G-comnection in the G-structure B(N,G), Let (M,F) be a
v-e-ﬂmmmm on B(N,G), and defined by a cocylce {U.,f..g, P e
fi‘u1 4',1&3 ‘submeysion, f |li n U = 955 of ., and 9;; are local automor-
phisms of thg G-structure B(I'l G) and affine automorphisms of the comnection
V. Let H bq a sub-bundle of the tangent bundle TM suppiementary to the
fo'liatiil; 7. Let L{#) be the frame bundle of H and denote by B(M,F,C) the
E-reduction 0t L{1) defined by the G-foliation F. A G-structure obtained in
this uny 1s called a tramsverse G-structure. We denote by fi the mapping of
B(I!.f.G)Hl1 fato B(N,6) defined by f.. Let w be the connection form of the
connection. V. Then the forms 'r‘ w g1ue together to define a conmection & on
L{H), which is a commection in the transverse G-structure B(M,F,8). 8y ¥
we deriote the corresponding differential operator on K,
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The fundamental form o of the transverse G-structure B(M,r,G) is defined
as follows:
Let p be a transverse frame of B(M,F,G). Then

-1
. dn Pr q
: »F, R
By TpBMLF,E) 2> T M — W L5 g9,

where v:B(M,F,G) + M is the natural mapping, p TH + H is the projection of
TM onto H along ¥, and p 15 the inverse of the linear isomorphism defined
by the frame p.

For any vector ¢ € R we can define a vector field B(£) on B(M,F,G) called
the fundamental horizontal vector field. We demand that:

(i) 8B(g) = ¢;
(i) B(g) is a horizonta) vector field;

{ii1) for any pE B(M,%,G), ﬁ(g)p € Hp where f is the supplementary distri-
bution in ker w to the lifted foliation F:
Ep = (dow | ker &)'1(H ).
One can easily check that 8 |5 (Uy) = Tie. where  is the fundamental form
of the G-structure B(N,G). The mapping d ? |H b T%.(p) is an isomor-
phism, where I is the horizontal space of the connecttoniw. Additional ly,

if B(g} is the fundamental horizontal vector field on B(N,G) defined by the
vector ¢ € Rq then

dpfi(B(E)) = B(g)_gi(p).

Proposition 1 Let S be a sectfon of the bundle H on ui. constant along the
leaves of ¥. Then

-~

- -t
S = (410 0y S,
where S = (df W) 'S+,

Proof This foremla is obtained directly from the definition via the Christo-
fel symbols, -

tet a:[0,1] ~ M be a curve in a leaf of the foliation ¥, a(0) = x, a{l) =y,

Then the curve o defines a mapping T‘:l of H, into Hy. Let y be a curve such

. 217
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that v(0) = x, d/dty(0) = v € H ., Let o, be the curve starting at y(t), the
hotonomy 1ift of o to y(t). Then t - “t(1) is a curve at y transverse to ¥.
The H-component of the vector d/dta,(1)(0) we assume as the value of T on
the vector v, One can easily check that it does not depend on the choice of
the curve y. The mapping T is a linear isomorphism, and in its turn defines
an isomorphism T L(H) > L(H)

Let (V ,¢x) be an adapted chart at the point x and let (U 1y ) be an
adapted chart at the point y such that each plaque is contract1ble Let Dx
be the transverse submanifold at x and let Dy be the transverse submanifold
at y. For any points u € Ux and v € Uy there exist the unique points
u' € Dx and v' € Dy. respectively, such that the points u and u’, v and v*
belong to the same plaque of Ux or Uy » respectively.

Let VI be 2 neighbourhood of x in Dx such that, for any point x' of VK.
there exists the holonomy 1ift of the curve u to x°.

Let us denote by Vy the image by the holonomy mapping of V in Dy. Let
U and U be the saturations of v and V in U and Uy. respect1vely. By
Oy denote the curve s 1*& s*8 s where a , 18 the ho1onomy 1ift of the curve

a tou’, S, is a curve in the plaque I1nk1ng utou', Sy is a curve in the
plaque linking v to v'. The holonomy mapping T along the curve %y does not
depend on the choice of the curves Sy and Sy° We can choose curves s and

U
Sy in such a2 way that the mapping

L

a:ﬁx x ﬁy x T +M: aluv,t) =a (t)

uv

is smooth, where ﬁx x U = {(u,v)eﬁ X ﬁy T (u') =
For any pair of points (u,v) € U x 1 y* the curve a,, defines the mapping

T L(H) + L{K) ., and the mapp1ng
Cyy

;L) |07 (0) x {‘(0 ) -2 @) x LW yl

is smooth.
Lemma | dp’fa(ﬁ(g)p) - ﬁ(g);a(p).

Proof Let x = a{0) and y = (1), and let v, and Vy be two transverse mani-
folds at x and y, respectively., Additionally.we assume that the manifold v,
is contained in some U, and Vy in some Uj. Then the mappings fi|vx and
fJ]Vy are local diffeomorphisms. The mapping
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-1 . -
fjoTa°f1 lvx : fi(vx) fj(Vy]
1s just the composition gioi' ® has ©® gik lik for some indjices io’-""ik‘
Thus the mapping

fs

is equal to g"i j. % eer ® E‘. § and therefore it is an affine mapping.
o't k-1'k -
The vector fields B(&) on L(H) or B(M,F,G) are mapped by f. onto the

vector fields B(E). Then

> &1 . -
o]‘aofi lvx s L(fi(vx)) L(fj(\'y))

0T (B(EN = FyoTpof; o, (B(ED) = iy, ¢ oo o 9,7, (4
= B(E).

Thus T2B(E) = B(E).

2, GRAPH OF A v-G-FOLIATION

For the convenience of the reader we recall the construction of the graph of
a foliation, due to Ch. Ehresmann and later developed by H.E. Winkelnkemper
{4].

Let x and y be two points of the manifold M 1ying in the same leaf and
let o be a piecewise smooth curve linking x to y and contained in the same
leaf. Me say that two such curves aiand B are equivalent if the holonomy
along the curveas" is trivial. The space of all such triples (x,y,(2]),
where [a] denotes the equivalence class of a in the above equivalence rela-
tion, is called the graph of the foliation.¥, and we denote it by GR(F).

The topology is introduced in the following way. Llet z = (xo.yo.[a]) be
any point of GR(F). Let a be a representative of [«]. Take an adapted chart
(Ui"’i) at Xy and an adapted chart {UJ.¢ ) at Yo such that O,l:Dk x p9 + M,
¢i{0,0) =X, and 1;j:I)k x pY + M, ¢j(0,0§ =Yy By N; we denote the trans-
verse submanifold ¢,(0 x 09) and by W, the submanifold &;(0 09). For any
point x € U;, by x; we denote the point of the plaque of x belonging to Wi
and for any point y of U:j by Y5 the point of the plaque of y belonging to
Hj. By v denote all the points of Ui whose plagues can be linked with a
plaque 9f Uj by a chain of plaques following the curve a. By VJ denote the
set of points of Uj which 1ie in the end plaques of the above chains. Let
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Hz . be a subset of GR(F) defined as follows:

¥ * --1.".
10T ((x,y,[8]) € GR(F); x € V,, y € V,, 8=5 5%}

whera S, sy are curves linking the points x and y with X5 and yj,‘respect-
ively, in the corresponding plaques, and o is the holonomy 1ift of o to X
The set is well defined as the end point of G must be yj, and the equivalence
class of B does not depend on the choices of the curves Sy and sy. The sets
W, , we take as a sub-base of the topology of GR(F).

In our case, by means of these sets we can introduce a differentiable
structure {cf. [4]). In this differentiable structure they are adapted
charts for a 2k-dimensional foliation F. 'The foliation 7 can also be defined
as the inverse image of the foliation F by the canonical projection 51:GR(f]4H
or p, : GR(F) + M, where p,(x,y,[a]) = x and p,y(x,y,(al) = y.

The tangent bundle of the manifold GR(¥) is isomorphic to the sum

,5; F & 5.: F ® H, where the bundle R is given by

H = {v € TGR(F); dp, (v) € H and dp,(v) € H};

L

or, in more detaif’ let 2 = (x,y,[«])EGR(F), then anf tangent vector
Z € T,6R(F) is equal to (X .Y »[a]), where X € TM, Yy €T M. In particular,
we can consider R as -

{X € TGR(F); X = (v.T (v),[a]), v € H}.

Let us consider the reduct10n L of the frame bundle L(GR(F)) defined by
the decomposition p‘ Fé p2 Foh of the tangent bundle TGR(F). Let

z = (x,y,[al). A frame v = {v1....,vk,u1...., q.v1.....vk) at z is given
by the following vectors:

L (v1.....vkl a frame at x of ¥,

v = (;1.....;k) a frame at y of 7,
w € H. i=1,...,q, dp (u ) €H, dpz{u JEHand T dpt(w .} = dpz(u ).
Thus (v1.....vk.dp1(w ),....dp1 (w )} is a frame at x, and (v1.....vk,

dpz{u ),...,dpz(u )} is a frame at y. Therefore any vector tangent to L is
given by a curve y

it s (v (8], v ()W (8), e g (8,9, (1), 0 (1))



such that
daz(wi(t)) = Tadat(wi(t)] for any i=1,00es90

Let » be the connection on H defined by the connection v. Directly from
the definition of the foliation ¥ is a v-G-foliation, and the bundle H can
be considered as the normal bundle of the foliation ;.

Lenma 2 The mapping ?a is an affine transformation of the connection w,

Proof Let af0) = x and (1) = y, and et x € Ui for some i and y € Uj for
some j. Then

4
-~ -~

il o g B - o~ - ~ 0-_1.. _ ~ u_‘

- f*(g S eew a- : )‘l.ll = ' = w.
Yo'y Te-1k L

Thus Ta is an affine transformation of a.

Definition A v-G-foliation F is called transverssly complete if fundamental
horizontal vector fields B(g) are complete for any ¢ € RY,

Lemma3 Letay-G-foliation ¥ be transversely complete. Then the foliation ¥
on the graph manifold GR(F) is transversely complete.

Proof Let B(g) be a fundamental horizontal vector field on B(M,F,G), und '

its global flow. Let w = (w,,...,w,) be a frame of Hat z = {(%,¥:[a]). Then
e:ch uii is= 11....q is equal to ?n}.uf.[ag). uh;re wf = dT;y:. and

W = (w,.....uq) is a frame at x of H, and w" = (w|....,u§] is a frame at y,

Ne put

3 = (o, (0),0,06%), Loylad))

where the curve ¢t(a) is obtained in the following way. Since a is a leaf
curve, we can lift it to a leaf curve a at w € B(M,7,6), then we take ot(&),
which is a leaf curve as the vector fields B(z) are infinitesimal sutomorphisms
of the foliation ¥ of the fibre bundle. Next, we project this curve back to

M and obtain a leaf curve, which we denote by ¢,(a). We have to show that the
homotopy class of the cuirve ¢,{a) does not depend on the choice of the lift 4.
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-The segment ¢[0,t]la(0) of the flow is a transverse curve to the foliation F .

of B(M,F,G). It projects to a transverse curve t toﬁthe foliation ¥ on the !
manifold M, Since the flow preserves -the foliation F, the mapping

g:[0,1] x [0,t] 3 (s,v) » ¢va(5)

is the holonomy 1ift of the curve g along ¢[{0,t]Ja(0), and the projection
E of g onto the manifold M is the holonomy 1ift of the curve o along the
curve . '

To complete the checking that E’t is well defined, we recall that
d"i"aﬁ(t:) = B(g). Then the mapping T will commute with the flow of B(e), and
indeed $t(u) will be an element of B(M,F,G), i.e.

Ta¢t{w') = ¢t? (w1) a ¢t(w2).

Since the foliation ¥ on the manifold GR(¥) is defined by a cocycle
(5} (Uy), 5,39, },and the tangent vector to §, is the vector (B(g),B(¢),[a),
the flow ¢ is the flow of a fundamental horizemtal vector field, as, of
course, this vector is horizontal, since, locally, the commection on
B(GR(F),F,G) is given by (F,op )%

3. PROOF OF THEOREM A

Any two points of the manifold M can be joined by a piecewise smooth curve
whose segments are either leaf curves or projected segments of integral
curves of fundamental horizontal vector fields. We would 1ike to lift these
_curves to GR(F). As the horizontal bundle we assume the bundle e ﬁ;l’.
which is transverse to the fibre of the submersion i‘:ﬂ(f) + M. The fibres
are covering spaces of the leaves of the foliation ¥ (cf. [4]).

First of all, we 1ift leaf curves. Let y be a leaf curve. The 1ift of
tMs curve has to be tangent to the bundle H @ p,F. It cammot be tangent to
H, thus it must be tangent to p1F. Therefore the tangent vector has to be
of the form (X,0,[a}}. Since dp1{x 0,[ad) = X, the 1ift of the curve y to
the point z = (x,¥;[a]), where, x = a(0) is the curve y:[0,1] 3 t - (y(t},y,
[a‘v 1t0,¢20).

To 1ift a transverse curve, we need a move subtle construction. Any such
curve y is a projection of a segment of an integral curve ¢[0,1J(p ) of 2
fundamental horizontal vector field 8(z) on the manifold B(M,F,G). Take a
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corrasponding seguent ¢ o, l](p ) of an integral curve of the vector field

5) on the manifold B(GR(!). .G) starting from a point ﬁ in the fibre

Py (py)e The projéction of the curve onto the menifold GR{!7 is tangent to -
the bundle #, as d/dt, = (B(£),Blz),[a1) and dn(B(£)) € H directly from the
definition of the vector field B(c). Additionally, as df ﬁ(g) B{z) and
d7 duﬁ(g) = dndT 5(51 = dwﬁ(z). it follows that. indeed, the vector tangent
to n¢t[0 I](po) is tangent to H. The choice of p in the fidbre p,'(p )
corresponds to the choice of the point in the fibre "1(7(0))

As we have shown, we can 1ift horizontally from N to GR(F) any curve of
the chosen type. We shall cal) such curves v-curves.

Lnu?n(:))hny v=curve y in M defines a diffeomorphism of p1 (y(D)) onto
Py \Y

Proof The horizontal 1ifts of V-curves depend smoothly on the 1nit1a1
condition; thus, 1ifting the curve Y to the points of the fibre p (Y(O))
and taking the end points of the lifts, we define the mapping of p| (Y(O)}
into pt (7(1)) which is a diffeomorphism,

Using the same methods as in the proof of [1, Theorem 1, p. 239], we show
the following theorem.

Theorem 1 Let G be a connected Lie group and let M be a connected manifold.
Let F be a transversely complete V-G-folfation. Then p WGR{¥) * M is a
locally trivial fibre bundle, with the structure group Diff)p1 (x ),
where Xq is any point of M.

As a corol]ary of this theorem we get our main theorem as the fibres of
51 are covering spaces of the leaves of the foliation F.

4. TRANSVERSE STRUCTURES OF FOLIATIONS

We present the definitions of some transverse structures and fheir basic
properties. More details can be found in [6].

Example 1 Transverse {p,r)-velocities (p"-jets).

Let m be a point of the manifold M. Let f:(RP,0) ~ (M,m) be any Tocal smooth
mapping of P into M mapping 0 onto m, Let f,g be two _such mappings and let
(U,$) be any adapted chart at m such that ¢:U = R"9 x p9, ¢(x) = (4, (x),
¢,(x}), thus ¢, is constant along the leaves. We shall also use the notation
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¢ * (y‘.....yn_ ) 49 = (”1”"'“q) We say that the mappings f and g are
equiva!dnt if J ¢zf 3 Jo¢2g This is equivalent to

alvilaxv(x f) = a'"l sax’ (x;- -g)

for any multi-index v € N?, v} s r, 1 =1,...,q. We shall denote the number
of such indices by p{r). This equivalence relation does not depend on the
choice of an adapted chart at the point m, The equivalence class of a mapping
f we denote by [f] The set of all equivalence classes at a point m we

' denote by NmP’ (M,F) and the space mzﬂ N;’r(H,F) by NPT (M, 7). By n; let us

denote the natural projection of NP+T(M,F) into M, i.e. 7 ([F1") = £(0). One

can easily check that for any adapted chart (U,4) the set u Np6r(H.F) is

q.p(r) . mey .
isomorphic to U x R and that the isomorphism is given by the mapping

[f]r -+ 31v|/ax'(x )‘ 1yeennq’ Thus, if we denote the mapping defined

above by ¢ . ¢ (n'TkU)-vR“ 9, /9 x R9-P{T) the collection of all such ¢"
defined by an adapted atlas on M defines an atlas on the space NPo' (M, F). To
see this, one has only to notice that if ¢1’¢{ are two adapted charts for a
follated manifold (M,f), the composition ¢,47':R R"Y o R 5 R™9 o /9 s of
the form (f,(y,x),f,(x)}, where y denotes the first n-q c00rdinates, X the
last q, f1 R" 9 Ra + R" q‘ and f2 R19 nﬂ +* Rg. then ¢ip(¢jp)
A" » g9 x g9 P(r) | =, R x Rq.p(r) is equal to (f,,T'(f )}, where

T olfz) ts the mapping of T7(R%) = RY x A% P(r} induced by fz

Summing up, we have proved that Np’r(ﬂ F) is a locally trivial bundle,
uhose total space admits a codi.ension q.p(r) + q foliation r’ projecting
by np onto the initial foliation,

If p = q and we take only transverse embeddings of RY into M, the above
construction gives a bundle called the transverse frame bundle of the folia-

ted manifold (M,7) and is denoted by L"(M,¥). It is a principel fibre
bundle with the fibre L;.

Example 2 The Lundle of transverse A-points of (M,F)

Let A be an associative algebra over the field R with the unit t. The algebrs
Ais Iipled loAal if it is coomutative, of finite dimension over R, and if {¢t
adsits the unique maximal ideal W of codimension 1 such that a™' « 0 for

some non-negative integer h, The smallest such h is called the height of X,
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Let R[p] = R[x1.....xp] be the algebra of all formal power series in XqoeeeaXos
and let lp be the maximal fdeal of R[p) of all formal power series without
constant terms. Let A be a non-trivial ideal of R(p] such that R[pl/A is of
finite dimension. Then A = R[p)/A is a local algebra with the maximal idea)
n = !p/A. Any local algebra is isomorphic to such a local algebra {cf. [2]).
Let C;IM.F) be the algebra of germs of smooth functions constant on the
leaves of the foliation F at the point m of the manifoid M. An algebra
homeomorphism c:c;(u.f) + A will be called an A-point of (M,F) near tom
(or an infinitely near transverse point to m of kind A) if £(f) = f(m) mod ®
for every f € C;(M.F). We denote by nh(M.f) the set of all A-points of (M,¥)
near to m, and by A(M,F) = U A (M,F). The mapping &m(H.f) Sa+meMis
denoted by LIt meM '
One can prove that the set A(M,F) admits a differentiable structure such
that nA:A(H,f) + M is a fibre bundle over M with fibre A, and that there
exists a canonically defined foliation Fy of the same dimension as the folia-
tion F,

5. PROOF OF THEOREM B

Yo prove Theorem B we shall use Ci, Roger's definition of the universal
Atiyah-Molino class, and therefore we consider foliations as r-structures.
First consider a pair of groupoids Ty and Ty. Let M1 and Mz be two smooth
manifolds, ry and Ty two groupoids on M1 and "2' respectively, Assume that
there exist two homeomorphisms of the groupoids r{ and T,

o, ,8 l l# (2] One8 *l #4 a, B (1)
1Py ¢ %2+%2 2372 1,51

such that f.i = id, , fei = idy and I,im i cim i, yily,) = i(?y)i(y?).
2 2

The need to consider such a pair of groupoids is explained by the follow~-
fng. Let M =N, be a smooth manifold, M, be the r-tangent bundle of M,
H1 = T'M. Let P(M,G) be a given G-structure on M, Let Ty be a groupoid of
germs of automorphisms of the G-structure P(M,G),let Ty be the groupoid of
germs of 1ifts of elements of I, to T'M, and P' (M,G) be the r~prolongation of the 6-
structure P(M,8), It is a 6" -structure on T'M, where G' is the r-prolongation
of the group G. Let i:M » T'M be the zero section. Then the mapping
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-1‘3’*1‘ is defined as follows:

-
s
L

',‘ie*;‘ oYy L0h
rg 3 (£)y ——> (7€) () €Ty,

The mpping f we define as the natural projection. Of course, these
mappings are homeomorphisms of groupoids.

1f F is a G-foliation modelled on B(N,G), then the foliation " is a G -
foliation modelled on B'(N,G). Thus a G-foliation is aT, = r- structure for
a suitable choice of the groupoid 1, and then the foliation F isar-
structure,

Let (F,,8.) be a r,-sheaf over M, and (F,,9,} be a r,-sheaf over M,.
cohomeomorphism F of F, into F, over i is called a (I‘,.I‘z)-cohommrphism
if, for any x € My, v € Fyeeys Y €Ty ay{y) = ilx),

[
Flgy(x)(¥)) = g,(F()IF(v).
After long computations one cap show the following.

Lemma 5 Any (F1.P2)-cohomeomorphism F of the sheaves _l-'_1 and l_-'2 induces a
mapping in cohomology:

FriNw(Bl,,F) ——=> HS(BT,0F,). - (2)

As the next step of the proof let us consider the following situation.

Let m:X > ¥ be a continuous surjection, Ul = {Ui} be a covering of Y, and
0= {n'l(ui)} be a covering of X, Let F, be a continuous functor,
Fzz‘f“ + I‘z. Jet f1 be another continuous functor, f1:x° - I‘.l. such that the
following diagram is commutative

X
Y l
Y

Additionally, we assume that there exists a section of w, iv:'{ ~+ X such
that 111Y - id.{. We require that the diagram

"‘_—”1

l’ (3)

———>r2
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Fy

]
i,{ *i ()
F2

is commutative,

Any G-foliation ¥ on M modeiled on Q(M.G) defines such a pair of functors.
He have to take Y = M, 1l the open covering of the dgfining cocycle, Pz =T,

= NM,F), Ty o= 17, 0 = (0T T u) = v L ‘

A I‘ -sheaf (F1,g1) defines via Fia sheaf -"1 F‘ on the space X, and a
z-sheaf (—2’92) defines via ¥, sheaf fé F, on Y. For the details see [3].

Lemma 6 For any (F1.I‘2)-cohommnrphism F of the sheaves §_1 and .Ea and any
two cofunctors F, and 7, such that the diagrams (3) and (4) are commutative,
the following diagram is commutative:

L.y

*

7y

(X, FiE,) € He(8r, .F,)
R ' (5)
F* !.‘*
?*
* 2

Having proved the properties contained %n Lemmas 5 and 6, we can complete
the proof of Theorem B, Let us remark first that as a model G-structure we
can always take a trivial G-structure, but then the manifold N does not need
to be connected. ) ‘

Let N be a manifold and let P(N,G) be a trivial principal G-fibre bundle.
Let I be a groupoid of germs of automorphisms of P(N,G). The tangent bundle
TP admits a natural action of the group G; let Q = TP/G, let T be the tangent
bundle to N, and let L be the assoctated fibre bundle with P with standard
fibre g = Lie(G). tet L, Q, T denote the r-sheaves of germs of sections of
the fibre bundles L, Q, T, respectively. Then the following sequence of
sheaves is exact: :

0+£+g+'1+0_ ‘ ' (5)

Denote by Q" the bundle TP'/G" over TN, by T" the bundle TT'N. Let
i:N+TN be the zero section, We have the following commutative diagram
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of sheavesand their (r.rr)-cohomomnrphisms over 1:

L — LA
(7)
: i

In the proof of the fact that the vertical arrows, defined by the mapping .
are (r,l‘r)-cohommorphisms we use the existence and properties of 1iftings
of vector fields {(cf. [2], [6]).

From diagram (7) we get

0>

0> L —>

0+ Hom(T",L") » Hom(T",Q") » Hom(1", 1) = 0

l l i | (8)

0 - Hom(T,L) - Hom(T,Q} -+ Hom(T,T} - O
and therefore the following diagram of long exact sequences is commutative:

0~ Homrr(Tr.Lr) - Homrr(Tr.Qr) + Homrr(Tr.Tr} S H'(Brrlﬂo_rn(f.l._r)l

!

0+ Hom (T,L) » Hom(T,0) » Hom(T,) —> H'(br,Hom(T,L)).

(9)

Let us take as the sheaf F, the sheaf _ﬂg_m_(f,f) and as EZ the sheaf
Hom(T,L). As the (r,r" )-cohomomorphism F over i we take the corresponding
vertical arrow. Then from diagrams (9) and (5) we get the following commu-
tative diagram, taking into account that the sheaf F;ﬂ_g_l\;(f._l._r) is equal to
the sheaf }_i_g_m_;[l(f ),P_(g_r)) and f;M(I.L) to the sheaf Hom(N(¥),P(a}), where
P(gr) and P(g) are the associated fibre bundles with the standard fibre g~
and g, respectively:

At

F
Homr (17, T7) = ' (8" Hom(17,L")) —L> H! (" (W, 7), How(H(z") ,P(a")))

l‘ ;t 'lb {10)
Hom(T,T) = H'(Br,Hom(T,L)) ——2—> ' (W, Hom(N(F) ,P(g))).

According to [3], the Atiyah-Molino class AMCF'] of the 1ifted foliation
Fo1s equal to



MEFT] = 7 sllar),
Then
b(AMLF™1) = b(FAs(1d.r)) = Fasa(ld.r).

One can easily check, directly from the definition, that a(IdTr)
Thus b(AM[F']) -br*s(mT) = AM(F).

Up ti11 now we have considered the foliation F* as a r"-foliation. Let I,
be the groupoid of germs of automorphisms of the r-prolongation PY(N,G)
of the G-structure P(N,G). This groupoid contains the groupoid ' as an
open subgroupoid. We have also to consider the foliation Froas a rr-folia-
tion and look at the relations between the Atiyah-Molino classes. It is not

difficult to check that they are equal. This last remark effectively ends
the sketch of the proof of Theorem B.

T
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CTJDODSON
Fibrilations and group actions

t. FIBRED MANIFOLDS

The aim of this paper is to present some results on fibred structures which
may be viewed as genmeralisations of fibre bundles, and to report some joint
work with 0. Canarutto -oncerning the stability of frame bundle incomplete-
ness which has - innificance for quantization in general relativity.

The context is that of fibred manifolds (or surmersions) the geometry of
which, following Lhresmann, has been studied in particular by Libermann,
Kola¥, Mangiaroll' and Hedugno, Ferraris and Francaviglia. The geometry is
quite rich becatse a fibred manifold may be viewed as the least structure
needed to syp~. ° - -urection,

A Fibr.d mua wiots surjective submersion E-P— 8. Then p has
mAXimum rank c. r¢ . w v F bas an opén neighbourhood V and a mani-
fold FV with » - f({eaporpiism @v:V m pV x FV over p, We shall cal‘l: FV a
fibril, A morricem « fibred manifolds is a commuting diagram of smooth
fibre-preservin- + -

¢ Lo~ » [
P * *p'
B —1

-

There is a.natural composition of such diagrams, so yielding a category FM.
One reason for studying this category is that it admits pullbacks; in fact,
that is a consequence of the following result, which says that every finite
diagram in FM has a left limit.

Theorem The category fM is finitely left complete.

E

Proof It is sufficient to show that FM admits finite products and equatlizers.
The former is clear enough. Consider the equalizer diagram of commuting
squares:
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f ¢
£, ¢—2—E -~
f
_ —1
by Py P2 = Fp TR
1)
¥2 ¥1 '

p
Our candidate left limit object is E —>-> B (= F, say) with

E={y € §|f,{y) = f,(y)}
P =Py -
o = xepE¥ () = ¥, (x)

Now, plE = B, E is a smooth submanifold of E1 and p is evidently a smooth
surjection.

Take any y € E, then by commutativity in the tangent diagram,
Tp(TyE) = Tp,(TyE) = Tp(y)B

$0 p inherits the submersion property from Py

The morphism required for the universal property can be. obtained from
inclusions and compositions.

2. SHEAF STRUCTURES

A smooth map p:E + B is a sheaf manifold over B if p is an opaﬂ..1oca1 diffée-
omorphism.

The categories of sheaves on smooth manifolds and sheaf manifolds are
related via a functor which carries sheaf manifold: to sheaves of their
smooth local sections.

Proposit:on * fibred manifold E-JLL>B is a ske.. nifold over B if p is
open and its {1kres are discrete spaces.:

In the topoicgical case, sheaves and sheaf spaci: are actually equivalent
as categoriec ~ver a given base space, for there the ‘u.ctor, carrying sheaf
spaces to shcoves of their continuous local sectic- 25 ar inverse which
carries sheaves to sheaf spaces of germs of loca‘® «..:.0ns, However, this
inverse is not available to us even for fibred topoingical spaces, because
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the latter néed not have discrete fibres, Of course, the fibrils of a fibred
manifold constitute a sheaf and this may allow any common algebraic structure
to be exploited.

p
Proposition Every fibred manifold E —>— B determines a sheaf SE of smooth
local sections of p.

Proof Firsf ve obtain a presheaf cofunctor

S:T(B)»Set: U S(UE) = (@ €E[P =1y

v
i’]——) I"v : 0+o|u=oi

v S(V,E)

Since E -2>>Bis a fibred manifold, every point of £ has a sectionable neigh-
bourhood over a sufficiently small base set; so SE is not empty.
Now take any open cover {Ua|a € A) of any U € T(B). Suppose that we have
a collection {g_ € S(UG.E)I a € A} with
U nu u,ny
(v -} _ Bo
(va,B € 1:) pua 9, pUB B .

Hence oa'la = 0318’ jaia = jBiB' Then by functoriality of §

pUunUas UnUB Ua ) UmﬂUB ll‘3
u ®y "y v, U
a B

U, n U,
ia/ r\]B
O'a UB

Uy —E€— Ug
.\0’1'/
3o U JB
Define a:U*E:x-roa(x) ifxeua.

It follows that o € S(U,E) and, as required, it satisfies
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3
puao = Uja =

\ gorollar! S determines a functor from the category of fibred manifolds over
B to the category of sheaves over B.

3. G-FIBRILATIONS

A group~fibrilation is a fibred manifold E -E3» B with a Teft action o over
8 by a Lie group G acting as a group of fibred manifold automorphisms of E.
We shall denote this by G x E ~2> E B35 B and cal) it & &-pibrilction,
Logically we might call a fibred manifold a fibrilation,

A morphiem of group-fibrilations is a commting diagram of smooth maps
with f 3 Lie group homomorphism:

GxE -2 £ A 5 8

) l fl ]¥
! p‘ Bl

G'x £' 2 €

Again we have a category, GF%, under diagram composition., {t is clased under
finite products and we can use the FM equalizer but in gensrs) we cannot
obtain a suftable G-fibrilation equalizer except by taking 1t with trivial

G, and 1ikewise for pullbacks.

Proposition Let 6 x E 2> E-B5 58 be a G-fibrilation.
Given 2 smooth curve ¢ : (-c,e) + B and any y, € pT(c(8)}, there is some
positive § < ¢ and a smooth curve €:f{-5,8] + E with pc = ©1{-5,81° Moreover

uTE is another such curve for all smooth curvesR[-5,8] + & with y(0) = 1.

Proof Since E E>—> B is a fibred manifold, we can find some open neighbour-
hood ¥ of Yo a fibril F‘J and diffeomorphtism

¢:V‘pVva.

Take § > 0 with c[-4,8] < pV¥, possible since E is a miﬂ'ﬂ(. Dafine : ‘
pz M pv o Fv > Fv : (!.V) + ¥, Thefl,

C: [-6,81E 1 t 97 (c(t).pzelyy))



is smooth and projects onto the restriction of ¢ to [~5,8). Also, if y(t) €6
then the action automorphism % () acts vertically so ayE is well-defined for
the same 5, thouyh it may leave V,

The usefulness of this 1ifting is essentially measured by &, on & scale
from zero to ¢; the more of the curve that can be lifted the better, It may
be of value to take the supremum of § over all fibri)l neighbourhoods of y,
Each lifted curve ¢ determines a transport process among fibrils over the
base curve 3ad *i 5 extends, vi. the 3ction of G, also tOo their vertical
translatin

Next we e’ »c sitac'2 connections on G-fibrilations, essentis °
same way as _. wrmann [8).

A connecrion on a G-fibrilation 6 x £ -2 E —>>B is a smooth {dimB)-
dimensional distribution on £

, 1 the

: T i : 3
riy + l-ly = yE with Tley Hy Tp(y)B
that is Znvariant under o, namely:

"ag(y) = Tag H {vy € E, vg € G).

We see thai a G-fibrilation generalises the notion of a G-bundle, 1t has
a local product structure that is not locally trivial nor even a fibration,
since the fibres need not be homotopic. Moreover, the action of 6 is not
necessarily transitive nor free. However, locally a G-fibrilation has a
- su¥ftedently simple structure to make differential analysis easy through
adapted charts. Moreover, it can support the useful geometric notion of an
invariant connection, The study of these was begun in [3] where some princ-
ipal bundle theory was adapted to obtain induced and coinduced comnections
from group~fibrilation morphisms. Jet calculus and connection geometry on
fibred manifolds (cf. (8], [9], (43, [7] for example, and references therein)
is transferable to G-fibrilations which may prove a useful setting for varia-
tional problews with group symmetries,

We turn now to a result concerning a very particular type of G-fibrilation;
namely, a principal &-bundle.
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4. CONNECTION-STABILITY OF BASE SINGULARITIES

It is well known that the notion of geodesic completeness is inadequate for
pseudo-Riemannian manifolds, such as spacetimes, where it has become the
practice to 1ift the problem to a convenient bundle by a method due to Schaidt
[10]) (cf. also [2] for a detailed account and survey}. General theorems
suggest that any theory of gravity is likely to predict physical singular-
ities in the classical geometry. Recently,.we have proved the -following
result for manifolds with linear connections.

Theorem Bundle-incompleteness is stable under perturbations of the connect-
ion. '

The geometric details of the proof are given in (1] and they depend on
Modugno's structure of connections [9]. This is a fibred manifold JP/G >N,
where in our case P = P(G,M) is the frame bundle, sections of which are
connections [':P + JP invariant under 6 (cf. Libermann [8]). Our trick is
to use a canonical connection (cf, Garcia [5]) on the fibred manifold
&P/G x P —>— JP/G to obtain a bilinear form on its total space. Now, this
restricts to become a Riemannian metric on certain submenifolds which have
diffeomorphisms to the frame bundle and these become isometries for each
choice of connection. Then, 1f M is bundie-incomplete with respect to one
connectfon, it is also bundle-incomplete with respect to a nearby connection.

This theorem has physical significance in that it lends weight to the
belief that genera) relativistic singularities cannot be quantized away. It
was already known from the work of Gotay and Isenberg [6] that geometric
quantizatfon of a massless Klein-Gordon scalar field on a positively curved
spacetime could not prevent the collapse of the state vector. Our result
is more geﬁeral and not tied to any particular method of quemtization. It
may also be useful to extend it to the case of nonlinear connections when
they can be made to induce suitable metric structures on some convenient
fibred manifold total space. '

References

[1] Canarutto, D, and Dodson, C.T.J. On the bundle of principatl connections
and the stability of b-incompleteness of manifolds. Math., Proc. Camb.
Phil. Soe. (1985) 98 (in press).

.

295



[2]

[£3]

[4]

(51

(63

(7]

[8]
[9]

Dodson, C.Y.J. Space-time edge geometry. Int. , Theor. Phys. 17

(6) {1978) 389-504.

Dodson, C.T.J. Invariant connections on G-fibrilations. Presented at
Colloquium on Differential Geometry 26 August - 2 September 1984,
Hajduszoboszlo, Hungary.

Ferraris, M, and Francaviglia, M. On the global structure of Lagrangian
and Hamiltonian formalisms in higher order calcuius of variations.
Proe., Meeting, Geometry and Physics, Florence October 12-15 1982, Ed.
M. Modugno, Pitagora Editrice, Bologna (1983) 44-70. Cf. also Fibred
connections and higher order calculus of variations. Presented at
Colloguium on Differential Geometry 26 August - 2 September 1984,
Hajduszoboszlo, Hungary.

Garcia, P.L. Gauge algebras, curvature and symplectic structure J,
Diff. Geom 12 (1977) 209-~227.

Gotay, M.J. and Isenberg, J.A. Geometric quantization and gravitatianal
collapse. Phys. Rev. D22 (1980) 235-260.

Kol4¥, 1. Proiongations of generalized connections Coll. Math, Soc.
Janos Bolyar 31. Differential Geometry, Budapest, Hungary (1979) 317-
325.

Libermann, P. Paralldlismes. J. Diff. Geom. 8 (1973) 511-539,
Mangharotty, M. and Modugno, M. Fibred Spaces, jet spaces and connec-
tions for field theories, \n Proc. International Meeting Geomatry and
Phyeiros Flovenoe 12-15 October 1982 ed. M. Modugno, Pitagora Editrice,
Bologma (1983) 135-165.

[10] Schatft, B 6. A msw defimition of singular points in general relativity



M FERRARIS & M FRANCAVIGLIA

The theory of formal connections and ﬁbred
connections in fibred manifolds

t. INTRODUCTION

In the framework of higher order calculus of variations in a fibred manifold
Y = (¥,X,n) one often encounters fields of objects which may be naturally
jdentified with sections of vector bundles of the kind

vg(v) oy T;‘(x)

where V and T are standard functors and (p,q,r,s) are non-negative integers.
Objects of this type are called in short "(fields of) fibred tensors®,
because of their transformation properties under changes of fibred coordi-
nates in Y. As an example, we can mention Lagrangians, their vertical
differentials, momenta, etc,

The local structure of higher order calculus of variations is fairly well
understood, both at the Lagrangian and at the Hamiltonian level. However, in
many physically interesting situations one needs to deal also with global
problems, which only recently have received serious consideration and have
been given a reasonably satisfactory formulation, Among the global problems
that have stimulated & lot of interest and a number of different interpre-
tations we recpii the problem of a correct global definition of the so-called
. 'POW form® (which bas 1ong beee known to exist upiquely for
: m ‘minﬂ » Tatat gfoved to exist uniquely also for higher

and ﬂrstordw 1M theory, but recently shown to be
.Mﬂly non-unique in the sost genaral situation; [2]), [8]), [9], [10), [11]),
(123, (131, {171, [19]). .

Were are of course several techmigdes to handle g]obal problems (direct
methods of globalization from local resuits, or intrinsic methods based on
sophisticated tools such as sheaf theory, cohomology, etc.). In the direct
épproach, one of the standard procedures consists in trying to patch together
local expressions by showing that their transformation laws may be interpreted
as transition functions of soms suitable bundle. A major difficulty which
arises in applications to higher order calculus of variations is hidden in
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the wide use of the so-called “formal derivative operator", which unfortun-
ately does not transform fibred tensors 1intc fibred temsors. More pre-
_cisely, if

1.iz.-..1 ’G1,GZ’---.GY
J"jz".’j ’81’52"“’8

are the local components of a fibred tensor t, the forma) partial dervatives

. t11‘iz;“"ip'“1’°2"“’“r
u J"jz"“,Jqul’BZ""’BS

are no longer components of a fibred tensor. Accordingly, 1t 1s convenient
to replace higher-order (formal) derivatives of fibred temsors with suitably
defined "formal covariant derivatives®, constructed in such a way that they
transform again as fibred tensors. For this purpose, one meeds first to
introduce suitable global objects which are called "formml connections” and
then use a2 formal connection to define a "fibred connection® which allows
calculation of formal covariant derivatives of any fibred tensor.

A preliminary short discussion of formal connections and fibred connections
in fibred manifolds has already been given in [2] and [5] and the purpose of
this paper is to provide a more detailed exposition of this subject. Appli-
cations to higher order calculus of variations have already been discussed in
[2), (3], [5), where the existence was shown, by an explicit construction,
of an infinite family of Poincare-Cartan forms parametrized by a family of
*fibred connections”.

In this paper we shall first define the relevant notions in the classical
coordinate formalism and then we shall turn to more intrinsic definitions in
terms of principal fibrations and exact sequences of vector bundles. Section
2 will be devoted to a short discussion of preliminaries and notation; in
Section 3 we shall develop the theory of formal connections and formal (first-
order) covariant derivatives; Sections 4 and 5 will contain the intrinsic
description of these notions.

2. PRELIMINARIES AND NOTATION

We shall here recall some standard definitions and set the notation which
will be used throughout this paper. We assume that the reader is already
familiar with differential geometry in fibred manifolds and with the theory
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of jet-prolongations (details and references may be found in [13] and [18]).
A1) manifold and fibred manifold structures considered here are assumed to
be smooth in the category of (paracompact) topological manifolds over the
reals.

Let X be a manifold and let ¥ = (Y,X,n) be a fibred manifold over the
manifold X. The vertical bundle of Y is V[n] = (vxtv},x.nov,,). where
Vx(Y) = Ker{Tn) < T(Y) and vy 1$ the restriction to Vx(Y) of the canonical
projection TY:T(Y) +Y. If U= (U,Y,0) is a fibred manifold having for basis
the total space Y of Y {namely, we have a double filration over X), then the
composition noy defines a fibred manifold (U,X,n°v). We recall that in this
case Vx(U) stands for Ker(T(nev)), while VY(U) stands for Ker(Tv). Whenever
there is no need to specify the basis manifold of the fibration we shall omit
the basis from the notation (writing, for example, V(Y) instead of Vx(Y)].

For any quadruple of non-negative integers (p,q,r,s) we shall also set

‘JE(Y} s [V(Y)]q’ OY[V*(Y])]“‘ and we define the following family of vector
bundles

(Psr)iyy = VP r
n(q.s)“) v (Y) o7, (x)

where Tr(X) denotes the standard tensor power of T(X). The sections of
E"-"’(v) over Y wi)l be called (fielde of) fibmed tensors over Y.
For any point y € Y we considar the space VFy(Y) consisting of all bases
of tle vector space Vy(Y) = {vy)” (.V) and we form the union

VF{Y) = u VF (Y),
yev Y

This space is endowed with a natural manifold structure and it is fibred over

Y by the canonical projection ¢Y:VF(Y) + Y. Moreover, there is a canonical '

action of the 1inear group GL(n:;R)} (n = dim(Y) - dim(X)} onto the fibres

vF (\'), which induces on VF(Y) a natural structure of principa] GL(n;R)-

bund1e over Y. The bundle (VF(Y) Y,¢Y,GL(n.R)) is shortly denoted by VF(nl

and it is called the bundle of vertical frames of Y.

The k~th order jet-prolongation of Y (hhere k is any non-negative
integer) is denoted by Jk[n] = (JX(Y) X,n ). Also in this case, whenever
there is no danger of confusfon we shall omit the indication of the basis
manifold X. For any pair (r,s) of integers there is a canonical embedding
170595 (v) 5 J"(%(Y)). For any local section o:X + Y we denote by

299



-jkn:X + Jk(Y) the k-th order jet-prolongation of o. _

If Z = (2,X,z) is a further fibred manifold over X, a fibred morphiem from
the fibred manifold Y into the fibred manifold Z is a wmap F: Y + Z such that
goF = n. For any integer r 2 1 and any fibred morphism F: J (Y) » Z, with
k > 0, we define the r-th order (holonomic) prolongation p' (F) of the
morphism F, by setting :

oT(F) = JT(F)ei™k . 3" K(y) 4 3"(D) (2.1)

where J"(F) : 'Jr(Jk('l)) + 37(2) denotes the standard r-th order jet-prolong-
ation of the fibred mornhism F,

het f: > (Y) +R be a smooth map, There exists a unique 1-form Df over
the manifold gk (Y) such that the following holds:

(1017 (0f) .= d((5%0)*(£)) and i(£)(DFY = 0

.fbr igy (local) section o:X + Y and any field of vertical vectors
'(V) ¥(3**1(¥)); here i(-) denotes the interior product batween

vectors and forms, The unique 1-form Of which satisfies the properties above
is callgd the formal differential of the map f.

For our later purposes we now turn to 1¥st some mrdinate notations which
will be used throughout the paper. Consider a fibred manifeld Y, with
m = dim(X) and n = dim(Y) - dim(X). If ¢ = (U; xl), with 1 S A <sm, is a
local chart of the manifold X, its donam is denoted by Dom(y); a fibred
ohart of Y over 1; is denoted by ¢ = (W;x .y ) {with » = 1,...,m and
ie 1.....n). the local coordinates assocutd to a fibred chart y will be
called fidred ocoordinatee. If ' = (H'.x o ) is a further fibred chart
whose domain has a non-empty intersection with Dom(y) and

k' .il

X g ), v et )

"are the corresponding transition functions, the following notatien will be
used to indicate their partial derivatives:

] 3! 1 4
Ve Y} (P, y*) = 20’73y’

e o) =t s,y
jk jk(ll ,m) = 3 ’ /ay‘]ay ’ jl-l » Y;; (xlof) = Bati./ayjax“

and so on,
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A fibred chart w of Y induces canonically in ¥[n] a fibred chart y, with
coordlnates (x ,v ) and a fibred chart ¥ in J"[n], with coordinates
(x> Y, ) (here v = (v,,...,v ) € N” i5 a muIti-index with 0 s Jv|] k). AN
charts induced canonically by fibred charts of Y will be called natural
fibred charte.

For any fibred chart y of Y, the formal differential Df is defined over
the domain of *k:1 and its local representation is Df = (dlf)dxl, where the
coefficients dlf are given by

A k l
d.f = af/ax" + 1 (af/ay ). (2.2)

ME Y,

Here standard multi-index notation has been used: 1 denotes the multi-index
(0,...,0,1,0,...,0) (with 1 “in the A-th position) and summation of multi-
indices is defined componentwise. The meaning of Df is clear from the local
expressions above. We remark that the partial differential operator dA is

often called the formal partial derivative with respect to the coordinate

XA.

Let us now consider any-field t of fibred tensors in FTEE’:;(Y). having
local components - '

tfiiizsc-'oiptﬂ1sﬂzs---'ﬂr
J1'32.---.jq.B|.Bz.---.Bs

in any natural fibred chart. Easy but tedious calculations show that the
local functions defined by
d i""z. '." ’01’%900.%
tJ"Jzt"'.J 'B1DB‘2#"'.B

do not transform as the local components of a field of fibred tensors in

Eq 531)(Y) For example, we have the following transformation law for the

|

formal partial derivatives of the components v' of a vertical vector field:

) i
du.v

-y i ik 1 v Jayd

Y [duv + (\‘jkyu + Yju)v ]X". . {2.3)
This local.formula is our starting point toward the definition of formal
connections, which will be discussed in the next section.

We finally recall the following well known alternative intrinsic defini-

tions of connections in a principal G-bundle P = (P,M,n;G), over any manifold
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M with structure group any Lie group G

(1) There exists a natural action J'(P) x G+ J!{P), which 1s induced by
the first prolongation of the canomcal (right) action of G onto P

This prolonged action 1s free and differentiable and 1t admts a quotient
man fi.1d KM(P) = J1(P){G Moreover, 1t can be shown that the canomical pro-
Jection k_ KM(P) + M 15 a (surjective) submersion. The fibred mam fold
K[n] = (K“(P] M.k ) 1s an affine bundle, because the affine structure of
J! {P) over P can be shown to pass to the quotient Finally, there exists
a canomcal one-to-ohe correspondence Detween the space of global sections
of the bundle K[»] and thetspace of all connections of the principal bundle
P (see [7])

(11) Given any G-bundie P, there exists a short exact sequence of vector
bundles and vector bundle morphisms over M,

0+~ ¥(P)/G » T(P)/G » T(M} » 0,

and any .riphttmg w T(M) » T(P})/G of this sequence defines a counection of
P (and v.ce versa). \

3 FORMAL CONNECTIONS AND FIBRED CONNECTIONS

As we already announced 1n the Introduction, the pwrpose of tiis paper 1s to
define a famly of objects which allow replacement of the partial formal
derwatw? eof the components of any fibred temsor by 1ocal functions which
st111 have » "fibred-tensorial behaviour Objects of this kind will be
calle¢ “fidred connections' and 1t turns out that thelr major wngredient 1s

a sestron of a surfably defined affine bundle over J ('l). which will be
callek a "formal) connection” over Y. In order to define fibred connections
and Soyma T covarant derivatives of fibred tensars, it will be convement
ta e First the notion of formal covartant dertvatrve of a fibred morphism
F:Jk(}') + ¥WY), with k any non-negattve integer Derivatiwon of fibred
tensors wrll ther be defined by standard tensorization procedures.

Let us conmdtr a fibred mamfold Y = (¥,X,n)} together with a fibred
morphiss F.J (\‘} + V(Y). For any fibred chart y of Y, we wntroduce a set
of local smoeth functions f; Dom(q;‘) + R and we set by defimtions

vus‘(r) ¢ g'(F) + F) EJ(F) (3 1)
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where ;;i(F) = vl o Fare the components of the morphism F with respect to
the given fibred chart y. Let us then require that the local expressions
(3.1) above define the components of a fibred tensor in ng N, Easy
calculations based on relation (2.3) tell us that the local functions T,

Ju
should obey the following transformation laws:
ait et i’ u

for any pair (y,y') of fibred charts of Y such that Dom(y) n Dom(y') # #.

It is easy to show that the relations (3.2) are invertible any satisfy
the composition property of a cocycle over the manifold J‘(Y) with values
in the Lfe group Gl.(nz.m;li) According“ly. they define the transition func-
tions of a bundle C[n ] = (C(J (Y)).J (Y),C) over J‘(V) itself, which is
unique up to isomorphisms. It is easily seen from (3.2) that this bundle
can be given a canonical structure of affine bundle over J (Y); moreover,
. whenever (Y,X,n) is affine, C[n ] 1s the pull-back over 4! (Y) of an affine
bundle over the basis X. The bundle C[n ] will becadlled the bundle of formal
oonnsctione over the fibred manifold Y; being an affine bundle, it admits

global sections I J {y) +-C(J (Y)), which we shall call formzl aonneciions
over Y.

Turning to local coordinate expressions, let us first remark that any
fibred chart y of ¥ induces in a canonical way a natural fibred chart of
the affine bundle C[n 1, with fibred coordinates (x* .y .y .l'j ). In such a
natural chart, the local representation of a formal connection T over Y has
then the following expression:

Fe(x,y' .y;) —> (x".yi.yi.l"}"(xl.yk. ) (3.3)

wheré the functions ?}u(x 5 Yy k) are defined in the domain Dom(y,) of the
given chart and transform accorchng to (3.2). .

We turn now to define the formal covariant dex-z'.wtiue of a fibred mor-
phism. We consider then any formal connection T over Y and we set, in any
fibred chart of Y,

v Ve v: + ﬁ' (x:".;fi .yi)v" . (3.4)

where (xl.yi,va,y .va) are the natural fibred coordinates in J (v(Y)) induced
by the given chart of Y. It is easily checked that the relations (3.3)
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define in fact a global vector bundle morphism over n:}
v (v(1)) — v(Y) o, T*(X)

which will be called a formal covariant derivation (associated to the formal
connection f).

Let now F:Jk(Y) + ¥(Y) be any (global) fibred morphism over Y. We con-
sider the holonomic prologation 01“") = J'(F) o i1k and we define fibred
morphisms 9(F) and v(F) by setting

wF) = v (F) ¢ 3K ) —— wY) e T x) (3.5)

and

(F) = veo' (F) = 3% (v) »V(Y) @ T*(X). (3.6)

These fibred morphisms are respectively called the anholonomic and the
holonomic fommal covariant derivative of F with respect to T3 they are the
unique (global) morphisms which fit into the commutative diagram, Figure 1.

v

vy — — V{Y} ®,T* (X)

3= Yp

- 4
o' (F) VIR

J%*1{y)

Y) o T *(y)
Y

Figure 1
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fonsider now a local section v : X » V(Y) and define its formal covariant
derivative (with respect to T), as the section of ¥(Y) o'T*(x} obtained by
setting .

W) = veillv) : X —— ¥(¥) 8y T*(X), (3:7)
For any local section ok - J?(Y) the composition F o ak is a local
section of V(Y) over X. Therefore we can calculate its formal covariant
derivative, which is easily shown to satisfy the following property:

WF o o) = #(F)es' (™). (3.8)

In particular, if uk is the jet-prolongation jk(a) of a local section

o:X + ¥, relation (3.8) and Figure 1 imply the following:
WF o §%(a)) = w(F) o (o). (3.9)

We are now in a position to define formal covariant derivatives of any
field of fibred tensors over Y. In fact, let us first remark that standard
tensorization procedures allow us to extend the notion of formal covariant
derivative to morphisms from (V) into any bundle V:(Y), for any pair (p,q).
On the other hand, whenever a linear connection y is given on X, one may
calculate covariant derivatives of any tensor field over X. Accordingly,
any pair I = (F,y), consisting of a formal connection f over Y and of a
tinear connection y over the basis X, will naturally allow us to define
formal covariant derivatives of morphisms from Jk(Y) into any bundle of the
form V:(Y} e Tr(XJ Eq s}(v) Any such pair I' will be thence called a
fibred couuectzou over Y,

A standard construction then provides uniquely, for any fibered connection
I and any quadruple (p,q,r.s) of non-negative integers, a global vector
" byndle morphism "

EE ) s aernn — m) o
over Y. which will be called the forral covartant derivation (of fibred
tensors of type (p.Q,r.s)} associated to the fibred connection I'. (In the
séquel, whenever there is no danger of confusion, the indication of the type
(PsqsrsS) will be omitted and we shall more simply write v}. The local
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coordinate expressions for v may be easily dalculated from the definitions
given above. As an example, the expression of the relevant part of v in the
case p=qg=r =5 =1 1s given by:

a . a_ga a2, 2 0 1 ha Qs Ay A0
Fog ° 77 Tufhe = fhm * T g ¢ vl (3.10)
@ ok A i3 a . o A )
- f:B Fbl.l(x oY ’.Yg) < fgo YBu(x )

‘r
where (x*,y', 120 1 f‘Bo) and (x*,y' ,Fpy) are the natural fibred coordinates

in J‘(Vi(Y) oy T,(x)) and V'(Y) OYTZ(X)’ respectively, induced by a fibred
chart ¢ of Y. The generalization of formula (3.10) to arbitrary values of
the four integers (p,q,r,s) is analogous to the standard one for covariant
derivatives of arbitrary tensor fields over a manifold and to avoid conli-
cated expressions, it will not be reported here.

It is now easy to define also the anhatoma and holamm:a formal
oovariant derivative of any morphism F: J (Y) » VP(Y) ﬁyT (X). In fact, we
may construct a commutative diagram by the obvious replacements in Figure 1,
which yield the following:

WF) = 9 () : 3" — ) 0T (1) G
and

WEY = v o (F) : N —s W2 T, (), (3.12)

In terms of these notions, we have the following intrinsic characterization
of the operator V. Let us first remark that the set of all fibred morphisms
F: J (v) +—FTEP";(Y) for all integers (k,p,q,r,s), forms a graded algebra
FE(Y) over the reals. (This algebra is in fact the pullback over J™(Y) of
the graded algebra of all fibred tensors over Y.) Then v is uniquely
.characterized by the following property:

Theorem 1 Given any fibred connection (F,y), the differential operator v
defined by (3.12) is the unique derivation of the graded algebra FE(Y) which
satisfies the following properties:

(1) v restricted to functions coincides with the formal derivative D

(1) v restricted to vertical vector fields coincides with the operator
v defined by (3.6);
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1

(i11) ¥ restricted to "horizontal” tensor fields coincides with the covariant
»

derivation with respect to v; .
(§v) ¥ commutes with contractions.
Proof The proof of this theorem is straightforward, by recalling that ¢ is
Jocal by definition and applying a classical theorem of Willmore concerning

the extension of differential operators on teasor bundles (see, e.g., [1],
p. 50).

4. FORMAL CONNECTIONS THROUGH VERTICAL FRAMES

In this section we shall provide a first intrigsic definition of the bundle
§[n1] of formal connections, discussing an equivaIeﬁt construction through
suitable quotients of theefirst-order jet-prolongations of the bundle VF(n]
of vertical frames in Y. '

Let us then consider the principal bundle VF[n] = (VF(Y) Y,¢Y.G) of
vertical frames of the fibred manifold (Y,X,n), where G = GL{n:R) with
n = dim{Y) - dim{X). MWe denote by A : YF(Y) x G + YF(Y¥) the canonical
(right) action of G onto VF(Y). If we prolong this action with respect to
the projection byr We obtain a natural right action

Ay IMVF(N) x 6 —— V(YY)

whose quotient manifold defines the bundle K[4y] = (K?(VF(Y]),Y.k¢Y]. The
sections of K{¢y] are in one-to-one correspondence with the linear connections
of the vector bundle V[n], which will be called the vertical connections of Y,
Composing ¢y with n, we obtain a further fibred manifold (VF(Y).x,no¢Y).
Although this is not a principal bundle over X, we may adapt to it the above
construction. In fact, there exists a matural right action |

: ) L(VF(Y)) x 6 — Jx(vr(v))

which is obtained by prolonging A with respect to the projection ne ¢y

This action Ax is free and differentiable and it admits a quotient manifold
Kx(VF(Y)) = JX(VF{Y)}/G. having a natura] project1on over o-(v) which makes
it an affine bundle over the manifold J (Y) itse1f, Turning to local cal-
culations in natural fibred coordinates, one can easily show that the bundle
§Ln1] and the bundle 5;n°¢Y] constructed above apmit the same¢ transition
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functions, so that they are canonically isomorphic as affine bundles over
FRO)

Since the natura) composition of functions induces a {natural) epimorphafl
between first jets of functions, there exists a natural epimorphism ‘

Jt(VF(Y);Y) x JI(Y;Xl +~ J'(VF(Y);X)

wh1ch by restriction defines an epimorphism a from JY(VF(Y)) x J (Y) onto
J (VF(Y)). 1t is not hard to show that this epimorphism is equivar1ant under
the prolonged actions A; and Ai so that it passes to the quotients and

defines uniquely a natural epimorphism o which fits into the commutative
diagram, Figure 2

SLVF(YN x 3 (V) ———— 3} (VF(Y))

va x td Kﬂ'vy

\j Y
K, VF{Y) x J! (Y)—&-K, (VF(Y)) 2C( (YD)

Figure 2

A local coordinate description of the projection o may be given as fo]lows.
Let us fix a f1bred chart v = (W x* oY ') of Y and let us denote by (x ,y ,y ,
r;u'PJ ) and (x ,y Y ’rau] respectively the induced fibred coordinates 1n
Ky (VF(Y)) x YJ {Y) and Ky {VF(¥)). Then the epimorphism g reads as follows:

Al k
Cu = Tou * %y er (@.1)
from which it is immediately seen that a is in fact an affirie morphism of

affine bundles over J'(Y].

5. [FORMAL CONNECTIONS AS SPLITTINGS OF EXACT SEQUENCES

We give here a further description of formal connections, in terms of splitt-
ing of exact sequences of bundles. Let us then consider the exact diagram
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of vector bundles and vector bundle morphisms over the manifold Y shown in
Figure 3, where G is the group GL{n;R), which acts naturally on VF(Y); i
and i, are naturat embeddings; m (with 1 = 1,2,3,4) are natural projections.

o @
0 0
Y Y
Vy (VEYHG  emmmemm V, (VF{Y))/G
Y j
@ QO —eV, (VF(YIM/G --—:'—b- TIVFY))/G —'—-l- 7" (TIXY) —— @
. .
0 i ™ I
® 00— V, IY)—T—E‘;—D TY) ——-;-—-h " {T(X})}) ~~—» 0
, 3
Ny |

0 ' 0
%
Figure 3

We then define affine bundles C.[n] = (C,(Y),Y,c;) (i =1,2,3,4) by setting
Ci(¥) = {ry € (W (VF(¥))/6) @V, (V))* | my o T, = id})
Co¥) = (1, € (V(¥F(¥)}/6) 8y (T(Y})* |m, o T, = id))
C4(Y) = {ry € T(Y) eytﬁx))*lna ° Ty = idg}
Ca(Y) = (T, € (T(VF(Y))/6) &y (T(X))* | ny © T, = id,)

and taking for ¢y the natural projections .o_nto Y (here 'id,i are abbreviations
for the appropriate identity mappings). From these definitions it follows
directly that the spaces I‘(ci) of all global sections r.:Y + Ci(Y) coincide

with the spaces S,(n) of all splittings of the four exact lines of Figure 3.
We remark the following:

‘1

(1) The sptittings ry:V(Y) » V,{VG(Y))/G of the first short exact column
{1.e., the elements of r(c1)) allow definition of covariant derivatives of
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vertical tensor fields along "vertical directions”. For this reason they
might be called very vertioal connections. Since they have ng direct rele-
vance to our present purposes they will not be discussed here;

(i1} The splittings rz:T(Y) + T(VF(Y))/G (i.e., the elemnnts:of‘r(cz))
coincide with the vertical connections over Y which have already been defined
in Section 4 above.

(1) The splittings r3:n*(T(x)) + T(Y) (i.e., the elements of r(csl)-may be
called nonlinear connections (or “generalized connections®) over the fibred
manifold Y. They have bheen considered by several authors, also in view of
their possible application to physical field theories (see, e.g., [15]).

(iv) The splittings ry:n*(T(X)) » T(YF(Y))/6 (i.e., the elements of ricy))
will be called here formal preconncotions over Y. In fact, as we shall see
below, although they do not correspond directly to formal connections, it is
exactly this row of the diagram which allows us to define formal connections
over Y. The rest of this section will be devoted to a discussion of this
claim.

We have the following:

Proposition ! There are canonical projections nf:cz(VJ + c,(vl and
11'32‘:4[” > C4(¥) which define affine bundle structures.

Proof From the exactness of Figure 3 we have
im(i;) = ker(m,) = ker(nry ° w,)
= (ny) " (kertay)) = (np)” ' (imi,))
so that a canonical projection n$:02(¥) + €,{¥), may be defined by setting
w5y s (107 o1, o 4, (5.1)

All the bundles and mappings involved are affine and easy calculations show
that also the fibration (cz(v).c (Y).w1) defines an affine bundle over the
manifold C ().

Let us then define a mapping 1r3 c4(\') > ca(v) by setting

'"3([‘4) & L] ° I‘4. (5.2)

310



From the commutativity of Figure 3 and our definitions above, We see ;hat
n; is well defined and turns out to be an affine surjective submersion, so

that (c4tv),c3(1),u§) is an affine bundle over cs(v).

We have also the foT]owing result:

Proposition 2 Fbr any fibred manifo!d Y there exists a canonical epimorphism
§:Co(¥) x \ C4(Y) + C,(Y), defined by

j(r20r3) = 1‘2 ¢ r3b

Proof Since r, is a splitting of (2) and 1, is a splitting of (3), the
composition is well defined and provides us with an injective mapping from
a*{T{X)) into T(VF(Y))/G. Owing to the commutativity of Figure 1 we have
also T3 ° Wy = Wy This implies that Py © Ty is a splitting of (4). Sur-
jectivity of j is easily shown in local coordinates (see [6]).

Finally, we state the following:

Theorem 2 There exist canonical isomorphisms X: C,y (Y) ~ J'(Y) and
A:Cy(Y) = C(J (Y)) of affine bundles over Y, such that Figure 4 is commut-
ative,

C,{Y} -l--———— CL{Y) x Gy (Y) > C, Y} ——rC(J'(Y))
l / \ l s
C, 1Y1 C, (1Y) A > J{Y)

Proof Let us first recall that an equivalent definition of first-order jets
of a fibred manifold Z = (Z,X,;) assures the existence of a canonical one-
to-one correspondence between global sections g:Z » J (Z) and splittings
o:¢*(T(X))+ T(Z) of the canonical exact sequence
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0 — W2} — T(Z) — T(X) —> 0.

Accordingly, there exists a canonical one-to-one correspondence between
splittings r, *(T{(X)) + T(Y) and global sections a:¥ + 9 (Y), which defines
uhiquely a cmonica! Jsomorphism A: C (Y) » J (Y) of affine bundles over Y.
By analogy, from the above def1n1tion of C4(Y) one can see immedfately that
there exists a canonical one-to-one correspondence betueen splittings.
I n*(T*(X)J + T(VF(Y)}/6 and global sections q:Y + J (VF(Y))/G. which in
turn provides a candhical isomorphism A:C,(Y) » » 8! (Y))

It is immediate to see that A projects onto X, i.e., the following holds:

o o = - 4
c A - k 1'30
Therefore these affine isomorphisms fit into Figure 4 and make its right-hand

square commutative. The rest of Figure 4 is commutative by virtue of Pro-
positions 1 and 2 above.

We are now in a position to explain the terminology "formal preconnections*
we used above to denote the splittings Ty of {(4), by showing how they allow
one to construct an important sub-family of formal connections over Y.

For this purpose, let us first consider the exact commutative diagram
(Figure 5) of vector bundles and vector bundle morphisms over J (Y). which
js obtained by "0 pull-back over J (Y} of the commutative Figure 3. Define

0 0

i» l

03"V, (VF(Y))/G) === (n3)"(V, (VFIY))/G)

' l

0 === ()" (V (VFIYN/G) == (n}}*(TIVF(Y))/G) —=n (n")*(T(X)} — 0

' | ll

0 —— (0')°{V,{Y)) ——r (" )H{T{Y)) ———m ") (T(X)) —» O

¢ l

0 0
Figure 5
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then affine bundles over Jl(Y) by setting
1 1 '
Ciln] = (no)*{gitn])

(i = 1,2,3,4), so that their global sections Fi : J'(Y) + f(JI(Y)) can be
canonically identified to the splittings of the four exact lines of Figure 5
(numbered as in Figure 3). From the def1n1t10n of pull-back bundles, it
follows that any section Pi 2] (Y) > C; (J (Y)) may be canonically and uniguely
fdentified to a function r ;9] (Y) » C (Y) which satisfies the relation

C; ° Ty =g

i.e., such that Figure 6 is commutative.

) > C{Y)

Figure 6

We remark that all pull-backs (n;r(ri) where Is is any section of C, [n].
are sections of the bundles ci{" J, although the c0nverse is not true (1 e.,
not all sections ri of ci[n'] are pull-backs). In particular, the short
exact sequence

0+ (ng)*(Vy(YF(Y))/6) = (nd)*(TWVF(1))/6) » (n1*(T(X)) = @
admits infinitely many splittings
T tn Y5(TCN) + (ng)*(T(VF(Y))/6)

uhich form a space, say S, (n! ), much larger than the space of pull-backs
(no)*(r4) of all sp11ttlngs Cy:n*(T(X)) » T(VF(Y))/G.
‘- let us now recall that there exists a canonical embedding
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it (R )*T) » (ng)*(TCN)
which is in fact h-sp]itt}ng of thé short exact sequence
0 > () V(Y » ()1 (T(V) = (nDA(TC0) » 0.

This implies that the affine bundie 83(J1(Y)) + J’(Y} admits a canonical
section

A R
Ky 2 3°(Y) 1 93(J (Y)).

Furthérmore, the mapping 23': g‘{?) + c3(vl associated to §3 satisfies the
relation
Ky o A = id (5.3)
where A:CS{Y) + J'(Y] is the canonical isomorphism described in Theorem 2
_ above. As a vansequence of (5.3}, it follows that there is no section
razf + Calf; vigse qé-pu11~back coincides with Rsh
We claim the following:

Theorem 3 There are infinitely many splittings 54 € 54(n1) which are not
pull-backs and which satisfy the following relation

g o Iy = Ky, . (5.4)
namely, they are projected onto the canonical section 23. Moreover, the

space of all these splittings ;4 € Sa(ni) is in one-to-one correspondence
with the space I'(C) of all formal connections over Y.

Proof Let us first recall that the formal connect1ons T over Y are by
definition the sections of the affine bundle C[n 1, so that they are the only
functions f:4° (Y) » C(J (Y)) which fit into the commutative diagram, Figure
7. Let us also recall that there exists a canonical isomorbhism of affine
bundles over ¥, n:cq(v) + E(J'(Y)). so that all sections 34:J1(Y) > cq(J‘(v])
may be uniquely and canonically identified (through A) to all functions
54:J1(Y] - E(J’(Y]) which fit into the commutative diagram, Figure 8.

*
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JY) —-£(J (Y))}

N

J1{Y)
Figure 7
fa
JHy) > QY
o ¢
Y - J'{Y)
fio
Figure 8

However, there are infinitely many functions f4:J1(Y) -+ E(J‘lY)) which
fit into Figure 8 but do not make also Figure 7 commutative (i.e., which are
not forma) connections). For example, if Ig:¥ + €, (Y) is a splittnng of
g (n) the mapping rq uniquely associated to its pul'l-back (no)*{r4) €5, (n )
cannot make Figure 7 commutative,

Using relation (5.3), recalling the definition of Ci{nl) and the above
identification, itﬂis easy to see that a splitting Ty is projected onto the
canonical section K3 (1.e., its satisfies (5.4)) if and only if its associated
function r4 makes F1gure 7 conmutative. Accordingly, to generate the whole
family of splittings r4 satisfying relation (5.4} amounts to constructing
them out of all formal connections, which are infinitely many. Finally, the
fact that all splittings satisfying (5.4) are not pull-backs follows trivially
from our remark above that the canonical section Es is not a pull-back as
well.
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Remark A formal construction which allows us to generate the whole set of

e splittings satisfying relation (5.4) through the existence of a surjective
mapping from 52(n1) onto I'(c) will be discussed elsewhere (see [6]), where
we shall also give local coordinate descriptions of all the notions introduced
in this paper.
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JGANCARZEWICZ

Horizontal lift of connections to a natural
vector bundle

0. INTRODUCTION

Let w:E +~ M be a vector field and D be a connection in E, that is,
D: X(M) x E 3 (X,5) ~=-> Dys € E

is a mapping (where X(M) denotes the module of vector fields of class c” on
M and £ denotes the module of sections of class C” of E) which satisfies the
following conditions:

Dy + gvs = F OyS + 8 0ys,

Dx(s * s')-st + st',
Dx(fs) = X(f) s+ f Dys

for all vector fields X, Y on M, all functions f, g on M and all sections s,
s' of E.
In Section 1 we recall the basic properties of a connection in a vector

bundle E. In particular, we define the horizontal 1ift of vector fields from
M to E.

In Section 2 we study vector fields on E,

At first, for each section g of the dual vector bundle E* we define a
function g on E. This family of functions g is very important in the study of
vector fields on E because two vector fields X and ¥ on £ such that X(g) =
;(E) for all o coincide on E (see Proposition 2.1). We prove (Proposition

2.2) that the horizontal 1lift XD of a vector field X from M to E verifies
the formula

XD(E) e on .

Secondly, we define a vertical 1ift of sections of £, If s is a section
of E then we define a vertical vector field s' on E called the vertical lift
of s. This vertical 1ift generalizes the previous definitions due to K.Yano,
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" §, Kobayashi, S. Ishihara (8], [9], [11] 1n the case of tangent bundles and
due to K. Yano and £.M, Patterson [12], (13] in the case of cotangent bundles.
Our definition generalizes also the horizontal 11ft of tensor fields to ten-
sor bundles (see [4])). The vector field s verifies the condition (Propos-
ition 2.8)

$Y(3) = (o.5)"

for every section o of E*, where fv = foq is the vertical 1ift of a function
f from M to L,
In Section 2 we define also a vertical vector field (R(X,¥))° on E, where

R(X,Y) = Dx ° DY - DY ° DX - D[X.\']

is the curvature transformation of D, This vector field satisfies the
following condition (Proposition 2.10)

(R(X, 1)) (5) = R(X,Y)o

for each section o of E*. This vector field generalizes the constructions
due to K. Yano, S. Kobayashi, S. Ishihara and E.M. Patterson (8], (9], (10],
(111, £12]), [13] in the case of tangent and cotangent bundies.

Next we study properties of these vector fields on E., We have the follow-
ing formilas (Propositions 2.9, 2.13, 2,14):

o®,v03 £ px,v10 + (ROX,¥))°
x’,s"1 = (0s)
VsV =0

for all vector fields X, Y on M and all sections s, s' of E,

In Section 3 we define the horizontal l1ift of connections of order r to a
natural vector bundle and we study its properties. Let v:E +~ M be a natural
vector bundle, According to the theorem of R.S. Palais and C.-L. Terng {7],
E 4s an associated vector -undle to F'M for some nuaber r, where F'M denotes
the principal fibre bundie of frames of order r. Let I be 3 connection of
order r on N, that is, I is a connection in F'M. For a such conpection I we
define a linear connection ¥ on a manifold E called the horizontal 1ift of T
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to E. This connection vV satisfies the conditions (Theorem 3.1)

X
-~ v _ Y
= 4] g v v
P - =0
¥y Ty s

for a1l vector fields X, Y on M and al) sections s, s’ of E, where ¥ is the
Tinear part of T and D is the covariant derivation of sections of E deter-
mined by the connection " {see R, Crittenden [1]).

This construction generalizes the horizontal lifts of linear connections
to tangent and cotangent bundles (see X. Yano, S. Ishihara and E.M. Patterson
£93, [10], [13]) and also the horizontal 1ifts of linear connections to
vector bundles associated with the principal fibre bundle of linear frames
[3l.

Next we study properties of the horizontal lift of connections of order r.
Our results generalize the results obtained by X. Yano, S. Ishihara and E.M.
Patterson {93, {101, [13] in the case of tangent and cotangent bundles.

The results of this paper can be generalized for an arbitrary naturail
bundle (no vector bundle). In this case we need another characterization of
vertical) vector fields on a natural bundle (in the construction of sv the
fact that £ is a vector bundle is importahi). This generalization wil] be
published sgparately.

1. .PRELIMIHARIES: CONNECTIONS IN A VECTOR BUNDLE

Let n:E + M be a vector bundle. We denote by £ the module of all sections of

class C~ of £ and by X(M) (resp. X(E)) the module of all vector fialds of
class C” on M (resp. on E). A connection in £ is a mapping

D:X(M) x E3 (X,s}) —> Dys € E
satisfying the following conditions:

i

Dey 4 gy - f st + 9 Dys, (1,1)

Dx(s +5') = st + st‘, (1.2)
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Dx(fs) = X(f) s + f st (1.3)

“for all vectof fields X, Y on M, all functions f, g of class C” on M and all
sections s, s' of E.

Let ¢:E[U » U x RY be a trivialization of £ and Tet E,...,Ey be the
" canonical base of RN. We consider sections Pyss-eoPy of E|U defined by

o) = 07 (0,E,), | (1.4)

a=1,...,NK p1,...,pN are called the adapted sections to the trivialization
6. If (U x',...,x ) is a chart on M, then there are (uniquely determined)
functions rib on U such that

_ b
031 Qa = Fia Dbn (105)
where 3,,...,3, is the canonical frame associated to (U,x’.....x"). ¥
The mapping D can be prolonged to a connection in the bundle

Tgc - " £oed e

denoted also by 0. This prolongation satisfies the following conditions:

Dy{tet) =Dtet +telt, (1.6)

D, (f) = X(f), (1.7)
iy Ll

Dy(€5t) = C4(Dyt) (1.8)

for al1 X € X(M), t € TP(E), t' € TPL(E) and f € C°(M) = TO(E), where C} is
9 J
the operator of contraction.

Let p',....pN be sections of E*|U such that p‘(x).....pN(x) form the dual
base to p1(x),...,pN(x) for every point x of U, where p,,...,py are the
adapted sections to a trivialization of E|U. From the conditions (1.6) -
(1.8) we obtain

+ We use the following convention: the indexes i, j, k,... run from 1 to
n, and the indexes a, b, ¢,... run from 1 to N,
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0, A C(1.9)
for any chart (U,x ,....x") on M.
tet y:(a,b) + M be a curve of class C” and let J_(E) be the set of all
sections of E defined along y, that is, an element of J (E) is a mapping
s:{a,b) + E {of class C”) such that mos = y. For every curve y, a connect-
ion D in E defines a mapping

‘

:J(E)*J(E)

called the covariant derivation along y. If s = s (pa o y) is an element
of J (E), then for a chart (U, x1,...,x ) on M we have

'] "
Dys = {af s + (r'ib ° v) -a-f Y s ] Py {1.10)
whare ' = x' oy, i = 1,...,n. From (1.10) we have:

Prgposition 1.1 If y:{(a,b) » M is a curve and y is an element of E ¥t,) =

(Y(t )), t, € (a,b), then there is one and only one section s € J (E)
such that

s(ty) = v, (1.11)

Dys =0, (1.12)

tet y be a fixed element of E and x = n{y). We denote by ry the set of ¢

all velocity vectors s(0), where s:(-¢, +¢) ~ E is a section along y =10 s
satisfying the cond1t1ons (1.11) and (1.12) with t, = 0.

tet $:E|U » U x R be a trivialization and lTet (U x'....,x ) be a chart
on M. Now we can define a chart (n 1(U),x Y ) on E called an induced chart,
where

x'(y) = x'(xly)),

2 (1.13)
y =y (y) o,

for all y € n"(U). Let 31"“’an’51""'5N be the canonical frame associ-

ated to the induced chart. If X = y(0) is a velocity vector of v and s is
the unique section defined along y satisfying the conditions (1,11) and
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(1.12}, then

oy i b o
5{0) = X 9; - X ,,l'.ia Yy

a
p 8y (1.14)

This implies that:

Proposition 1.2 ry is a vector subspace of TyE and

Tk

y
where vyE ker dyn = Ty(Eﬂ(y)) is the subspace of vertical vectors, In
particular, dgflg,:ry + Tﬂ(y)ﬂ is an isomorphism,

Let X be a vector field on M. Using Proposition 1.2 we can define its

horizontal 1ift X by the formula

"

VyE ® Tys

D _ -1
X (y) = (dyﬂlfy) (xﬂ(y))' {(1.158)
It is easy to verify:

Proposition 1.3 If X,Y are vector fields on M, and f, g are functions on M,
then

v D

(,x + gv)0 = ¢V xP 4 g¥ ¥,

where =fon and g? = gon are vertical lifts of f and 9.

From (1,15) and (1.14) we have
X2y) = X nly)) 3, - X nty)) 12 (nly)) VP s, | (1.16)

for any induced chart on E.

2. VECTOR FIELDS ON E

Let o:M + £* be a section of the dual vector bundle E*, ¢ defines a functioﬁ
o on E by the formula

5y) = o,y (¥) . (2.1)

Uﬂ(y

for every point y of E. (We observe that S ly) is an element of E;(y), that
is, % ly) is a linear mapping Eﬂ(y) > R.}) Using an induced chart it is easy
to verify
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1 A L B ' (2.2)

where g = gy p?. Thus g is a function of class C” on £, We have the
" following proposition. '

Proposition 2.1 1If o, ¢' are sections of E* and f, g are functions on M,
then

- ————t

fo + gg' = Y5 + gv g

o',
where £V = foy is the vertical 11ft of f.

The proof is trivial,' This family of functions g is very important to
the study of vector fields on £ because we have:

Proposition 2.2 Let ¥ and ¥ be vector fields of class C” on E. If X(g) =
V(o) for every section ¢ of E*, then X = V.

Proof It is sufficient to show that the equality i(;) = 0 for every section
o of E* implies X = 0. Let

j T
X=X Ay ¢ 2 °

be the coorlinatas of X with respect to an induced chart on €. From (2.2)
we obtain

T eoand @ =0

for all functions ai:°a = 1,....N, on U, This.ihplies that X
for i =1,,..,nand a = 1,...,N, that is, X = 0.

« - This proposition signifies that vector fields on E are uniquely determined
by their actions on the functions of type ;, where ¢ is a section of E*, We

have:

Proposition 2,3 If X is a vector field on M and ¢ is a section of E*, then
W(5) = s - . '

Proof Let o = o, 0. Trom (1.16); (2.2) and (1.9) we have

»
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D,~ i a i.b A
X (0) g x aiaa y - x Pia Yy Ub
= (Dxﬁ)a ya
P
= DXU'

A vector field ¥ on E is called projectable on M if there is a vector
field X on M such that

dnoi=xo1r.

X is called projection of X and X is uniquely determined by X. The set of
all projectable vector fields on M is a Lie algebra and the projection
mapping is a Lie algebra homomorphism. We have the following proposition
[31.

Proposition 2.4 Let X and X be vector fields on M and E respectively. X is

projectable on M and X is its projection if and only if, for each function
f on M, we have

%) = oxn)Y,

where . for is the vertical lift of f.

A vector field X on E is called vertical if, for each point y of E, i(y) .
is a vertical vector, that is X(y) belongs to VyE. A vertical vector field
on E is projectable on M and its projection is zero. Thus, by Proposition
2.4, we have (see [3]):

Corollary 2.5 Llet X be a vector field on E, X is vertical if and only if
X(f') = 0 for each function f on M.

Corollary 2.6 If X is a vector field on M and f is a function on M, then

Yy = (xf),

Since E“(y) = "-1(“{y)} is a vector space, there is for each point y of E
a natural isomorphism .

4'y : VyE = Ty(E“(ﬁ) —> E."(y)- (2.3)
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If s» » E is a section of E, then we can define a vector field sv on E,

-xited -~be vertical 1ift of s to E, by the formula

!

g.yi. . (2.4)

U . - “nduced cho’

{2.5)

o iy OVE UiE idapted sections.

1IF.s wianit e generalizes the definitions of vertical 1ifts of vector
fields to the tangent bundle (K. Yano, S. Kobayashi and S. Ishihara [8], [9],
[11]) and vertical 1ifts of t-forms to the cotangent bundle (K. Yano and
E.M, Patterson [12], [13])). Our definition generalizes also the definition
of vertical 1ifts of tensor introduced by J. Gancarzewicz and N. Rahmani [2].

We have

Proposition 2.7 If s, s* are sections of E and f, g are functions on N, then

(fs + gs')v UL gv sV,

Proposition 2.8 If s is a section of E,g i5 & section of £* and f is a
function on M, then we have

$'(3) = (o5,

sV(eY) - o,
where o-s is the function on M defined by the formula {o-s)(x) - Ux(sx)'
Proof From (2.5).and (2.2) we have

sY(3) = 2 6,00, ¥*) = % o, = (ovs)".
The second formula is a consequence of Corollary 2.5,

Proposition 2.9 If s, s* are sections of E and X is a vector field on M,
then s

[sv’ S.VJ = 0,
00,s"1 = (052"
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Proof Let o be a section of E*, According to Proposition 2.8 we have
(s.s"16) = s¥(sYG)) - sV
=0.

Thius, by Proposition 2.2, [s',s'V] = 0.
According to Propositions 2.8, 2.3 and Corollary 2.6 we have

00,s%16) = P(sis)) - sV
= 0,0 -5) - Dyors.

Using:the formula D,(o's) = Dyo+s «od,s we obtain

[XD.Sv](S) 0+Dys

(9,8)%(3)

and hence, by Proposition 2.2, [x“,s“J = (st)v.

Remark Propositions 2.7, 2.8 and 2,9 generalize the analogical proposition
shown in (2], (31, (8], (91, [10], (113, [121, [13]. '
" We will introduce a new vertical vector field on £ using the following

proposition,

Proposition 2,10 Let A:E* + E* be a vecy + bundle homomorphism which covers
the identity on M; that is, the diagram -

A
£ ——=> t*

.\H/,,

s ot LY ove and the restrictions of . 1o fibres of E* are “incar, Then
there is one and only one vector field ¥ on E such that, for ever; section
c of E*, we have

. dy L
AB(U) = A e 0

Proof The uniqueness of A° is a consequence of Proposition 2,2, To prove
the existence of A° we consider a vector field .
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R | sa
X =X 3 + X Ga

E|U with coordinates ii, X with respect to an induced chart. for a
section g of E¥, by (2.2) we have

X(5) = X'(a;0,) ¥ + X o, (2.6)
If we denote

AGY) = B P, (2.7)
then Aec = (ca A:) pb, and hence, using (2.2), we have

A — A b

cc=hA o, ¥ (2.8)

ihus. if we set

¥ = 0, X2 - Ag yb (2.9)

the equality f(;) E:; is verified for every section ¢ of‘E:JU. Thus we
have constructed a vector field X on (E|U such that X(c) = Aeg for all o.

Using two charts(U,x') and (U',x' ) we can construct two vector fields
X and X* on E{U and E|U’ respectively. For any section ¢ of E*|{Un V') =
(E*|U} n {E®|U') we have

X(5) = Aeo = X'(5)

and hence, according to Proposition 2.2, X and X' coincide on E|{U nu'.
Thus, using an atlas on M, we can define a (global) vector f1e]d A° on E
such that A%(g) = Aoa.

This construction generalizes the operation y defined by K. Yano, S.
Kobayashi, S, Ishihara and E.M, Patterson (8], (9], [11], [12] in the case
of tangent and cotangent bundles and also the 1ift ( )° defined by J. Gancar-
zewicz and N. Rahmani [2] in the case of tensor bundles.

According to (2.9) we have:

Corollary 2.11 2° is a vertical vector field on E. If (U,xi) is a chart on
M, then

0 _,a.b
A” = Ab y Ga
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with respect to the induced chart, where A; are defined by (2.7).
From Proposition 2.4 we obtain: -

" Corollary 2.12 If f is a function on M, then A%(f') = 0.
We have the following properties of A°,

Proposition 2.13 If A, B:E* » E* are vector bundle homomorphisms, s is & -
section of £ and X is a vector field on M, then

2.4°1 = (DA%,
[sV,A% = (A%es)Y,
[A%,8°) = [A,B]°,

where A*:E + E is a homeoworphism of vector bundles such that A*[E is the
transposed mapping of A = A|£;:E; + E; and [(A,B) Ao B ~Boaj,

Proof Let g be a section of E*, Using Propositions 2.3 and' 2,10 we have
o®,4715) = x°(APG)) - AP

E®

e
= Dxtaoo) - AoDon

We can interpret A as a section of E* @ E, Aeg is obtained from A and ¢ by
the tensor product and contraction, thus using (1.6) - (1.8) we have
Dxlloa) s (th)oo + AeDyo
or’
v
DPAPIG) = (D M)eg
e (th)aﬂsl. *
Hence, according to Proposition 2,2, we obtain the first formula,
Using Propositions 2.8, 2.10 and Corollary 2,12 we have
(s',8%1(3) = s (%)) - A%sV(5))
= sv(Aoo) - A“((u-s)v)
= ((shoo).s)Y,
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On the other hand,  from (2.1) and (2.7), we obtain

(Asa)s = 5 (Aca),
_.a,b
= § Aa O
= ob(h*°s)b
= g.(A*os) .
and hence

(sV,A°1(8) = (o* (A*og))
= (ares)V(5),

that is, [sv,AP] s (A*os)v.

The verification of the last formula of our proposition is by analogy.
Let X and Y be two vector fields on M, We denote by

R(X,Y) = Dy o Dy = Oy o Dy = Dpy yy t B ——> EX. (2.10)

R(X,Y) is called the curvature transformation of the connection D. From
(1.1) - {1.3) (we have the same formulas for sections of E*) we obtain

R{X,Y)(o+ ¢*') = R(X,Y)o + R(X,Y)c'
R(X,Y)(fa) = f R(X,Y)o

“for all sections ¢, o' of E* and any function f, and hence, R(X,Y) can be
considered as a vector bundle homeomorphism R(X,Y):E* ——> E*, The vector
fiedd (R(X,Y))? is important for the characterization of the vertical com-
ponent of [X°,Y"1. e have

Proposition 2.14 1If X and Y are two vector fields on M, then

P07 = px,vaP + (ROXLYS,
where R(X,Y) is the curvature transformation of D defined by (2.10},

Proof Let ¢ be a section of E*, Using Propositions 2.3, 2.10 and formula
(2.10) we have
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2,015 = PPy - YPoPisn)

e I g
DX(DYG) - DY(DXU)

P

S
R(X,Y)o + D[x’Y]G

ix,v12(3) + (R(X,¥))°(5),

and hence, using Proposition 2.2, we obtain our formula,

3. HORIZONTAL LIFTING OF CONNECTIONS TO A NATURAL VECTOR BUNDLE

Let ¢:E + M be a natural vector bundle. If ¢:M + M is a local diffeomorphism,
then we denote by ¢:E + E the induced mapping. For each point x of M,
E(Ex) = E¢(x) and 5:5;/4 E¢(x) is an isomorphism, where E_ = 7 (x) is the
fibre of E. By the theorem of R.S. Palais and C.-L. Terng [7] there exists
a number r such that, for all local diffeomorphisms ¢, y:M -+ M and every
point x of M, the equality j;¢ = j:¢ implies EIEx = $|Ex. The smallest
number r satisfying this property is called order of E.

Let r be the order of E. We suppose that r 2 1. The vector bundle E is
isomorphic to an associated fibre bundle with F'M (see (7], [6]), where F'M
is the principal fibre bundle of frames of order r, that is,

F'M = {jE¢ : ¢ is a diffeomorphism of a neighbourhood of 0 in R"
into some open subset of M}.

Let F be the standard fibre of E. We denote by ¢:F'M x F » E the canonical
mapping for the associated fibre bundle E.

Let T be a connection in the principal fibre bundle F'M {r is called
connection of order r on M). I determines a horizontal distribution on E.
If y = ¢(p,z) is a point of E, then

Hy = dp¢z(rp). (3.1)

where ¢z:FrM + E, ‘PZ(P) = Q(psz)-
The connection I' determines the covariant deriva}ion of sections of

associated fibre bundles with F'M, In particular, we have the covariant
derivation

D:X(M) x E3(X,s) ~—> Dys € E
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6f sections of E, It is well known that D satisfies conditions {1.1) - (1.3),
that is, using the terminology of Section 1, D is a connection in E (see
[1]). It is easy to verify that the distribution H defined by (3.1) is the
same as the distribution T defined in Sectfon 1 for the connection D. Hence,
the horizontal 1ift of vector fields with respect to D coincides with the
usual horizontal 1ift of vector fields with respect to the connection I of
order r on M.

Let u::FrH + F°M, s s r, be the natural projection, n:(j5¢) = Jg¢. Using
this projection, for a given connection of order r on M we can induce a
connection of order s, s s r. In particular, the given connection r of
order r on M induces a linear connection on M called linear part of r. We
denote by v the covariant derivation of vgptor fields witﬁ respect to the
linear part of T.

The smain theorem of this paper is the following one.

Theorem 3,1 Let T be a connection of order r on M, If mw:E + M s a natural
vector bundle of order v, then there is one and only one linear connection
7 on the manifold E such that . )

| i P - (g n? (3.2)
T s < (o,5)Y (3.3)
ﬁsv xP =0 | (3.4)
iv sV | _ (3.5)

for all vector fields X, Y on M and all sections s, s' of E, where v is the

covariant derivation of vector fields on M with respect to the linear part

of T and D is-the covariant derivation of sections of E with respect toT.
To prove this theorem we need the following lemma, ¢

Lesma 3.2 Let 1 be a connection of order r on H and ¥ be a linear connection
on E, For a chart (U,x ) on M we denote by . '

ot ~k ~a ]
vai aj =Ty 9 + T35 8, (3.6)
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R TS (3.7)

3; ‘a ia ) ria 6b
v . 3 b
vaa ?i - }ai aj + rai Gb (3-8)
V. 6. =T 3. +TC & (3.9)
éa b ab i ab “c *

the Christoffel symbols of v with respect to the induced chart on E, If
conditions (3.2} - (3,5) are satisfied, then

~Kk k

ri5 = Tij : (3.10)
~a a a ¢ Kk b .

Ty = (T30 * Tic Tib = Tig Tio)%p (3.11)
Ao.i '

r. = 0 (3.12)
J

~b b

Fsa ® Hia (3.13)
uj _ Fs

ry; = 0 (3.14)

ub b .

Iyi = Tia i (3.15)

ey _

Tap = 0 _ (3.16)
F:b = 0! (3.1?)

where r;k are the Christoffel symbols of the linear part of I and rfb are
defined by (1.5).

Proof Lét Pys>e Py be the adapted section of E to the induced chart.
According to (2.5) we have

Py = 8y _ (3.18)

Now formulas (3.18), (3.5) and (3.9) imply (3.16) and (3.17). Next from
» (1.16) we have

3[-’33-"I‘b

T B P y® Sty » (3.19)
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and hence, using (3.16), (3.17), (3.8) and (3.4), we obtain (3,14) and (3.15).
Using (3.7), (3.19) and (3.18) we can calculate

o~ v _ ~ _ b c ™ 6
VD Fa = Vyb " Tic Y Vg o0
j 1

On the other hand, using {1.5) and {2.5) we obtain
v b
(Dai 0a) = Ty, 8-

Thus the equality (3.3) implies (3.12) and (3.13). Finally, using (3.19)
and (3,12) - (3.17) we calculate

~ D ¥ 3 ¢ . d
9 49; = _a b J-ri,y 6
3 ? I -l ¥y 6, jd 7 e
. G . b _ b 2, ¢
vai aJ {airjc ria ch} y Gb
~ D s .D
(vai 35)" = Ty 3

S .S b

= Tig % = Tjj Tsa ¥2 8y
Hence, formulas (3.7) and (3.2) imply (3.16) and (3.11). The proof of our
temma is finished.

Proof of Theorem 3.1 The uniqueness of a linear connection 5 on E satisfy-
ing conditions (3.2) - (3.5) is clear because, according to Lemma 3.2, the
Christoffel symbols of v are uniqueTf determined by the given connection T
of order r. Thus we need to prove only the existence of 7.

Let {U,xi) be a chart on M. We can define a linear connection v on ElU
such .that its Christoffel symbols with respect to the induced chart are
given by formulas (3.10) - (3.17). This linear connection 7 on E|U verifies
the conditions -
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(3.20)
v
Pa

Ve =0

'
Pa

L,

for i,j = 1,.L..n and a,b = 1,...,N. Using the propositions of Sections 1
and 2 it is easy to prove that

o D _ D
Tps = o) (3.21)
~ D ~ ¥
VX = 9,8 =0
sv sv ]

for all vector fields X, Y on U and all sections s, s' of E|U. We show only
the first formula of (3.21). Let X and Y be vector fields on U. If we
denote by !

i _ i
X=X S Y=Y CH

the coordinates of X and Y with respect to the chart (U,xi), then according
to Proposition 1.3 we have

xD - (xl)v a?’ YD . (Yi)v a?
and hence, using Propositions 1.3, Corollary 2.6 and the first equality of
(3.20), we obtain

"o = oY @y ol ¢ (Y T a)

b
X J

3
3
L oqyeinY J\v D 3\ D
= (X') {(aiv ) 3 ¢+ (Y”) (vai aj) }
-y J J

= {X [(31Y )aj + Y vai aj]}
= {vxv)".
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The other formulas of (3.21) are verified by analogy.
'f (U,x‘) and (U',x' } are two charts on M, then we can define two linear
connections v and V' respectively on E|U and EjU'. From (3.21) we have

- D 1 I D
TV =g =v,Y
xD X xD
~ v ¥ '
Vs =1(D5) =Vns
xIJ X xD
~ D 0
P X =9, X =90
s/ gV
¥y L E‘Vs'v -9
3 s

for a1l vector fields X, Y on U n U' and all sections s, s* of E[(U n U') =
(Et) n (E|U*). Hence, by Lemma 3.1, the linear connections v and §'
cowncide on Ej(UNn V'),

Using an atlas on M we can define a linear connection v on E. This con-
nection ¥ verifies the conditions (3.2) - (3.5) and the proof is complete.

The 11near connection ¥ on E verifying conditions (3.2) - (3.5) is called
the horizontal I1ft of T from M to E. The following three corollaries are
1mmediate consequences of Theorem 3.1, :

Corollary 3.3 (K. Yano, S. Ishihara [10], [9])}. If v is a linear connection
on M, then there 1s oneé and only one linear connection E on TM such that

~ H N o~ WV v
va Y= (9,¥), va Y' = (vxv)

- . v
Vv Y = v Y =0

for all sector fields X and Y on M, where XH
T wath respect to V..

is the horizontal 1ift of X to

Corollary 3 4 (K Yano, E.M. Patterson [13], (9]). If vis a 1inéar
connection on M, then there is one and only one linear connection ¥ on T*N
such that

~ H -~ -
RN CH LN AR TR Y -
X X
H v
sy X =gyw =0
9¢V V¢V

336



for all vector fields X, ¥ on M and all 1-forms ¢, w On M, where X" is the
horizontal 1ift of X to T*M with respect to v.

Corollary 3.5 (J. Gancarzewicz, N, Rahmani [3}). If E is a vector bundle
associated to the principal fibre bundlie LM of Vinear frames and ¢ is a
linear connection on M, then there is one and only one linea» connection Vv
on E such thrat

v

6 H \’H = (VXY)H 3 6 H S (sz)v

X X
e H ~ V
VX = 9,8' =
sv sV

|
[ =]

for all vector fields X, Y on M and all sections s, s' of E, where XH is
the horizontal Tift of X to £ with respect to v.

Next we will study the torsion tensor and the curvature tensor of the
horizontal 1ift of a connection of order r to any natural vector bundle of
order r (r is arbitrary). We have the following properties of these tensors.

Proﬁotition 3.6 Let E be a vector bundle associated to F'M and let T be
a connection of order r on M, If ¥ is the horizontal Jift of " to £ and T
is the torsion tensor of ¥, then we have

00,70 - (rox, )P - (R(x,1))°
f(xa,sv) = ?(sv,s'v) =0

for all vector fields X, Y on M and all sections s, s’ of E, where T is the
torsion tensor of the linear part of v and R(X,Y) is the curvature trans-
formation of T defined by (2,10).

Proof Using Theorem 3.1 and Proposition 2,10 we have
D

T(XD,YD) =7 oY
X

(g0° - (700 - 0,11 - ROx)®

-7 b XD . [xD,vnj
Y

It

(1(x,¥))P - (R(x,¥))".

1]

Next, using Theorem 3.1 and Proposition 2.9 we obtain
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T(XD.SV) = 7 0 s - 7 v x0 - [XD,sVI

X §
- L v _
= (st) (st) =0
?(sv,s'V) =y Vs‘v - v usv - [SV.S'VJ
5 5!
= 0,

To calculate the curvature tensor of V we need the following lemma,

Lemma 3.7 If V is the horizontal 1ift of a connection of order r to E and
A:E* + E* is a vector bundie homomorphism, then

for every vector field X on M and every section $ of E.

Proof Using an induced chart, according to Corollary 2.11 and formula (2,5)
we have

D _ Wb
X" = TN Y Gb)

and hence, by Lemmz 3.¢, we obtain

~ vV _, . b _cg
VAU s = Ab y s Véa dc
=0
5 D_aa b _ ¢ d7F . pC
?An X" = Ab y (76a a1 rid Y 96 6c I‘ia ac}
a
= (
Now we have

Proposit on 3 8 If V is the horizonta} 1ift of a confiection - of order r on
M to o vecto bundle associated with F'M and R is the curvature tensor of ¥,
then
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RO, 020 = (r(x,1)2)°
0P, 05 = (r(x,v)s)Y
RPsY) - RjsVs'Yy -0

for all vector fields X, ¥, Z on M and all sections s, s' ¢* ..
is the curvature transformation of r defined by (2.10) and r(1,v. . v
curvature tensor of the linear part of r.

Proof Using Theorem 3,1, Proposition 2,14 and Lemma 3.7 we have

ROXP, ) =5 (7, 20 - F
Y

= D ~ D
X n(v D /4 ) -V D D L

Yo X [X°,Y7]

= (7 (oy2))® - (oy2)1° - (5py g2 -

~ D
-9 Z
(R,X,¥))".
= (r(x,12)°,
8D WY 2 - ] - v ~ Vv
ROXC,Y)s =9 (v ns') -9 {vps)-V s
X0 yD v 0 o8, v
v v v
= (DX(DYS)) - (DY(DXS)) = [D[x,YJS)

v N
(R(X,Y)®

- (Rx, Vs,
Using Propasition 2.9 we can calculate
ROC,sVv0 -0, RexPs¥yeY - 0
Ris',s'P=0 , RisY,s VsV -0

for all vector fields X, Y, Z on M and a1l sections s, s', s" of E. This
remark finishes the proof of our proposition.
From Proposition 3.6 we have:
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anposit1on 3. 9 Let 7 be the horizontal 1ift of a connection I' of order r
to a vector bundle E associated with F'M. If the linear part of T is without
torsion, then ¥V is without torsion if and only if the curvature transform-
ation R(X,Y) is zero for all vector fields X, Yon M.

From Proposition 3.8 we have:

Proposition 3.10 Let 7 be the horizontal 1ift of a connection I' of order r
on M to a vector bundle £ associated with F'M. Then the linear connection ¥
is without curvature (that is, R = 0) if and only if the curvature trans-
formation R(X,Y) of I defined by (2.10) is zero for all.vector fields X and
Y on M.

To prove this proposition it is sufficient to observe that if the curva-
ture transformation R(X,Y) of T is zero then the linear part of I' is without
curvature,

Propositions 3.9 and 3.10 generalize the analogic propositions proved by
K. Yano, S. Ishihara in the case of tangent bundles (10], [9]), by K. Yano,
E.K. Patterson in the case of cotangent bundles [13], [9] and by J. Gancar-
zewicz, N, Rahmani [3] in the case of a vector bundle associated with the
principal fibre bundle of linear frames,
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