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HOMOLOGICAL PROPERTIES OF STRATIFIED SPACES

MARTIN SARALEGI

In [4], Goresky and MacPherson introduced intersection homology in order
to extend Poincar6 Duality to some singular spaces. They also introduced the
intersection cohomology from a differential point of view by means of
intersection differential forms [3]. Using the sheaf axiomatic construction of
[5], it is shown in [3] that the intersection homology is dual to the intersection
cohomology. Moreover, a subcomplex of intersection differential forms is
exhibited in [2] for which the usual integration f of differential forms on
simplices realizes the above duality (deRham Theorem). The context of these
works is the category of Thom-Mather stratified spaces.

Later, MacPherson introduced a more general notion of intersection
homology, by enlarging the notion of perversity [8]. The aim of this work is to
extend the previous deRham Theorem to this new context; we also give a
weaker presentation of intersection differential forms. The description of the
"allowability condition" for intersection differential forms uses the tubular
neighborhoods of the strata, it is a germ condition. It seems more natural to
give a presentation of intersection differential forms whose "allowability" is
measured more directly on the strata, as for the intersection homology.

Since the differential forms cannot be defined on the singular part of A,
the version we propose here uses a blow up 7r" A --. A of the stratified space
(essentially the resolution of singularities of Verona [14]). The allowability of
the differential forms is measured on the desingularization 7r-1(S) of the
strata S of A. This gives rise to weak intersection differential forms. We
show that the complex of these differential forms calculates the intersection
homology of A. The proof is direct; that is, we show that the usual
integration f of differential forms on simplices realizes the isomorphism. We
finish the work by giving a direct proof of the fact that the Poincar6 Duality
for intersection cohomology (IH(A) =- IH_.(A)) can be realized by the
integration f of the usual wedge product of differential forms (see also [3] for
classical perversities).

In Section 1 we recall the notion of a stratified space A and we introduce
the blow up of A, the unfolding (in fact, the resolution of singularities of
Verona without faces). Remark that in some cases the unfolding of A
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appears more naturally than the tubular neighborhood system of A: compact
Lie group actions, compact singular Riemannian foliations [10], etc... We
recall in the second section the results of [7] and [2] about the intersection
homology. Section 3 is devoted to the study of weak intersection differential
forms. In the last Section we give the principal results of this note: the
deRham Theorem (see 4.1.5) and Poincar6 Duality (see {}4.2.7).
We are grateful to G. Hector, E. Ghys (who suggested to us the use of the

unfolding) and D. Tanr6 for useful discussions. We would like to thank the
Department of Mathematics of the University of Illinois at Urbana-
Champaign for its hospitality during the writing of this paper.

In this work all manifolds are considered smooth and without boundary,
"differentiable" and smooth mean "of class C and the chains and cochains
complexes are taken with coefficients in R.

1. Stratified spaces and unfoldings

The stratified spaces used in [3] and [2] are Thom-Mather stratified spaces
which are stratified pseudomanifolds. These spaces have a blow up in a
manifold, which we called unfolding (see [14] and [2]).

1.1. Stratified spaces. We introduce the notion of singular space involved
in this work.
Remember that a Thom Mather stratified space A is the union of smooth

manifolds, called strata, each of which possesses a tubular neighborhood;
these neighborhoods intersect each other in a conical way. The dimension of
A, written dim A, is the greatest dimension of the strata.
A stratified space is a Thom-Mather stratified space A such that for each

stratum S there exists a stratum R, with dim R dim A, satisfying S R.
These strata with maximal dimension are the regular strata, the others are
the singular strata. We shall write ’ to represent the family of singular
strata and E c A the union of singular strata. The stratified space A is said
to be normal if it possesses only one regular stratum. Notice that, if the
codimension of singular strata is at least two, the stratified space A is a
topological pseudomanifold (as defined in [5]). A useful concept in this work
is the depth of A"

d(A) max{/ {0,..., dim A}/there exists a family of strata So,..., S

with S0 c S, S c S, }.

ZFor the relations related to Thom-Mather spaces we refer the reader to [12] and [9].
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1.2. Unfoldings. We introduce the notion of unfolding, it is the resolu-
tion of singularities of [14] in the category of manifolds without boundary. It
comes from A replacing each singular point by an unfolding of its link.

1.2.1. An unfolding of a 0-dimensional stratified space is a finite covering.
An unfolding of a n-dimensional stratified space A is a continuous map rr

from a manifold 4 onto A such that:

For each regular stratum R, the restriction rr: -n’-l(R)-+ R is a finite
trivial smooth covering;

For each singular stratum S of dimension i, for x S and for a5 rr-l(x)
there exists a commutative diagram

(1) V
4, ,Ri ]_ 1,1[

U

where

(i)
(ii)
(iii)

(iv)

U and V are neighborhoods of x and $ respectively,
rL" / L is an unfolding of L, compact stratified space,

is a strata preservin.g homeomorphism whose restriction to each
stratum is smooth and is a diffeomorphism,
P(x, , r) (x, [’/7"L()) [r[]).

Here cL denotes the cone L [0, I[/L {0} and a point of cL.
It is shown in [2] that any stratified space possesses an unfolding. But in

some cases the unfolding is a more natural structure than the Thom-Mather
structure: the orbit space of an action of a compact Lie group, and the leaf
space of a singular Riemannian manifold (see [10]).

1.2.2. The neighborhood U is called a distinguished neighborhood of x.
The point x has a base for the family of neighborhoods formed by distin-
guished neighborhoods. To see this, it suffices to reparametrize 1, 1[ and
the ratio of cL. As a consequence we get that each open set W c A has the
natural unfolding 7r: 7r-l(w) --. W. The stratified spaces M A, where M
is a manifold, and cA, for A compact, have also natural unfoldings:

(2)
(3)

zrl" M ., M A defined by -1( x, t) ( X, 7/’(t)),
zr2" 1, 1[ cA defined by zr2(a, t) [Tr(a), [t[].

1.2.3. An isomohism between two stratified spaces A and A’ with
unfoldings and A’ is given by a stratum preserving homeomorphism f:
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A A’ and by a diffeomorphism j A --, ’ satisfying zr’j= fTr. For exam-
ple (, ) is an isomorphism.
Under the Unfolding zr each singular stratum S becomes a hypersurface of

A related to S by the following proposition.

PROPOSITION 1.2.4. Let S be a singular stratum ofA. Then, the restriction
of 7r to a connected component of 7r-1(S) is a smooth locally trivial fibration
with fiber L.

Proof. It suffices to consider the diagram (1) for a point x S"

7?’ l(s) (’ V R xLx {0}
"n"1 IP- projection

U fq S R {vertex}

Throughout this work, we fix a n-dimensional stratified space A and an
unfolding 7r" A. In fact, all the results of this work still hold if A is a
topological pseudomanifold, with smooth strata, admitting an unfolding.

2. Intersection homology

MacPherson has presented a weaker notion of perversity and generalized
the simplicial intersection homology (see [8]). As we shall see, this is also the
case for the singular intersection homology of [7]. In this section we show
how the singular intersection homology of A can be computed by using the
complex of singular intersection chains which have a lifting; this is an
important tool for the deRham Theorem.

2.1. Singular intersection homology. We recall the definition of the no-
tion of perversity of [8] and we present the corresponding adaptation of the
singular intersection homology of [7].

2.1.1. A perversity is a function/: a_ Z from the set of singular strata
to the integers. Two perversities/5 and are dual if/(S) + (S) codim S
-2, for each S a. For example, the zero perversity O, defined by
0(S) 0, and the top perversity 0, defined by (S) codim S 2, are dual.
A classical perversity of a topological pseudomanifold is a function p from

the integers greater than one to the integers with the properties that
p(2)- 0 and p(i + 1) is either p(i)+ 1 or p(i) for i>_ 2. The classical
perversity p induces a perversity by taking (S)= p(codim S) for each
singular stratum.
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From now on, we fix a perversity . The following definitions are adapta-
tions of the notions of [7] to this new context.

2.1.2. A singular simplex tr: A A of dimension is -allowable (or
allowable) if

(a) o- sends the interior of A in a regular stratum of A, and
(b) tr-l(s) c (dim h codim S +/5(S))-skeleton of A, for each singular

stratum S of A.

When is a classical perversity the condition (b) implies (a). Observe that
each singular simplex obtained from tr by linear subdivision is still/-allowa-
ble.
A singular chain sc y,.m= rjo.j, is -allowable (or allowable) if each singular

simplex %. is fi-allowable. We shall say that sr is a -intersection (or
intersection) singular chain if : is -allowable and the boundary 0:, where we
have neglected all simplices not satisfying a), is also -allowable. When is a
classical perversity, any simplex of the boundary 0: verifies a).

Define SC(A) to be the complex of /5-intersection singular chains.
Proceeding as in [7], we can prove that this differential complex computes the
intersection homology of [8]. That is, we get H,(SC(A))--IH.(A). An
isomorphism between two stratified spaces A and A’ induces an isomor-
phism between IHP**(A) and IH(A’).
The following local calculations will be used throughout this work. They

are shown in [7] for a classical perversity, but the same proofs hold for a
perversity.

PROPOSITION 2.1.3. If M is a contractible manifold, the map a (to, a),
where to is a fixedpoint ofM, induces an isomorphism IHP** (A) --- IH(M A).

PROPOSITION 2.1.4. IrA is compact then the map a [to, a], where o is a
fixed point of the interval ]0, 1[, induces an isomorphism

IHf(A)II-If ( cA )
0

ifj < n ( vertex of cA)
ifj >_ n ( vertex of cA)

By working with this new definition of perversity we loose some properties
of [4], namely the stratification invariance of IH(A). However, the following
property remains.

PROPOSITION 2.1.5. If A is m_anifold then IH(A)--H.(A), for any
stratification on A, provided that 0 <_ <_ .
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Proof Locally, the manifold A looks like R x cL (see 1.2.1), where L is
a homological sphere. The previous calculation shows that

IH}Y ( L)
IHr(Ri cL)

0

ifj<codimS- l-if(S)
if j > codim S -/5(S)

An argument by recurrence on the depth of A shows that IH(L) H. (L).
Since 0 < < , we get

IH(Ri cL) H,(Ri X cL).
Now, the passage from the local to the global can be done as in [7].

2.2. Liftable singular intersection chains. The notion of lifting of a
singular chain arises from the notion of unfolding of a stratified space. This
concept is useful because it allows us to integrate the intersection differential
forms over the liftable singular intersection chains. We introduce in this
section the notion of the lifting of the singular chains.

2.2.1. Let A be the standard simplex. An unfolding of A is given by a
decomposition A A0 Ap and by the map/x from A C’A 0
-A,_l A onto A defined by:

Ix([Xo, to],...,[xp_,,tp_,],xp)
toXo + (1 to)t1 + +(1 t0) (1 tp_2)tp_lXp_
+(1-to)"’(1-tp_,)x,.

Here A denotes the closed cone A [0, 1]/A {0}, and [Xi, i] a point of
it. The map/x is well defined and maps diffeomorphically the interior of z to
the interior of A.

2.2.2. The boundary of , has the following decomposition dz d" + 6z
(see [2]), where OA is the unfolding of the boundary cA with the induced
decomposition, and A is formed by the faces/x(F) of A with

F A0 X X C’Ai_ X (A X {l}) X "mi+ X X -’Ap_ X Ap.

Observe that the map/x, when restricted to the interior of A, is a submer-
sion.

2.2.3. Let r: A A be a singular simplex. We shall say that r is a
liftable singular simplex if

(a) for each face C of A there exists a stratum S of A containing the image
by tr of the interior of C, and
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(b) there exists an unfolding/x: --, A and a differentiable map t: z --, 2{
such that 7r tr/x.

The map t is a lifting of tr. It is shown in [2] that any singular simplex
obtained from tr by linear subdivision of A has a lifting.
A singular chain Ejm= 1rj%. is liftable if each singular simplex %. is

liftable. We define RC,(A) to be

SC, (A)/ is liftable}.

Notice that this complex is differential. An isomorphism between two strati-
fied spaces A and A’ induces an isomorphism between H,(RC(A)) and
H,(RC(A’)).
The two following results are proved in [2] for a classical perversity, but the

proofs still hold for any perversity.

PROPOSITION 2.2.4. Let I be an open interval of R. Then the map a
(to, a), where o is a fixed point of I, induces an isomorphism H, (RCP(A))
H, (RCg(I A)).

PROPOSITION 2.2.5. IrA is compact then the map a [to, a], where o is a
fixed point of the interval ]0, 1[, induces an isomorphism

H( RC. ( cA ) ) ( H(RC ( A) )
0

ifj < n ( vertex of cA)
ifj >_ n ( vertex of cA).

2.3. Relation between IH{(A) and H, (RCP(A)). This section is devoted
to show that the inclusion RC{(A) SC,(A) induces an isomorphism in
homology (quasi-isomorphism). First, we introduce the Mayer-Vietoris argu-
ment, and we show how to localize the problem. Then we will use the local
calculations made in the above section.

2.3.1. Let a2d= {U,,/a J} be an open cover of A. The complexes
SC,(A) and R*C(A) of 2e-small chains are defined as subcomplexes of
SCP, (A) and RC{(A) respectively, these are generated by the chains lying on
some open of the cover ft. The exact sequences

(4) 0 SC,(A) SC{(Uo) ( SCP,(U,, (3 U,)
o o0 <o

(5) 0 *- R*C(A) .-- ( RC.(U,o) - (]) RC{(Uo ( U,)
o o0 <o

are the Mayer-Vietoris sequences (see [1, page 186]).
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The next step is to show that the subcomplex of 2g-small chains is
homologous to the original one (see Prop. 2.3.5). In order to do this we need
some preliminary results.
A singular simplex tr: A A is -good (or good) if
(a) for each singular stratum S the minimal face Cs of A containing

tr- (S) satisfies

dim Cs < dim A codim S + (S),

and
(b) the family {Cs/dim Cs

by inclusion.
dim A codim S +/(S)} is totally ordered

LErMA 2.3.2. Any maximal element of the barycentric subdivision of an
allowable singular simplex is good.

Proof Let q: V A be an allowable singular simplex and tr: A A an
element of its barycentric subdivision with dim V dim A. Recall that the
trace on A of the j-skeleton of V is a face of A with dimension lower or
equal than j. So, for each singular stratum S, the minimal face Cs of A
containing r-l(S) satisfies (a).

If dim Cs dim A codim S + if(S) then the trace on A of the (dim A
codim S + .5(S))-skeleton of V is exactly Cs. The result follows now from the
fact that the family {C face of A/C c (dim C)-skeleton of V} is totally
ordered by inclusion.

LEMA 2.3.3. Let tr" A A be a good allowable singular simplex. Suppose
that T(tr) min{Cs/dim Cs dim A codim S +/(S)} exists. For each
codimension one face s: C A of tr satisfying 2.1.2(a), we get

s is not allowable if and only if C D T(tr).

In this case, if tr’: A - A is another good allowable singular simplex having s as
a face, we have the relation T(tr) T(tr’).

Proof If s is not allowable then there exists a singular stratum S with
s-l(s) (dim A 1 codim S + ff(S))-skeleton of C. Since s-l(s) c Cs
n C and dim Cs dim A codim S + if(S) we conclude that Cs c C and
therefore T(tr) c C.
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On the other hand, if Cs c C for some singular stratum then we have
r- 1(S) s- 1(S) and

dim Cs dim A codim S + (S).

Hence s-l(S) : (dim A 1 codim S +/(S))-skeleton of C.
Finally, we prove T(r) T(r’). Write S the singular stratum verifying

Cs T(r). The relation r-l(s) s-l(S) c (r’)-l(S) implies T(r) c C.
Since dim C < dim A codim S +/5(S) dim T(r) we obtain C T(r).
By the definition of T(r’), we can write T(r’) c C, that is, T(r’) c T(r).
Similarly, we prove T(r) c T(cr’) and therefore T(r) T(r’). m

We have already noticed that the chain subdivision is an interior operator
in SCP,(A) and RC,(A). We shall let ’: SC(A) SC,(A) and ’:
RC(A) - RC(A) the barycentric subdivision (see [15, page 206]).

LEMMA 2.3.4. For each SC(A) (resp. RC(A)) there exists > 1
such that SI() SC(A) (resp. RCP,(A)).

Proof The method used in [15, page 207] ensures the existence of > 1.,
msuch that (:) Ey=lry%. is an element of S,(A) satisfying: %.(T(%.)) c

U_ Im %. c U,, when T(%.) exists. We need to prove that SI() belongs to
SC,(A) (resp. RC,(A)).

Notice that if T(%.) does not exist, the singular simplex %. lies in SC(A)
(resp. RC,(A)). Thus, we can assume the existence of T(%.), for j 1,..., n.
The lemma will be proved if we show that, for a fixed a J, the chain
sc Ej(T(;))cur%. is an element of SC(U) (resp. RC,(U)). In fact we
only need to show that the elements of 0so, satisfy 2.1.2(b). Let %. be an
element of so,. There exists a family {%0,’", %) of good allowable singular
simplices of sc which cancel the codimension one faces of %. not satisfying
2.1.2(b). From the previous lemma, we know that the simplices {%0,’", %)
are in :,,. Thus the chain : is an intersection chain, m

The relationship between the a2-small chains and the original chains is
given by:

PROPOSITION 2.3.5. The inclusions SC,(A) SC,(A) and RC,(A)
RC, P(A) are quasi-isomorphisms.

Proof For a proof of this fact we refer the reader to [15, appendix I, page
207]. The idea behind is quite intuitive" to get an inversion chain map,
subdivide each chain in A until it becomes -small, and this is possible by
the lemma above. Now, we only need to show that the homotopy operator is
an interior operator in the complexes SC(A) and RC(A).
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Let or: A A be a liftable/5-allowable singular simplex (the same proof
holds for a if-allowable singular simplex). Consider the cone singular simplex
ccr: A--*A defined by ccr([x,t])=r(tx + (1- t)B), where B is the
barycenter of A. We must proof that ccr is also a liftable/5-allowable singular
simplex. This arises from the following remarks:
For each face C of A we have

and

ctr(interior of C ]0, 1[) tr(interior of C) c A E,

err(interior of C {1}) tr(interior of C) S,

for some stratum S.
err(vertex of A) (r(B) cA .
For any singular stratum S,

1. (CO’)-l(s) or-l(s) X {1} C (dim A codim S +/5(S))-skeleton of A
1}, if/(S) < codim S,

2. (co,)-1(S) c C-A c (dim A codim S + ff(S))-skeleton of C’A, if if(S)
>_ codim S.

Consider t" A0 Ap_l X Ap
have the decomposition

lifting of tr. In A we

AO, *Ap_l*({S}*Ap)

where S is the vertex of the cone C’A. The unfolding/z" CA- A is defined
by

g’(x [Xo, to],..., [x_,, t_l], tx + (1 t)S)
toX0 + (1 to)txX + +(1 to) (1 tp_2)tp_xXp_
+(1 -to) (1 -tp_l)(txp + (1 t)S).

We define the lifting ctr: C-A- A by ca(x) t(P0,..., Pp) with

{1 (1 -ti) (1 --tp_l)(1 --t)(1 (a + +ap)}-’
X(tiX + (1 ti) (1 --tp_l)(1 --t)a,B

+{(1 -ti) (l -ti) (1 -tp_l)(X -t)(ao + +ai)}Si)
for/ {O,...,p- 1}
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and

-Pp {1 (1 -t)(1 -ap)}-l(txp + (1 -t)apBp).
Here B _,=ootiBi, where B is the barycenter Ai, and S is the vertex of
A i. This map is well defined because

(a) Pi depends on {tixi, ti,..., tp_ 1, t}, and
(b) 1 (1-t)(1-ap) and l:(1-ti)...(1-tp_l)(1-t)(1-(ai+

+ap))for {0,...,p- 1};

and it is a differentiable map. Since 7rt tr/z, a straightforward computation
shows rctr= ctr/x’. Therefore, the simplex ctr has a lifting.

To get the main result of this section we also need the following lemma:

LEMMA 2.3.6. Suppose A is compact. Then the first statement implies the
second one"

(a) the inclusion RC(W) SCP**(W) is a quasi-isomorphism for each
open W c A,

(b) the inclusion RCP.(V) SCP**(V) is a quasi-isomorphism for each open
VCRm cA.

Proof. We proceed in four steps.
(1) V Rm x cA. We apply 2.1.2, 2.1.3, 2.2.4, 2.2.5 and the hypothesis

(a) for W A.
(2) V=]al, bl[,...,]am, bm[XcA, where ai, b R, e ]0,1[ and cA

A [0, e[/A {0}. Since V is isomorphic to Rm cA it suffices to apply (1).
(3) V=]al, bl[am, bm[]e,e’[W, where ai, b R, e,e’ ]0, 1[ and W c

A. In this case it follows from 2.1.2, 2.2.4 and the hypothesis (a).
(4) General case. Let 2= {U/a J} an open cover of V with each U,

satisfying (1). Observe that the intersections U,, n UI satisfy (2)or (3). Then,
from (4) and (5)we get the following commutative diagram:

where r. is the inclusion. According to (2) and (3) the maps r2 and 3 are
quasi-isomorphisms. By the Five Lemma the inclusion 1 is also a quasi-iso-
morphism. The proof finishes after applying the Lemma 2.3.4. m
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We arrive at the principal result of this section.

PROPOSITION 2.3.7.
phism

The inclusion RC(A) SC(A) is a quasi-isomor-

Proof We proceed by induction over the depth of A. If d(A)= 1 then
the unfolding of A is a trivial covering over each connected component of A.
So, the complex SC(A) (resp. RC(A)) is the complex of singular chains of
A (resp. differentiable singular chains), and the result holds (see [6]).

Suppose the proposition were proved for every B with d(B)< d(A).
Consider an open cover 2’= {U/a J} of A by distinguished neighbor-
hoods (see 1.2.2). Following (4) and (5)we have the commutative diagram of
the above lemma. Here, each open U, is isomorphic to some Rm cL. Since
for each open W c L we have: d(W) < d(L) < d(cL) < d(U) < d(A) we
can apply 2.3.5 and get that /2 is a quasi-isomorphism. The same argument
shows that the operator 3 is a quasi-isomorphism. The proof follows from
the Five Lemma and Lemma 2.3.4. m

3. Intersection cohomology

Goresky and MacPherson introduced the intersection cohomology from
the point of view of differential forms (deRham intersection cohomology) for
a Thom-Mather stratified space (see [3]). In [2] we showed how to calculate
this cohomology with the subcomplex of liftable forms. The allowability of an
intersection differential form o is reflected on the behavior of the germ of w
near . We introduce the notion of weak intersection differential form,
whose allowability is measured directly on the singular part by means of the
unfolding.

3.1. Weak intersection differential forms. From now on will denote the
dual perversity of / (see [4]), that is, (S)= codim S- 2-/5(S) for each
singular stratum S.

3.1.1. A differential form o in A is liftable if there exists a differen-
tial form 03 on , called the lifting of w, coinciding with -*0 on r-I(A ).
By density this form is unique.

If the forms o and r/are liftable then the forms o + r/, w/ r/and do are
also liftable, and we have the following relations:

and do d(o.

Hence, the family of liftable differential forms is a differential subcomplex of
the deRham complex of A.
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3.1.2. Cartan’s filtration. Let r: M B be a differential submersion
with M and B manifolds. For each k > 0 we denote F,f/t the subcomplex
of differential forms on M satisfying:

(6) If :o,..., so, are vector fields on M, tangents to the fibers of , then
io i,o io i, do 0. Here i denotes the interior product by :..
This is Cartan’s filtration of z (see [3]). We shall write [lol[, the smallest
integer j satisfying io io 0, where :o,..., soy are as in (6). Then,

Fk*M {0 /IIoIIB k and IIdoll k}.

Notice that if a FkII* and fl Fk, fl* then

(7) a 4- . Fmax(k.k,)’M and a A fl Fk+k,*M.

The allowability condition is written in terms of the Cartan’s filtration of
the fibration r" r-(S) - S (see 1.2.4).

3.1.3. A liftable differential form o is a -weak intersection differential
form (or weak intersection differential form) if for each singular stratum S, the
restriction of 05 to r-(S) belongs to Fr<s)gl*-ks). We shall write -*(A)
the complex of -weak intersection differential forms. It is a differential
subcomplex of the deRham complex of A, but it is not always an algebra. It
coincides with the complex fl*(A) of differential forms of A if E .

3.1.4. Remarks. (1) In spite of the fact that oT.-*(A) depends of the
unfolding chosen , the cohomology of the complex does not (see Theorem
4.1.5).

(2) Since the allowability condition is a local condition then, for each open
set U c A, the restriction

p d* (A) dU* ( U )

is a well defined differential operator.
(3)With the notations_ of [2], fly-(A) c *(A) K(A).
(4) For 0 the complex *(A) contains the Verona’s complex (see

[13]) and it can be seen as the limit of the Verona’s complex when Px goes
to 0.

(5) An isomorphism between two stratified spaces A and A’ induces an
isomorphism between H*((A)) and H*(o,(A’)).

3.2. Local calculations. We compute the cohomology of *(I A) and
S,*(cA) in terms of that of *(A). Since the proofs are similar to those of
[2] we only give a sketch.
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PROPOSITION 3.2.1. F/X I e, e[ an interval of R. The maps

pr: I (A-X) A L and J: A

defined respectively by pr(t, a) a and J(a) (to, a), for a fixed to I,
induce the quasi-isomorphisms

pr* ,W’c* ( A ) ,Z/* ( I A ) and J*: d*(I A) - d*(A).

....Proof (sketch). Consider pr: I x { - and f: I defined by
pr(t, 5) 5 and f()= (t0,). The two operators pr* and J* are well
defined because, for each stratum S of A, we have

[[pr*’- pr*’-"llts IIlls and []J*’ f* Ils -< I[ [[xs,

for any liftable form to f*(A X) and rt *(I X (A X)). In fact
these two operators are homotopic; a homotopy operator is given by Hrt
ftrt. This comes from the following facts:

H’ ft (on I X f),

IIHnllzs -< I1 IIzs,

dHrt Hart + ( 1)i-l(rt pr*J*rt)

where rt fi(I (A X))is a liftable form.

PROPOSITION 3.2.2. Suppose A is compact. Then

if < ( vertex of cA)
if > ( vertex of cA).

where the isomorphism is induced by the canonical projection pr:(A ,) x
]0, 1[ (A X).

Proof (sketch). The complex *(cA) is naturally isomorphic to the
subcomplex * of JU*(A ]- 1, 1[)made up of the forms rt satisfying

(1) rt 0 on (A X) {0} if (degree of rt) > (vertex of cA),
(2) dr/ 0 on (A X) {0} if (degree of rt) q(vertex of cA), and
(3) r*rt rt on (A X) (] 1, 1[-{0}) where tr: A 1, I[A

1, 1[ is given by tr(a, t) (a, -t).
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With the notations of the above proposition (for e 1 and to 0)we get

pr*(d/i(A)) c e for < (vertex of cA);

pr*(drdi(A) c3 d-l{0}) i for (vertex of cA);
J*-d’i= {0} for > (vertex of cA)

and H*(’*)= ’*. The same procedure used in 3.2.1 finishes the proof.

4. Intersection cohomology of stratified spaces

We prove in this section the two principal results of this work: the deRham
Theorem and Poincar6 Duality.

4.1. The deRham Theorem. In this section we show that we can use the
complex of weak intersection differential forms to compute the intersection
cohomology of A. The isomorphism is given by the integration of differential
forms over simplices. This integration is well defined because it is calculated
Oil. 2’{o

4.1.1. Integration over simplices. Let to be an element of d.*(A) and let
tr: A A be a liftable singular simplex with tr(i(A)) N O, where i(A)
denotes the interior of A. We define the integral of to over tr by

Ji(a)

Does this integral makes sense? Let

A z .,A

be a lifting of tr (see 2.2.3). We recall that the restriction of/x to i(), the
interior of z, is a diffeomorphism. Then, the map tr: i(A) (A- X) is
differentiable and we can write

Since 03 is a global differential form on {, we get

which is finite. We shall write fto 0 if tr(A) c X.
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4.1.2. Integration over chains. For each differential form to o,*(A)
and each chain c Ejm= lrj%. RCP,(A)we define

m

j=l

This makes sense because %.(i(A)) is included in A E (see 2.1.1), and we
can apply the above definition. So we get the integration operator

f" *(A) Hom(RCP**(A);R)

defined by (to (c L to)).
The following Stokes formula shows that this operator is a differential

operator.

PROPOSITION 4.1.3. For each differential form to J*(A) and each
singular chain c RC.(A) we have focto fc dto.

Proof. By linearity it suffices to show fo,to f do) for a liftable/-allowa-
ble singular simplex r" A A of dimension and a differential form
to o, I(A). Observe that lotto is well defined because each (i 1)-face
or: C --* A of r satisfies cr(i(C)) c A , or r(C) c (see 2.2.3).
We first prove (8) for a codimension one face r: C A of r with

r(i(C)) c E, for some singular stratum S. The relation i(C) c r-1(S) c
(dim A codim S + (S))-skeleton of A implies (S) < 0 and therefore
o3lr-l(s) 0. We get fdt*t 0 fcto, because rrt(i(()) tr(i(C)) c S.

In view of (8) we may write foto f* and f dto f dt*t. Accord-
ing to the usual Stokes formula we get foz,t f dt*, the proposition will
be proved if we show ft*a5 0 (see 2.2.2).
To see this, we consider a face F of iz of dimension 1 and we verify

that t*5 is 0 on F. We shall let C =/(F) and S a stratum of A with
tr(i(C)) c S (see 2.2.3(a))). We have the following commutative diagram:

i(F) 7r-

i(C) S.

Now we distinguish two cases:
Case 1. S A ,. The differential form to is defined on S and we may

write *5 *7r’to *r*to where or*to is defined on i(C). But dim C <
dim F 1 degree of to degree of or*to. Then or*to 0 on i(C) and
therefore 6"03 0 on i(F).
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Case 2. S X. The allowability condition of tr implies dim C _< dim F +
1 codim S + if(S). Hence,

dim F dim C > (S).
On the other hand, since Fs)l*-ks), we have t*o5 *Fgt(S)I’i(F) for the
submersion /x: i(F) i(C). These conditions imply that 6"5 vanishes on
i(f). m

4.1.4. Remark. In the same way we can show a converse for this proposi-
tion:

JU*(A) {to I*(A- X)/to liftable and f0w== fdo=
for each/-allowable liftable singular simplex of A}.

We arrive at the first result of this paper.

THEOREM (DERHAM THEOREM) 4.1.5. Consider a stratified space A, an
unfolding 7r: { A and two dual perversities (, ). The homology of the
complex of intersection chains SC{ (A) and the cohomology of weak intersec-
tion differential forms @*(A) are isomorphic to the intersection homology
IH(A).

The integration of the differential forms of dU*(A) over the liftable chains of
SC{(A) is well defined, and the maps

*(A) Hom(RC{(A);R) Hom(SC{(A);R),
where p is the restriction, are quasi-isomorphisms.

Proof Following [7] and {}2.3.7 it suffices to prove that the operator f"
JC/*(A) Hom(RC{(A);R) induces a quasi-isomorphism in cohomology.

Suppose that for each open cover = {U/a J} of A we have the
following commutative diagram made up of exact sequences"

(9)
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where the vertical arrows are the restrictions and the horizontal arrows are
the integrations. Using the procedure followed in Proposition 2.3.7 and using
Propositions 2.2.4, 2.2.5, 3.2.1 and 3.2.2 it is easy to prove the Theorem (for
d(A) 1 we get the usual deRham Theorem for manifolds).

So, we must prove that the rows of (9) are exact. Applying the functor Hom
to (5) we get that the bottom row of (9) is exact. In order to show that the top
row is exact we need (following [1, page 94]) to find a partition of unity
{f/a J} subordinated to the cover ’ satisfying f,to J*(U0) for each
to *(U,o). Since the covers by distinguished neighborhoods are cofinal in
the set of all open covers of A (see 1.2.2), it suffices to show:

There exists a continuous map f: RmX cA [0, 1] and two numbers r, s
]0, 1[ with
(a) f 1 on ]- r, r[m x crZ
(b) f 0 on the complement of] s, s[ csA, and
(c) fto o,*(Rm cA) for each to -.-*(Rm cA).
To see this, fix two numbers r, s ]0, 1[ and two smooth maps fl: R -- [0, 1]

and f2:] 1,1[ [0, 1] with fi 1 on [-r, r] and fi 0off] s,s[,i 1,2.
The map f: R cA [0, 1] defined by

f(Xl,...,Xm,[a,t]) =f(xl)... fi(Xm)f2(t )

is continuous and has a smooth lifting f: Rm z 1, 1[ [0, 1], given
by

3( xl,..., x,, , ’t) f(Xl) fl(Xm)f2(lt[)

By construction we have a) and b). Let to be an element of *(Rm cA), it
remains to show that fto belongs to r*(Rm cA). Let S be a singular
stratum of R cA and P the .unfolding of Rm cA given in 1.2.2; the
fiber of P" P-I(S) S over (x,[y, t]) S is

{x} {o}
{x} x 7r-l(y) x {-t, t}

if S Rm {vertex}
if S R S’ ]0, 1[, S’ stratum of A.

In any case the function f is constant on the fibers of P" P-I(s) S. The
map f belongs to Foible-ks and therefore f lies on Fo(s)12p-s (see (7)).
This shows (c). I

4.2. Poincar6 duality. The intersection homology was introduced with the
purpose of extending the Poincar6 Duality to singular manifolds (see [4]).
The pairing is given there by the intersection of cycles. In the deRham theory
of manifolds the Duality derives from the integration of the wedge product of
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differential forms of arbitrary and compact support. In fact, this point of view
is still available in the intersection homology context. This is shown in this
section (see also [3]).
We consider in the following a stratified space A, an unfolding r" A

and two dual perversities and . We shall suppose also that A is
orientable, that is, the manifold A E is an orientable manifold. This is used
to integrate differential forms on A E. In the following we will use the
facts: (1) M A is orientable, if M is an orientable manifold M, and (2) cA
is orientable, where A is compact. Each link L (see 1.2.1) is orientable.

4.2.1. For each differential form to on A E we define the support of to,
written supp(to), as the closure on A of the set {x A i,/to(x) 0}. This
notion coincides with the usual one if E .
We define J,*p(A) as the subcomplex of Jp*(A) made up of the

differential forms with compact support. The relation supp(dto) c supp(to)
shows that this subcomplex is a differential complex. If A is compact then
J,*p(A) coincides with Jp*(A). For E t we have that JC/,*(A) is just the
complex of differential forms of A with compact support.

For each open set U c A there is a natural inclusion Jc,*p(U) JV,*p(A),
extending a form on U- E by zero to a form on A E. The same method
used in [1, page 139] applies here to show that, for an open cover " {U/a

J}, the Mayer-Vietoris sequence"

is exact (see proof of 4.1.5).
The following lemma will be needed in the definition of the Poincar6

pairing.

LEMMA 4.2.2.
support. Then

Let oo be a liftable differential form on A , with compact

(a) fA < +oo and (b) fA dw=0.-, -,

Proof Let the number of connected components of A- "ff’-l(E). By
definition of we get

o9 =l-lfA 7r*o)---l-irA =l-l f2., -zc- l() -r-()

(a) It suffices to prove fA(o < oo. Since the map zr is a prope,r map (this is
shown using the local description (1) of r and the fact that L is compact)
then the support of 03 is compact (supp(o3) zr- l(supp(0))).
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(b) Since has not a boundary, we obtain fi dt 0.

o,,.n-*(A)4.2.3. The above lemma shows that the pairing f JU*(A) (R) c,p
-, R given by

(to, V) fA to A V-,
is well defined and induces a pairing in cohomology

f" H*(,(A)) (R) Hn-*(c,p(A)) R,

called Poincard pairing. We are going to show that it is nondegenerate; or
equivalently, the map

f. - Hom(dn-*c,, (A) ;R)
given by

is a quasi-isomorphism. First, we do the local calculations characteristic to
the intersection homology, those of I A and cA.

LEMMA 4.2.4. Let I ]u, v[ be an open interval of R and let e e( ) dt be
compactly supported 1-form on I with total integral 1. We let prl: I (A ,)

I and pr2: I (A i,) --, (A ,) be the canonical projections. Then the
following operators (see [1, page 38]) are well defined:

(a) e." JUc,*(A) - JUc,*+ 1(i A) given by e. (to) prte /x prow,
(b) : (I x A) c, A) given by w ffw and
(c) K: (I X A) c, I x A) given by Kw Hw H(pre)

pr(w), where Hw fw (see 3.2.2).
And they satis the relation

(d) 1 e. (-1)i-(dK- Kd) on (I A).

Proof (a) Since pre JUd(I A), we have e.(to) JUp*+l(I A)
(see 3.2.1). Its support is compact because

supp( e, (to) ) c supp(e) supp(to).

(b) The same technique used in 3.2.2 shows that to JVp*-I(A). For the
support we get

supp(to) c pr2(supp(to)).
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(c) The above remarks and 3.2.2 prove that Kto Jp*-x(I A). Let
I’ C c I A be a compact containing supp(to) and satisfying supp(e) c I’.
A straightforward calculation shows that supp(Kto) c I’ C.

(d) It is proved in [1, page 38]. m

Since e, is the identity on J/*,p(A) we get from the above lemma:

PROPOSITION 4.2.5. The operator e. induces an isomorphism H*(JU,(A))
H*+I(Jv,p(I A)).

For the cone cA, with the notations of 4.2.4 and (u, v) (0, 1)we obtain
the following:

PROPOSITION 4.2.6.
isomorphism

If A is compact then the operator e. induces an

Hi( jUp* ( A ) )=- o
if > ( vertex of cA) + 2

if < ( vertex of cA) + 1

Proof. First of all, we calculate the cohomology of the quotient complex
J/*(cA)/oc*,p(cA). This complex is isomorphic by restriction to

Jp*(A x ]0, 1[)/.’*,
where

.W* {w Jp*(A ]0, l[)/supp(to) cA ]O,e[ for some e < 1};
the inverse is given by (class of to) (class of (fpre). to).
We claim that .* is acyclic. In fact, for each cycle to of .’* we have

the formula

with f to JUp*(A ]0,1[).

Since supp(fto) c A ]0, e[, we get the claim. Consider the diagram

,,, ( cA )/ c. .( cA o

where 7" is the projection and ’/’2 is defined by (r/ (class of (fpre).
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pr7)). The above calculations and Proposition 3.2.1 show that 7-2 is a
quasi-isomorphism.
Under this quasi-isomorphism the connecting homomorphism of the asso-

ciated long sequence becomes

" H*(JUp(A)) H*+a(JU,p(cA)),

defined by 6[n] [e. (n)]; and 7" becomes J*, where J: A --, (A E)
]0, 1[ is defined by J(a) (a, 1/2). Now the result follows from Proposition

3.2.2. m

We have arrived to the Poincar6 Duality.

THEOREM (PoINCARI DUALITY) 4.2.7. Let A be an orientable stratified
space and let (,) be two dual perversities. The Poincar pairing f:
H*((A)) (R) H*(oc,(A)) --, R is nondegenerate.

Proof. It suffices to show
Hom(H*(c,(A)); R), defined by

that the map f: H*((A))

is an isomorphism (see [1, page 44]). To see this we follow the same
procedure as in 2.3.7, taking into account the following facts:

If the depth of A is 1 the Theorem is the usual Poincar6 Duality for
orientable manifolds.
The diagram

o*(R X cL)
Prl

Hom(_n (R X cL); R)

e*
Uom(--i- (cL); R)

is commutative (see below) and the operators pr and e* are quasi-isomor-
phisms (see {}3.2.1) and {}4.2.5). Here

e*(F)(q) F(pre A prq),

with

prl: Ri ( L (L)) ]0, 1[ ---> R



HOMOLOGICAL PROPERTIES OF STRATIFIED SPACES 69

and

pr2:RiX (L Y,(L)) x]0,1[ --> (L E(L)) x]0,1[

the canonical projections, and e f(xl) f(xi) dx1 / /k dAc is a com-
pactly supported 1-form on R with total integral 1.
The commutativity of the diagram comes from the identity

f primo A pr A prte f o A rl
(L-X(L)) ]0,1[ a(L_,(L)) 10,1[

for each o S*(cL) and r/ ,cnfi-*(cL).
HY(*(cL)) Hn-i-Y(oc*,p(cL)) 0 for j > (vertex of cL) + 1 (see

Propositions 3.2.2 and 4.2.6).
The diagram

Hi(dg*(cL)) f Hom(Hn-i-(dc*,(cL)); R)

H(*(L)) Uom(Hn- -i-(*(L)); R)

is commutative (see below) and the operators pr and e* are quasi-isomor-
phisms (see Propositions 3.2.2 and 4.2.6) for j < (vertex of cL). Here

e*(F)(7) F(pr’e A Pr7),

with

Prl: (L E(L)) ]0, 1[ -]0, 1[

and

pr2: (L Y(L)) ]0, 1[ L (L)

the canonical projections, and e is a compactly supported /-form on ]0, 1[
with total integral 1.
The commutativity of the diagram comes from the identity

]0, 1[
primo A prrl A pre fL oo A

-,(L)

which holds for each o 3V(L) and r/ ,n-i-l-J(L).
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