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Associated with a principal action Φ:S1 ×M → M of the unit circle on a manifold M there
exists a long exact sequence, said Gysin sequence,

· · · −→ H
i

(M) −→ H
i−1

(M/S1)
∧[e]

−−−→ H
i+1

(M/S1) −→ H
i+1

(M) −→ · · · ,(1)

where H
∗

(M) and H
∗

(M/S1) are the deRham cohomology of the manifolds M and M/S1 and
[e] ∈ H

2
(M/S1) is the Euler class (see for example [4]). Notice that the Gysin sequence express

the cohomology of M in terms of transversal data of the flow defined by the action Φ.
In this work we extend the scope of the Gysin sequence to any isometric action Φ:R×M →M

of the real numbers on a compact riemannian manifold M . Observe that Φ becomes a S1-principal
action when it is periodic and free. The orbit space M/R is a manifold but M/R is wilder in the
general case. So, the cohomology of the orbit space appearing in the Gysin sequence we construct is
not necessarily the usual deRham cohomology. Three different cases have been already considered.

• The action is almost free (i.e. without fixed points) and periodic. The orbit space is an
orbifold (or Sataké manifold) and the Gysin sequence of [9] is exactly (1), where the deRham
cohomology H

∗

(M/S1) must be understood in the category of orbifolds.

• The action is almost free but not necessarily periodic. The orbits of Φ define on M a foliation
F . We have shown that H

∗

(M) can be computed from the basic cohomology H
∗

(M/F) by means
of the Gysin sequence

· · · −→ H
i

(M) −→ H
i−1

(M/F)
∧[e]

−−−→ H
i+1

(M/F) −→ H
i+1

(M) −→ · · · ,(2)

where [e] ∈ H
2
(M/F) is the Euler class (cf. [6]).

• The action Φ is periodic but fixed points are allowed. The orbit space M/S1 is a stratified
space. Thus, the deRham intersection cohomology IH

∗

r
(M/S1) (cf. [3]) is a natural candidate to

replace the cohomology of the orbit space appearing in the Gysin sequence. We have shown in
[10] that the cohomology of M can be calculated by means of the following Gysin sequence

· · · −→ H
i

(M)→ IH
i−1

r−2
(M/S1)

∧[e]

−−−→ IH
i+1

r
(M/S1) −→ H

i+1

(M) −→ · · · ,(3)

where [e] ∈ IH
2

2
(M/S1) is the Euler class. The shifting of the perversity comes from the fact that

the pervers degree of e is two.

The sequences (2) and (3) become (1) when the action is periodic and almost free.

The goal of this work is to treat the general picture where no restrictions about periodicity or
freeness of Φ are considered. For a generic isometric action the geometrical situation involves at
the same time a stratification and a foliation as follows:

• The action Φ defines a natural stratification S on M where the singular strata are the
connected component of the fixed point set F .

• The orbits of Φ define a singular foliation F on M which restriction to the regular stratum
M − F is a foliation F∗.
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The main point to construct the Gysin sequence in this framework is gathering the cohomolo-
gies used in (2) and (3) in a new natural cohomology: the basic intersection cohomology.

We define a basic intersection differential form as a differential form defined on M − F which
is basic, relatively to the foliation F∗, and which is an intersection differential form, relatively to
the stratification S. The basic intersection cohomology of F is the cohomology of the complex of
basic intersection differential forms and it is denoted by IH

∗

r
(M/F). This cohomology coincides

with H
∗

(M/S1) (resp. H
∗

(M/F), resp IH
∗

r
(M/S1)) if the action Φ is almost free and periodic

(resp. almost free, resp. periodic).
The main result of this work is the construction of the Gysin sequence

· · · −→ H
i

(M) −→ IH
i−1

r−2
(M/F)

∧[e]

−−−→ IH
i+1

r
(M/F) −→ H

i+1

(M) −→ · · · ,

where [e] ∈ IH
2

2
(M/F) is the Euler class. So, we can compute the deRham cohomology of

M in terms of the basic intersection cohomology of F . We end the work giving a geometrical
interpretation of the vanishing of the Euler class in terms of the transversal triviality of F .

For the sequel we fix an isometric action Φ:R × M → M of the real numbers on an m-
dimensional compact riemannian manifold (M, µ). We shall suppose that this action is not trivial,
that is, the set F of fixed points is not the whole manifold M . In this work all the manifolds are
connected and smooth.

1 Geometry of the action

The action Φ defines naturally on M a stratification and a foliation.

1.1 Stratification. Consider the homomorphism Φ0:R → Iso(M, µ) defined by Φ0(g)(x) =
Φ(g, x), where Iso(M, µ) stands for the group of isometries of (M, µ). Notice that the map Φ0 is
not constant and that Φ is periodic if and only if Φ0(R) = S1. Since M is a compact manifold
a result of Myers-Steenrod [8] asserts that the group Iso(M, µ) is a compact Lie group which
acts smoothly on M1. Write T the closure of Φ0(R) on Iso(M, µ), which is necessarily a torus.
The induced action Φ̃:T × M → M is smooth. We have the relation Φ0(g)(x) = Φ̃(g, x) for
(g, x) ∈ T×M .

Recall that the topology of Iso(M, µ) is stronger than the pointwise convergence topology (cf.
[8]). So, a closed subset N ⊂ M is R-invariant iff it is T-invariant (and we will just say that
N is invariant). The same commentary applies to equivariant and invariant maps. On the other
hand, the set F is also the set of fixed points of Φ̃ and therefore it is an invariant manifold (not
necessarily connected). We shall write {Fα}α∈∆ the family of its connected components. The
action Φ is almost free is there is not any fixed point (i.e. ∆ = ∅).

Each Fα is called a singular stratum. The open dense subset M − F is the regular stratum.
The family {M − F, {Fα}α∈∆} define a stratification on M by invariant submanifolds. Notice
that this stratification does not depend on the choice of the riemannian metric µ.

Associated with this stratification there exists a system of tubular neighborhoods {τα: Uα →
Fα}α∈∆, that is:

a) Uα ⊂M is an invariant neighborhood of Fα with Uα ∩ U ′
α = ∅ if α 6= α′,

1We refer the reader to [2] for the notions related with compact Lie group actions.
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b) τα: Uα → Fα is a T-vector bundle with structure group O(n), and

c) the restriction of τα to Fα is the identity.

The torus T fixes each point of F and therefore acts on each fiber of τα’s. So, for each α ∈ ∆,
we can find an orthogonal action Φα:T × Snα−1 → Snα−1 and an atlas Aα of τα such that, if
ϕ: τ−1

α (W )→ W ×Rnα is a chart of this atlas then

Φ(g, ϕ−1(w, θ)) = ϕ−1(w, |θ| · Φα(g, θ/|θ|))

for each g ∈ T, w ∈ W and θ ∈ Rnα−1 (see for example [4, pag.139]). We have written | · | the
euclidean norm on Rn. We shall write ρα: Uα → [0,∞[ the distance map defined by ρα(ϕ−1(w, θ)) =
|θ|.

The system of tubular neighborhoods is not unique but two of them are equivariantly diffeo-
morphic (cf. [2, pag 312]). The action Φα is unique up to conjugation.

1.2 Foliation. We denote by X the fundamental vector field of the action Φ. It is defined by
X(x) = (Φx)∗(1) for x ∈ M , Φx:R → M , given by Φx(g) = Φ(g, x), and (Φx)∗ the tangent map.
The flow of X determines a singular foliation2 F on M whose singular orbits are the points of
F ; the restriction of this flow to M − F gives a one dimensional regular foliation.The foliation F
does not depend on the choice of the riemannian metric µ.

2 Differential forms

Before introducing the basic intersection cohomology we remind some facts about basic cohomol-
ogy and intersection cohomology. Both notions are not treated in the whole generality but in
simpler framework covering the purposes of this work.

2.1 Basic cohomology. Consider on a manifold N a dimensional foliation G given by a vector
field Y . A basic differential form is a differential form ω on N satisfying

iY ω = 0 and iY dω = 0,

where iY stands for the interior product by Y . The differential complex of basic differential
forms is denoted by Ω

∗

(N/G) and its cohomology H
∗

(N/G) is the basic cohomology of G. This
denomination is justified by the following fact: if G is defined by the fibers of a smooth submersion
κ: N → B then the pull back κ∗: Ω

∗

(B) → Ω
∗

(N/G) is an isomorphism and therefore the basic
cohomology H

∗

(N/G) is isomorphic to the deRham cohomology H
∗

(B).
When we restrict ourselves to basic differential forms with compact support we obtain the

basic cohomology with compact support H
∗

c
(N/G).

2.2 Intersection cohomology. The intersection cohomology is defined for stratified spaces
and involves the notion of pervers degree.

2We refer the reader to [11] for the notions related with singular foliations.
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2.2.1 Simple stratified space. Consider E a stratified space3. The space E is decomposed in
a locally finite family of manifolds called strata. We shall say that E is a simple stratified space
if there exists a dense stratum E0 and if the others strata {Eα}α∈∇ are closed. Recall that that
we also have a family {σα: Vα → Eα}α∈∇ of fiber bundles and a family of continuous functions
{δα: Vα → [0,∞[}α∈∇ satisfying:

• Vα is an open neighborhood of Eα, with Vα ∩ V ′
α = ∅ if α 6= α′,

• the fiber of σα is the cone cLα = Lα × [0, 1[/Lα × {0} over a compact manifold Lα, called
the link of Eα, and

• there exists an atlas Bα = {ϕ: σ−1
α (W )→W × cLα} of σα such that

– the restriction ϕ: W = σ−1
α (W )∩Eα →W × cLα is given by ϕ(x) = (x, vertex of cLα),

– the restriction ϕ: σ−1
α (W )−Eα →W × Lα×]0,∞[ is a diffeomorphism and

– δαϕ−1: W × Lα×]0,∞[→]0,∞[ is the canonical projection and δα(Eα) = {0}.

The family {σα × δα}α∈∇ will be called control data. We shall write Ěα = δ−1
α (]0, 1/2[), which is

a fiber bundle over Eα.

2.2.2 Remarks.
a) We have already seen that Φ induces a stratification on M . The manifold M is a simple

stratified space relatively to this stratification. We shall consider the following control data:
{τα × ρα}α∈∆. The control data are unique up to equivariant diffeomorphism [2].

b) Suppose that the action is periodic and semifree (free outside of F ). Put M/S1 the orbit
space and π: M → M/S1 the canonical projection. The orbit space M/S1 is also a simple stratified
space, the strata being π(M − F ) et {π(Fα) ≡ Fα}α∈∆. We shall consider the following control
data: {γα × ξα}α∈∇ with (γα × ξα)(π(x)) = (τα(x), δα(x)) for π(x) ∈ Vα. Notice that each action
Φα is free and so the link of Fα is the projective space CPmα, with mα = (nα − 1)/2.

c) When the action is just periodic then the orbit space M/S1 is a stratified space but no simple
(see for example [13]). The topology is here more complex because the strata are not separated
but incident. The elements of the control data are asked to satisfy some extra compatibility
conditions. The links of strata are not manifolds but also stratified spaces. For sake of simplicity
we stress the simple case in this work.

2.2.3 Perversion. The pervers degree ||ω||
α

of a differential form ω ∈ Ω
∗

(E0), relatively to
α ∈ ∆, is the smallest integer k verifying:

iζ0 · · · iζk
ω ≡ 0 for each family of vector fields {ζi}

k
i=0 on Ěα tangents to the fibers of σα.

We shall write ||ω||
α

= −∞ if ω|Ěα

∼= 0. For α, β ∈ Ω
∗

(Ěα)we have the relations:

||α + β||
α
≤ max(||α||

α
, ||β||

α
) and ||α ∧ β||

α
≤ ||α||

α
+ ||β||

α
.(4)

A perversity is a map r: ∆→ Z (cf. [7]). For each integer ℓ ∈ Z we shall write ℓ the constant
perversity defined by ℓ(α) = ℓ. Perversity is the parameter used to control the pervers degree of
the differential forms employed to compute the intersection cohomology.

3We refer the reader to [12] for the notions related with stratified spaces.
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2.2.4 Intersection differential forms. A differential form ω in E0 is said to be a intersection
differential form (or, r-intersection differential form) if for each α ∈ ∆ the restriction of ω to Eα

satisfies:
max

{
||ω||

α
, ||dω||

α

}
≤ r(α).

The complex of intersection differential forms is denoted by Ω
∗

r
(E). The cohomology of this

complex, written IH
∗

r
(E), is the intersection deRham cohomology4 of E.

When ∆ = ∅ the stratified space E is a manifold, the complex Ω
∗

r
(E) is exactly the complex

of differential forms Ω
∗

(E) of E and therefore IH
∗

r
(E) is the usual deRham cohomology H

∗

(E).

2.2.5 The intersection cohomology enjoys the following properties (see [7] and [10]):

• IH
∗

r
(E) is isomorphic to the intersection homology IH

q

∗

(E), where q and r are complemen-
tary perversities.

• When each link is connected (that is, E is normal) we have IH
∗

0
(E) ∼= H

∗

(E), singular
cohomology of E with real coefficients.

• IH
∗

r
(E) ∼= H

∗

(E) if E is a manifold and 0 ≤ r ≤ t. We have written t the perversity defined
by r(α) = dim Lα − 1.

• If r < 0 then IH
∗

r
(E) ∼= H

∗

c
(E −E0), the deRham cohomology with compact supports.

• If r > t then IH
∗

r
(E) ∼= H

∗

(E − E0).

Since the intersection homology does not depend on the control data these results show that
intersection cohomology does either.

2.3 Basic intersection cohomology. This new cohomology is defined in the presence of an
isometric action, where coexist a foliation and a stratification. It generalizes the previous basic
cohomology and intersection cohomology.

Fix a perversity r: ∆ → M . A differential form ω on R is an basic r-intersection differential
form, or simply a bif, if ω is a basic differential form (relatively to the foliation F presented in
1.2) and a r-intersection differential form (relatively to the stratified structure described in 2.2.2
a)). We shall write Ω

∗

r
(M/F) the differential complex of bifs and IH

∗

r
(M/F) its cohomology, the

basic intersection cohomology. Notice that this cohomology does not depend on the metric µ. It
does not depend either on the control data because uniqueness.

Proposition 2.3.1 The basic intersection cohomology verifies:

a) If r < 0 then IH
∗

r
(M/F) ∼= H

∗

c
((M − F )/F).

b) If r > t then IH
∗

r
(M/F) ∼= H

∗

((M − F )/F).

c) IH
∗

0
(M/F) ∼= H

∗

(M/F).

4We refer the reader to [5] and [3] for the notions related with intersection homology and cohomology.
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Proof.

a) Since Ω
∗

r
(M/F) = {ω ∈ Ω

∗

((M − F )/F) / ω ≡ 0 on Ǔα for any α ∈ ∆}.

b) Since Ω
∗

r
(M/F) = Ω

∗

((M − F )/F).

c) Define the auxiliary complex C
∗

(M/F) = {ω ∈ Ω
∗

(M/F) / ω|M−F ∈ Ω
∗

0
(M/F)}. We have:

Ω
∗

0
(M/F) −→ C

∗

(M/F)←− Ω
∗

(M/F),

where the left map is defined by restriction and the right one is the inclusion. We want to prove
that these maps are quasi-isomorphisms (i.e., they induced an isomorphism in cohomology). We
proceed in several stages

• Consider a partition of the unity subordinated to the covering {M − F, {Fα}α∈∆} made up
of elements of Ω

0

0
(M/F). A such partition always exits because T is compact. Since the three

complex concerned are Ω
0

0
(M/F)-modules then we can apply the Mayer -Vietoris argument (see

for example [1]). We reduce the problem to:

Ω
∗

0
(U/F)

∼
−→ C

∗

(U/F)
∼
←− Ω

∗

(U/F)(5)

for any invariant open subset U ⊂

(
M −

⋃

α∈∆

Ǔα

)
and

Ω
∗

0
(Uα/F)

∼
−→ C

∗

(Uα/F)
∼
←− Ω

∗

(Uα/F)(6)

for any α ∈ ∆, where ∼ stands for quasi-isomorphism.

• The statement (5) it is true because Ω
∗

0
(U/F) = C

∗

(U/F) = Ω
∗

(U/F). For (6) we consider

a good covering {W} of Fα and {fW} a subordinated partition of unity. The family {τ−1
α (W )}

is a covering of Uα and {fW ◦ τα} is a subordinated partition of unity made up of elements of
Ω

0

0
(Uα/F). Using the Mayer-Vietoris argument we transform (6) in:

Ω
∗

0
(Rm/Fα)

∼
−→ C

∗

(Rm/Fα)
∼
←− Ω

∗

(Rm)/Fα.(7)

Here Fα denotes the foliation determined by the orthogonal action Φα:R × Rm → Rm defined
by Φα(g, (u1, . . . , um−nα

, v1, . . . , vnα
)) = (u1, . . . , um−nα

, Φα(g, v1, . . . , vnα
))). The fixed point set

is Fα = Rm−nα × {0} ≡ Rm−nα and the control data we use are: {τα × ρα:Rm → Fα × [0,∞[}
defined by (τα × ρα)(u1, . . . , um−nα

, v1, . . . , vnα
) = (u1, . . . , um−nα

, |(v1, . . . , vnα
)|).

• Proving H
∗

(Rm/Fα) ∼= R. Consider the retraction f :Rm× [0, 1]→ Rm defined by f(w, t) =
t · w. Put F : Ω

∗

(Rm)→ Ω
∗−1

(Rm) the induced homotopy operator:

Fω =
∫

[0,1]
i∂/∂tf

∗ω ∧ dt,

where
∫

[0,1]
is the integration along the fibers of the canonical projection pr:Rn × [0, 1] → Rn.

This operator satisfies dFω + Fdω = ω − ω(0) for any ω ∈ Ω
i

(Rm) (see for example [4, pag
178]). Here, ω(0) denotes the restriction of ω to {0} (ω(0) ≡ 0 if i 6= 0). Suppose we have
proved iXFω = FiXω for ω ∈ Ω

∗

(Rm/F). Then F : Ω
∗

(Rm/F) → Ω
∗−1

(Rm/F) is a well defined
homotopy operator which shows that the basic cohomology H

∗

(Rm/Fα) can be calculated with
the complex {ω(0) / ω ∈ Ω

0
(Rm/Fα)}, that is, H

∗

(Rm/Fα) ∼= R.



Gysin sequences. 7

It remains to prove iXFω = FiXω for ω ∈ Ω
∗

(Rm/F). As pr∗(X, 0) = X and [(X, 0), ∂/∂t] = 0

then iXFω =
∫

[0,1]
i∂/∂ti(X,0)f

∗ω∧dt. On the other hand, since any homothety on Rn is equivariant

then X = f∗(X, 0) and therefore iXFω = FiXω.

• Proving H
∗

(C
·

(Rm/Fα)) ∼= R We check that the homotopy operator F : Ω
∗

(Rm/Fα) →
Ω

∗−1
(Rm/Fα) preserves the bifs. Let ω be a differential form on Rm such that the restriction to

ω|Rm−Fα
is a bif. In other words, there exists a differential form η on Fα such that ω = τ ∗

αη on Ǔα.

Since on Ǔα we have Fω =
∫

[0,1]
i∂/∂tf

∗τ ∗
αη ∧ dt = τ ∗

α

∫

[0,1]
i∂/∂tf

∗
0 η ∧ dt, where f0: Fα × [0, 1]→ Fα

is defined by f0(u, t) = t · u then the restriction Fω|Rm−Fα
is a bif.

• Proving IH
∗

0
(Rm/Fα) ∼= R. Consider the retraction h: (Rm − Fα) × [0, 1] → (Rm − Fα)

defined by





h(u1, . . . , um−nα
, v1, . . . , vnα

, t) =

t · (u1, . . . , um−nα
, v1, . . . , vnα

) + (1− t)/4|(v1, . . . , vnα
)| · (0, . . . , 0, v1, . . . , vnα

).
(8)

Put H : Ω
∗

(Rm − Fα)→ Ω
∗−1

(Rm − Fα) the induced homotopy operator defined by

Hω =
∫

[0,1]
i∂/∂th

∗ω ∧ dt,

where
∫

[0,1]
is the integration along the fibers of the canonical projection pr: (Rm−Fα)× [0, 1]→

(Rm − Fα). Since X comes from an orthogonal action then X = h∗(X, 0) and therefore iXHω =
HiXω. This gives H(Ω

∗

(Rm/Fα)) ⊂ Ω
∗−1

(Rm/Fα). Moreover, if ω is a bif there exists a differ-
ential form η on Fα verifying ω = τ ∗

αη on Ǔα. A straightforward calculation shows that on Ǔα we

have: Hω =
∫

[0,1]
i∂/∂th

∗τ ∗
αη ∧ dt = τ ∗

α

∫

[0,1]
i∂/∂th

∗
0η ∧ dt, where h0: Fα × [0, 1]→ Fα is defined by

h0(w, t) = t · w. This shows that Hω is a bif.

The homotopy operator H : Ω
∗

0
(Rm/Fα) → Ω

∗−1

0
(Rm/Fα) is well defined and verifies dHω +

Hdω = ω − ω(1/4) for any ω ∈ Ω
∗

(Rm/Fα). Here, ω(1/4) is the restriction of ω to Imh =
τ−1
α (0)∪ρ−1

α (1/4). Notice that deg ω(1/4) ≤ ||ω||α ≤ 0 implies that ω(1/4) ≡ 0 or deg ω(1/4) = 0.
Then H is a well defined homotopy operator which shows that the cohomology IH

∗

0
(Rm/Fα) can

be calculated with the complex {ω(1/4) / ω ∈ Ω
0

0
(Rm/Fα)}, that is, IH

∗

0
(Rm/Fα) ∼= R. ♣

The following result has the flavor of the characteristic local calculation in intersection homol-
ogy theory.

Proposition 2.3.2 Let Ψ:R×Rm → Rm be an orthogonal action having 0 as unique fixed point.
Write F (resp. G) the foliation induced on Rm (resp. on the unit sphere Sm−1) by this action.
For any perversity r we have:

IH
i

r
(Rm/F) ∼=

{
H

i

(Sm−1/G) if i ≤ r(0)
0 if i > r(0).

Proof. We use {τ0 × ρ0:R
m → {0} × [0,∞[}, defined by (τ0 × ρ0)(u) = (0, |u|), as control

data. Consider the homotopy operator F : Ω
∗

(Rm/F) → Ω
∗−1

(Rm/F) defined by (8). It verifies
dFω +Fdω = ω−ω(1/4). Since the vector field X is tangent to the fibers of ρ0 we know that the
differential form ω(1/4) belongs to Ω

∗

(Sm−1/G). This shows that the cohomology IH
∗

r
(Rm/F) can
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be computed with the complex {η ∈ Ω
∗

(Sm−1/G) / P ∗η ∈ Ω
∗

r
(Rm/F)}, where P : (Rm − {0}) →

Sm−1 is defined by P (u) = u/|u|. We end the proof noticing that ||P ∗η||0 = deg η. ♣

In fact, since the flow X has no zeros on the sphere then the number m is odd, say 2n + 1.
Moreover, the Gysin sequence constructed in [6] shows that H

∗

(Sm−1/G) ∼= H
∗

(CPn).
When particularizing the action Φ, the basic intersection cohomology becomes familiar. We

fix r a perversity.

2.3.3 The action Φ is almost free. Since ∆ = ∅ then Ω
∗

r
(M/F) = Ω

∗

(M/F) and therefore the

basic intersection cohomologyIH
∗

r
(M/F) is just the basic cohomology H

∗

(M/F). In particular, if

Φ is also periodic then the orbit space M/S1 is an orbifold and we have IH
∗

r
(M/F) = H

∗

(M/S1),
the deRham cohomology in the category of orbifolds [9]. Moreover, if the action is free and periodic
the basic intersection cohomology IH

∗

r
(M/F) is the deRham cohomology H

∗

(M/S1).

2.3.4 The action Φ is periodic. We have already noticed that the orbit space is a stratified
manifold.

Consider first the case where the action is semifree. The orbit space is a simple stratified space
(cf. 2.2.2 b)). The pull back π∗: Ω

∗

(M − F/S1) → Ω
∗

(M − F/F∗) is an isomorphism. For any
α ∈ ∆ the restriction of π: Ǔα → π(Ǔα) to the fibers of τα is a submersion (Snα−1×]0, 1/4[→
Snα−1/S1×]0, 1/4[) and then π∗{Ker(τα)∗} = Ker(γα)∗. So, for any differential form ω ∈ Ω

∗

(M−
F/S1), we have ||π∗ω||α = ||ω||α. The map π∗: Ω

∗

r
(M/S1) → Ω

∗

r
(M/F) is then an isomorphism

and therefore we get that the basic intersection cohomology IH
∗

r
(M/F) is isomorphic to the

intersection cohomology IH
∗

r
(M/S1).

When the action of the circle is not free on M − F the orbit space M/S1 is a stratified space
but not simple: the singular strata (corresponding to finite isotropy subgroups) are not closed
and their closures met each other. Put {Fα}α∈∇ the family of singular strata, where ∇ strictly
contains ∆. The definition of the intersection cohomology of M/S1 involves also a control data
for the strata and is similar to the definition given here for the simple case; but it refers to all
the strata and not only the strata of fixed points. For sake of simplicity we do not give the
exact definition an we refer the reader to [7] and [8]. Following the same argument as above, one
can show that the pull back π∗: Ω

∗

r
(M/S1) → Ω

∗

r
(M/F) is a well defined monomorphism, where

r:∇→ Z is the perversity extending r: ∆→ Z by zero. Nevertheless it is not an isomorphism: the
right hand side involves the strata of fixed points {Fα}α∈∆ whereas the left hand side refers to all
the strata {Fα}α∈∇. The induced map in cohomology π∗: IH

∗

r
(M/S1) → IH

∗

r
(M/F) is however

an isomorphism (essentially because M − F/S1 is a homological manifold).

In conclusion, when the action is periodic the basic intersection cohomology IH
∗

r
(M/F) is

isomorphic to the intersection cohomology IH
∗

r
(M/S1).

3 Gysin sequence

We construct and study the Gysin sequence associated to the action Φ. The main tool we use are
the invariant forms and the integration along the fibers.

3.1 Invariant differential forms. In the presence of a compact Lie group is tempting to
consider the invariant differential forms in order to simplify the calculations. Remind that the
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complex of invariant differential forms

IΩ
∗

(M) = {ω ∈ Ω
∗

(M)/g∗ω = ω if g ∈ T} = {ω ∈ Ω
∗

(M)/LXω = ω}

computes the cohomology of M (see for example [1]). We prove a similar result for the invariant
bifs

IΩ
∗

r
(M) = {ω ∈ Ω

∗

r
(M)/g∗ω = ω if g ∈ T} = {ω ∈ Ω

∗

r
(M)/LXω = ω}.

Proposition 3.1.1 For any perversity 0 ≤ r ≤ t we have H
∗

(IΩ
·

r
(M)) ∼= H

∗

(M).

Proof. Since the inclusion IH
∗

r
(M) ∼= H

∗

(M) is an isomorphism (cf. 2.2.5) it suffices to prove that

the inclusion IΩ
∗

r
(M) →֒ Ω

∗

r
(M) is a quasi-isomorphism. The operators used in [1] to prove that

the inclusion IΩ
∗

(M − F ) →֒ Ω
∗

(M − F ) is a quasi-isomorphism are a composition of operators
of type L1, L2 and L3 described below. It suffices to show that these operators preserve the bifs.

Put N a manifold. Consider the action Γ:T× (N ×M)→ (N ×M) defined by Γ(g, (x, y)) =
(x, Φ̃(g, y)). The singular strata are {N × Fα}α∈∆. We work with the following control data:
{τN×Fα

× ρN×Fα
: N × M −→ N × Fα × [0,∞[}α∈∆ defined by τN×Fα

(x, y) = (x, τα(y)) and
ρN×Fα

(x, y) = ρα(y). For a manifold N we shall write prN : N ×M → N and prM : N ×M → M
the canonical projections.

• L1: Ω
∗

(N × (M − F ))→ Ω
∗

(M − F ) is defined by L1ω =
∫

N
ω ∧ pr∗Nλ, where λ ∈ Ω

∗

(N) is

a differential form with compact support and
∫

N
is the integration along the fibers of prM .

• L2: Ω
∗

(N × (M − F ))→ Ω
∗−1

(N × (M − F )) is defined by L2ω =
∫

[0,1]
i∂/∂tu

∗ω ∧ dt, where

u: N × [0, 1]×M → N ×M is a smooth map with u(x, t, y) = (u0(x, t), y) and
∫

[0,1]
is the

integration along the fibers of the canonical projection prN×M : N ×M × [0, 1]→ N ×M .

• L3: Ω
∗

(M − F )→ Ω
∗

(T× (M − F )) is defined by L3ω = Φ∗ω.

These operators preserve the bifs.

• Let ω ∈ Ω
∗

r
(N × M). Since the fibers of τN×Fα

are included on the fibers of prN then

pr∗Nλ ∈ Ω
∗

0
(N × M) and therefore ω ∧ pr∗Nλ ∈ Ω

∗

r
(N × M) (see (4)). The equality

(prM)∗
{
Ker(τN×Fα

)∗
}

= Ker(τα)∗ implies that the operator
∫

N
maps Ω

∗

r
(N × M) into

Ω
∗

r
(M). Thus L1ω ∈ Ω

∗

r
(M).

• Let ω ∈ Ω
∗

r
(N ×M). The map u maps the fibers of τN×[0,1]×Fα

into the fibers of τN×Fα
.

Then u∗ω ∈ Ω
∗

r
(N × [0, 1]×M). The equality (prN×M)∗

{
Ker(τN×Fα

)∗
}

= Ker(τN×[0,1]×Fα
)∗

implies that L2ω belongs to Ω
∗

r
(N ×M).

• Let ω ∈ Ω
∗

r
(M). The maps τα are invariant and therefore Φ maps the fibers of τT×Fα

into

the fibers of τα. Then L3ω = Φ∗ω ∈ Ω
∗

r
(T×M). ♣
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3.2 Construction of the Gysin sequence. The integration along the fibers is the differential

operator
∮

: IΩ
∗

r
(M)→ Ω

∗−1

r−1
(M/F) defined by linearity from

∮
ω = (−1)deg ωiXω. It is well defined

because ω is invariant and because max {||iXω||α, ||d(iXω)||α} ≤ max {||ω||α − 1, ||dω||α − 1} for

any α ∈ ∆.The sign appears in order to get d
∮

ω =
∮

dω. This operator gives rise to the short

exact sequence

0 −→ Ω
∗

r
(M/F)

ι
→֒ IΩ

∗

r
(M)

∮
−→ Im

∮
−→ 0,(9)

since Ker
∮

= {ω ∈ IΩ
∗

r
(M)/iXω = 0} = Ω

∗

r
(M/F). The Gysin sequence is the associated long

exact sequence

· · · −→ H
i

(M)

∮
∗

−→ H
i−1

(Im
∮

)
δ
−→ IH

i+1

r
(M/F)

ι∗
−→ H

i+1

(M) −→ · · · ,(10)

where δ is the connecting homomorphism.

3.2.1 Euler class. Define the riemannian metric ν on M − F by ν = (µ(X, X))−1 · µ. Write
χ ∈ Ω

1
(M − F ) the dual form to X with regard to ν, that is, χ(Y ) = ν(X, Y ). The differential

form χ is invariant and verifies iXdχ = −diXχ+LXχ = −d1+0 = 0. The differential form e = dχ

is therefore a closed bif. It defines a class [e] ∈ IH
2

2
(M/F) called the Euler class.

Notice that the Euler class is not necessarily 0 in the intersection basic cohomology although e
is exact (iXχ 6= 0!). This class is independent of the choice of the metric. For another riemannian
metric ν ′ on M − F , with X unitary vector field, we get iX(χ − χ′) = 0 and therefore χ − χ′ ∈
Ω

1

2
(M/F) which implies [e] = [e′] on IH

2

2
(M/F).

3.2.2 Image of

∮
. For each differential form ω ∈ Ω

∗

r−2
(M/F) the product ω∧χ is an invariant

form satisfying max {||ω ∧ χ||α, ||d(ω ∧ χ)||α} ≤ max {||ω||α + 2, ||dω||α + 1} ≤ r(α) (cf. (4))) and∮
χ ∧ ω = ω. So, the complex Ω

∗

r−2
(M/F) is a subcomplex of Im

∮
.

Proposition 3.2.3 For any perversity 0 ≤ r ≤ t the inclusion Ω
∗

r−2
(M/F) →֒ Im

∮
is a quasi-

isomorphism.

Proof. Given a smooth function f ∈ Ω
0

0
(M) and ω ∈ Ω

∗

r
(M) we have fω ∈ Ω

∗

r
(M) and

∮
fω =

f
∮

ω. The Mayer-Vietoris argument applies in this context and we can proceed as in Proposition

2.3.1. The problem is reduced to prove, using the notations of 2.3.1:

Ω
∗

r−2
(Rm/Fα)

∼
→֒ Im

{∮
: IΩ

∗+1

r
(Rm)←− Ω

∗

r−1
(Rm/Fα)

}
.(11)

Remind that Fα is the foliation on Rm defined by the orthogonal action Φα. Identify Snα−1

with the sphere τ−1
α (0)∩ρ−1

α (1/4). Since the action Φα is orthogonal it induces an orthogonal action
Φα:R× Snα−1 → Snα−1 (notice that this action is the restriction of the action Φα:T× Snα−1 →
Snα−1 of 1.1). Write Fα the foliation on Snα−1 induced by Φα. Since Φα is an almost free action
then Fα is a regular foliation.
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Consider the homotopy operator H : Ω
∗

(Rm−Fα)→ Ω
∗−1

(Rm−Fα) induced by the retraction
h: (Rm−Fα)× [0, 1]→ (Rm−Fα) defined by (8). Suppose that for any perversity p the restriction
H : Ω

∗

p
(Rm/Fα)→ Ω

∗−1

p
(Rm/Fα) is well defined. For any ω ∈ Ω

∗

p
(Rm/Fα) we have:

dHω + Hdω = ω − ω(1/4) and deg ω(1/4) ≤ ||ω||α ≤ p(α).

Then, the basic intersection cohomology IH
∗

r−2
(Rm/Fα) can be calculated by using the complex:

E∗0 = Ω
<r(α)−2

(Snα−1/Fα)⊕
{
Ω

r(α)−2

(Snα−1/Fα) ∩ d−1(0)
}

.

On the other hand, for any ω ∈ IΩ
∗

r
(Rm) we have

(∮
ω
)

(1/4) =
∮

ω(1/4) and therefore the

cohomology Im
{∮

: IΩ
∗+1

r
(Rm)←− Ω

∗

r−1
(Rm/Fα)

}
can be calculated with the complex:

E∗1 = Im

{∮
: IΩ

∗+1<r(α)
(Snα−1)→ Ω

∗<r(α)−1
(Snα−1/Fα)

}

⊕ Im

{∮
: IΩ

r(α)
(Snα−1) ∩ d−1(0)→ Ω

r(α)−1
(Snα−1/Fα) ∩ d−1(0)

}
.

We have reduced (11) to E∗0
∼
→֒ E∗1 .

The integration operator
∮

: IΩ
∗+1

(Snα−1) → Ω
∗

(Snα−1/Fα) is onto. In fact, for any ω ∈

Ω
∗

(Snα−1/Fα) the product χ∧ ω is an invariant form satisfying
∮

χ∧ ω = ω. Nevertheless, notice

that even if ω is closed we don’t get d(χ ∧ ω) = 0. So, E∗0
∼
→֒ E∗1 becomes

E∗0
∼
→֒ Ω

∗<r(α)−1

(Snα−1/Fα)⊕ Im
{∮

:
{
IΩ

r(α)

(Snα−1) ∩ d−1(0)
}
→
{
Ω

r(α)−1

(Snα−1/Fα) ∩ d−1(0)
}}

.

We end the proof if we show:

a) For any closed form ω ∈ IΩ
r(α)

(Snα−1) there exists η ∈ IΩ
r(α)−1

(Snα−1) with
∮

ω = d
∮

η.

b) H : Ω
∗

p
(Rm/Fα) −→ Ω

∗−1

p
(Rm/Fα) is well defined for any perversity p.

We prove this.

a) Remind that we have 0 ≤ r(α) ≤ nα − 2. When r(α) = 0 we have
∮

ω = 0 and it is

enough to take η = 0. For the other cases we have H
r(α)

(Snα−1) = 0 and therefore we can find

η ∈ IΩ
r(α)−1

(Snα−1) with dη = ω. We have finished because
∮

dη = d
∮

η.

b) We have already seen in the proof of the Proposition 2.3.1 that H maps Ω
∗

(Rm/Fα) into
Ω

∗−1
(Rm/Fα). It remains to verify that H maps Ω

∗

p
(Rm) into Ω

∗−1

p
(Rm). We proceed as in the

proof of Proposition 3.1.1, whose notations we use. The map h sends the fibers of τFα×[0,1] into the
fibers of τα and then h∗ω ∈ Ω

∗

p
(Rn× [0, 1]). Put prRn :Rn× [0, 1]→ Rn the canonical projection.

The equality (prRn)∗
{
Ker(τFα×[0,1])∗

}
= Ker(τα)∗ implies that Hω belongs to Ω

∗

p
(Rm). ♣

We arrive at the main result of this work.

Theorem 3.2.4 Let Φ:R × M → M be an isometric action. Then there exists a long exact
sequence

· · · −→ H
i

(M) −→ IH
i−1

r−2
(M/F)

∧[e]

−−−→ IH
i+1

r
(M/F) −→ H

i+1

(M) −→ · · · ,(12)

where r is any perversity verifying 0 ≤ r ≤ t.
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Proof. We have already seen that the short exact sequence (9) gives rise to the long exact sequence
(10). The connecting homomorphism is defined by δ[α] = [e] ∧ [α] (cf. 3.2.2). It suffices now to
apply the previous result. ♣

This long exact sequence is called the Gysin sequence.

3.2.5 Remarks.

a) The Gysin sequence does not depend on the choice of the riemannian metric µ.

b) When the action Φ is almost free the intersection basic cohomology becomes the basic
cohomology (cf. 2.3.3) and (12) becomes (2). When the action Φ is periodic the intersection
basic cohomology becomes the intersection cohomology (cf. 2.3.4) and (12) becomes (1). When
the action is almost free and periodic the intersection basic cohomology becomes the deRham
cohomology (cf. 2.3.3) and (12) becomes the usual Gysin sequence (1).

c) Taking r = 0 the Gysin sequence becomes:

· · · −→ H
i

(M) −→ H
i−1

c
((M − F )/F)

∧[e]

−−−→ H
i+1

(M/F) −→ H
i+1

(M) −→ · · · ,

(cf. (2.3.1)). Taking r = 2 the Gysin sequence becomes:

· · · −→ H
i

(M) −→ H
i−1

(M/F)
∧[e]

−−−→ IH
i+1

2
(M/F) −→ H

i+1

(M) −→ · · · .

This shows that the deRham cohomology is not enough to extend the Gysin sequence to the
singular case.

d) A more sofisticated stratification can be considered on M by classifying its points following
the isotropy subgroups. This leads to another approach of the basic intersection cohomology,
where this finer stratification is considered. But the final result is the same because the new links
are cohomologycally trivial.

3.3 Vanishing of the Euler class. Consider Φ almost free. The Euler class [e] ∈ H
2
(M/F)

vanishes if and only if there exists a locally trivial fibration whose fibers are transverse to the
orbifold Φ (cf. [10]).

A singular foliation G on M is said to be transverse to Φ if:
1) The singular leaves of G are the points of F .
2) For each point M − F the leaf of G and the orbit of Φ passing through the point are

transverse.
When Φ is periodic, we have proved in [6] that the vanishing of the Euler class [e] ∈ IH

2

2
(M/S1) is

equivalent to the existence of a singular foliation G, transverse to the orbits of Φ, whose restriction
to M − F is a locally trivial fibration. Using the same strategy on can show the next result.

Proposition 3.3.1 The two following statements are equivalent.

a) The Euler class [e] ∈ IH
2

2
(M/F) vanishes.

b) There exists a singular foliation G, transverse to the orbits of Φ, whose restriction to M−F
is a locally trivial fibration.

Proof. Sketch. We blow up Φ into an almost free isometric action Φ̂:R × M̂ → M̂ whose Euler
class also vanishes. We find a locally trivial fibration Ĝ on M̂ transverse to the orbits of Φ̂. The
foliation G is just the push down of Ĝ. The reciprocal comes from the fact that the Euler class
vanishes on IH

2

2
(M/F) if and only if it vanishes on H

2
((M − F )/F) ♣
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Faculté Jean Perrin
Université d’Artois
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