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MINIMAL MODELS FOR NON-FREE CIRCLE ACTIONS

AGUSTI ROIG AND MARTINTXO SARALEGI-ARANGUREN

ABSTRACT. Let®: §' x M — M be a smooth action of the unit circle §' on a manifold M. In this work,
we compute the minimal model of M in terms of the orbit space B and the fixed point set F C B, asa
dg-module over the Sullivan’s minimal model of B.

The question we treat in this work is the following: Given a smooth action ®: S' x
M — M, is it possible to construct a model of M using just basic data? The answer
is well known when the fixed point set is empty (in particular, when the action is free).
A dgc algebra model of M is given by a Hirsch extension of the dge algebra Sullivan
minimal model A(B) of the orbit space B

) A(B) ® A(x),

where the degree of x is T and dx defines the Euler form of the action (for example, see
[8]). This formula does not apply when the fixed point set F is not empty. Roughly
speaking this happens because the Enler form does not live on B.

Our answer to the above question is a minimal model of the deRham dgc algebra
Q (M) of M, which is a dg module over the Sullivan minimal model A(B) of B.
Such structure is associated to M by means of the canonical projection r: M — B.
We prove that the minimal model of M, as an A(B)-dg module, is the graded cone

@ M(M) = A(B) @« M(B, F),

where M (B, F)isasort of relative minimal model of the pair (B, F)ande’: M(B, F)
— A(B) is a degree 2 map. This map is determined by the Euler class of the action
and it will be described below. We also prove that, for F = @, the formulas (1) and
{2) coincide,

There are some algebraic invariants of M and F that are closely related: Poincaré
characteristic, localization, rational homotopy, ... We add another item to this list:
the minimal model of M and F. In fact, considering the A(B)-dg module structure
associated to F by means of the natural inclusion ¢: F <« B, we prove that the
minimal model of F as an A{B)-dg module is the graded cone

M(F}y = A(B) & M(B, F},

where i’: M(B, F} — A(B) is a degree 0 map. This map is determined by ¢ and
will be described below. Observe that the minimal models M(M) and M(F), as
A(B)-graded modules, have the same basis except for a shift by 2.
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We are also interested in the Borel space Mg = M xg 8%, where an A(B)-dg
module structure is defined by means of the canonical projection p: Mg — B. We
prove that the minimal model of Mg is the graded cone

M(Mg) = [A(B) ® Ale}] &y [M(B, F) ® Ale)],

where dege = 2,de = Dand g’ (b ® €") = €' (b)) ® €" + i'(b) ® "1, This formula
implies that the equivariant cohomology H., (M) (i.e., the cohomology of Mg1) can
be computed using just basic data by means of the long exact sequence

- = [H(B)® Ae)] — Hg(M)
> HB, A DB HB A - .

Moreover, when the Euler class vanishes, we prove that the equivariant cohomology
of M is just H(B) @ [H (FY® A”(e)] . We also translate some classic results (Lo-
calization Theorem, equivariant formality, . ..) in terms of basic data. In connection
with the minimal models of M, Mg and F the reader can consult [1] and [2].

Let us illustrate these results with the suspension of the Hopf action on S°, The
north and south poles of the total space §* are the fixed points of the action and the
orbit space is S°. We work in the category of A(a)-dg modules, where dega = 3.
From the above formul we get

MESH =A@ @ Rfi,c,/necN} with
degc-‘l = 2[&%—‘%]1
deo =a,dcy =0,dcpn = a - ¢,
MEY = Ala) ® R{l,y,/n e N}, with
deg Vn = 2[!1%]!
dw=0,dn=a.dy,y2=a- v,
M(S' @4 %) = Ale,a) ® R{l,c, /neN}, with
n+3
degc, = 2[5,

deg = a,dey =e a,dcpyz = a - ¢,.

The minimal model M (S*) (resp. M(SY), resp. M(S* @41 §°)) is a free A (a)-graded
module over the cohomology H (Yy) of the homotopy fiber ¥, of 7 (resp. ,, resp.
Y,). So, we find the following relations between the Poincaré polynomials of these
spaces:

Py, =1—-1+Py = (1 —1)Py,.

We prove that these relations are generic if B is simply connected and of finite type.



786 AGUST{ ROIG AND MARTINTXO SARALEGI-ARANGUREN

The main geometric tool used in this work are Verona’s controlled forms (24]. In
fact, when the set of fixed points F is not empty the orbit space B is not a regular
manifold but a singular one, more precisely a stratified pseudomanifold. For such
a space Z, Verona proved that the complex of controlled forms Q (Z) compute the
cohomology of Z. We prove more, namely that the minimal models A(Z) and M(Z)
can be computed using controlled forms. Itis important to notice that the Euler form is
not a controlled form, nevertheless it appears in this context as a morphism of A(B)-dg
modules e: (B, F) ~ Q:“(B) (cf. [12]). In the writing of M(M) (resp. M(F))
the operator ¢’ (resp. i") is a model of e (resp. of the inclusioni: Q (B, F) — Q' (B)).

The starting point of the work is the observation that the cohomology of M can be
computed by the graded cone Q (B)®, Q (B, F). This formula also applies to semi-
free actions of S° [23). So, all the results of this work extend to this kind of actions.
A similar formula appears when one deals with an isometric action ®: R x M — M,
considering on B controlled basic forms instead of controlled forms [23]. Again, we
conclude that the results of this work apply to isometric flows. In particular, we get
the inequality

r+l

H™ (M, F)/P)+ dimH ™ (F) <Y dimH™ ),
i=0 i=0

when the fiow is not trivial.

On the algebraic side, we develop ta some extent the Theory of dg minimal mod-
ules, This kind of minimal objects was previously studied by the first author (cf. [18],
[19], [20]) and independently by Kriz and May (cf. [13]).

The organization of the work is as follows. The first section is devoted to the
algebraic tools we need to work with A-dg modules. In the second section we present
the singular spaces we find when we deal with circle actions. Controlled forms are
introduced in the third section. The main result of this paper is proved in the fourth
and last section. Four technical lemmas are proved in the appendix.

A manifold is considered to be connected, without boundary and smooth (of
class C™), unless otherwise is stated. The field of coefficients is R.

We thanks Yves Felix, Steve Halperin, Pascal Lambrechts, Vicente Navarro Aznar
and Daniel Tanré for their useful comments. The authors thank the referee for their
useful indications.

Convention. Throughout this paper, minimal models in the category of dgc alge-
bras will be denoted by A(~). Minimal models in the category of dg moduies will
be denoted by M(—).

1. Dg-module minimal models

In this section we will develop the algebraic machinery necessary to prove Theo-
rem 4.3: we define what is meant by a minimal factorization of a morphism of A-dg
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modules, prove its existence and uniqueness and a result concerning maps induced
between them.

1.1. A-dg modules. Let A be a dgc algebra, An A-dg module M is a graded
vector space together with a product A ® M — M and a differential d: M — M
of degree +1 which satisfies Leibniz rule. Both graduations of A and M are over
the non-negative integers. A quasi-isomorphism (quis) is an A-dg module morphism
which induces an isomorphism in cohomology.

Let us begin with an immediate generalization of the cone of a morphism of
complexes in the category of A-dg modules. Let ¥: M — N be a morphism of A-dg
modules of degree p € Z. This is the same as a degree O morphism of A-dg modules,

®: M[—p] > N,

where M[—p] means the A-dg module M shifted by —p; it is graded by M[—p]" =
M"~P and the product ppy—p: A ® M[—p] — M([—p]and the differential dys(_p:
M[—p] — M[—p] change signs according to

mnm-pl@a®@m) = (=1)FPpya@m)
Aui—pi(m) = (=1)Pdy(m).

We shall denote by N @ M the A-dg module graded by
N&pM=N& M[l - p)

and with product and differential given by

N _ a-y
a- (x) = ((_l)mnp-ua -x)
d 4 yy _{dy+¥x
0 (=) \x) T (=) dx )’

where a - x denotes up(a @ x). Finally, when we say that the sequence of A-dg
module morphisms

0—-M-S5NL P50

is exact, we simply mean that 0 — M" ANy Vo Y, P? — 0 are usual exact

sequences of A%-modules for all n.

1.1.1 Remark. A short exact sequence of A-dg modules as above is the same as
the quis of A-dg modules

NopMm L3 p.
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LEMMA 1.1.2. Given a morphism ¢: M — N of A-dg modules of degree p, we
have a short exact sequence of A-dg modules

|
0—>N@>N@¢M“’—"1M[1—p]—>o.

Proof. QObvious. [

Associated to the above exact sequence, there is the long exact cohomology exact
sequence of ¢:
] ) ©,1) | #ti-p @, o
> HWN)-S H(N@eM)— H "(M)y—>H (N)—>---.
To end this elementary differential homological algebra, let us point out that a (de-

gree p) homotopy between two A-dg module morphisms ¢, ¥v: M — N of degree
p, is an A-dg module morphism #: M — N of degree p — 1, such that

(~1YPdh + hd = ¢ — 9.

One can verify that this notion of homotopy coincides with the one defined in [20]
using a path object.

1.2. Minimal A-dg modules. (cf.[10], [15], [18]). Let M be a A-dg module and
n a non negative integer. A degree n Hirsch extension of M is an inclusion of A-dg
modules M — M & (A ® V") in which:

1. V is a homogeneous vector space of degree #.

2. A® V' is the free A-graded module over V.

3. The differential of M @ (A ® V") is induced by the differentials of M and A
and the choice of a linear map d: V' — M "

A morphism of A-dg modules M & (A ® V') — N is given by a morphism
of A-dg modules ¥: M — N and a linear map f: V' —> N’ subjected to the
condition Pod = do f.

A minimal KS-extension of M is an inclusion of A-dg modules : M -— N
together with an exhaustive filiration (N (n, )} n.q)cr Of N, indexed by I = {(n, q) €
N x N} with lexicographical order, such that:

1. N(©,0) =M.
2. For g > 0, N(n, g) is a degree n Hirsch extension of N(n,q — 1).
3. Nn+ 1,00 = lim? N(n,q).

1.2.1 Remark. N is therefore of the form M & (A @ V), where V is a bigraded
vector space. This kind of object plays the r6ie of the KS-extensions of [10], denoted
by B® AV, with the tensor product replaced by the direct sum and the free dg-algebra
over V replaced by the free A -dg module over V.
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A minimal KS-factorization of an A-dg module morphism ¢: M — N is a
commutative diagram of A-dg module morphisms

M
¢ @
3) / \
0

MOA®Y)

N

in which p is a quis and ¢ is a minimal KS-extension. If M is the zero A-dg module,
we speak of minimal KS-modules and minimal KS-models.

1.3. Models of A-dg modules. Let now (3) be any commutative diagram of A-
dg module morphisms. In this situation, we will say that p is an M-morphism. If
p is also a quis, we will simply say that it is an M-quis. A homotopy between two
M -morphisms which restricted to M is the identity will be called also a M-homotopy.

Alternatively, we could have said that p is a morphism of M\DGM(A), the cate-
gory of A-dg modules under M. So, aminimal KS-factorization is, simply, 2 minimal
model in M\DGM(A) (see [20] for the precise statement of this).

THEOREM 1.3.1. %.et Abeadgcalgebraandlet®. M —> N be an A-dg module
morphism such that ¢ H D(M y— H IJ(N ) is a monomorphism. Then there exists
a minimal KS-factorization of €.

Proof. See Appendix. 0O

COROLLARY 1.3.2, Let A be a dgc algebra and let N be an A-dg module, Then
there exists a minimal KS-model of N.

THEOREM 1.3.3 (cf. [11], {18]). Let A be a dgc algebra and
M
VAN
4
M®&AQY)

a commutative diagram of A-dg module morphisms in which ¢ is a minimal KS-
extension and € is a quis. Then there exists an A-dg module morphismo: M B(A®
V) — X suchthat ot = ¥ and Yo = 1id.

X

Proof. See Appendix. O

In other words, every M-quis whose target is a minimal KS-extension of M has a
section which is also an M-morphism. This implies the uniqueness up to isomorphism
of minimal models well known in other categories.
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COROLLARY 1.3.4. Two minimal KS-factorizations of the same M-morphism are
M -isomorphic and the isomorphism is unique up to M -homotopies.

Proof. Itfollows easily from Theorem 1.3.3, taking into account that the category
M\DGM(A) is a closed model category in which all objects are fibrant (cf. [17], [20,
Corollary 2 to Proposition 1.15]). 0O

Particularly, if we take M = 0, the zero A-dg module, we obtain:

COROLLARY 1.3.5. Two minimal KS-models of the same A-dg module are iso-
morphic and the isomorphism is unique up to homotopies.

Given a morphism ¥: M — N of A-dg modules we will need to construct a model
of N @¢ M. This will be done by means of the following results:

COROLLARY 1.3.6. Let ¥: M —> N be a morphism of A-dg modules and let
om: M —> M and py: N' — N be two minimal models, Then there exists a
morphism 9': M’ —> N’, unique up to homotopies, that renders commutative up to
homotopy the diagram

Pu
M —M
@' 4
PN
N' N

We will loosely say that 9’ is a model of ¥.

Proof. It follows from Theorem 1.3.3 and the model category structure [19,
Proposition 1.16]. O

PROPOSITION 1.3.7. Consider the above diagram. Let h: M’ — N be a homo-
topy between Popp and pyo¥?’. Then

&= (p(’}" ;L): N' @p M — tN & M
is a quis.
Proof. Let us verify that @ commutes with differentials.
d ¢ Y on R\ [d ¢
(0 (—n”"d) (0 pM) B (0 pm) (0 <—1)"“‘d)
doy — py  dh+ (=1 hd — (on?" — Ppy)

0 (=1 "doy — (1) pud’



MINIMAL MODELS FOR NON-FREE CIRCLE ACTIONS 791

And this is zero because py and py commute with differentials and # is a degree p
homotopy between $opy and pyo?’'. Next, we put & in the following obviously
commutative diagram with exact rows:

0 N —+ N@oM — M[I1l-p] —- 0
ON 5 ]PM
0 N — N’ @(p' M — M"[l—p] —-

And therefore & is a quis by the long exact sequence of ¥ and ¥’ and the Five
Lemma. [

Finally, we will need the following result concerning minimal dg modules and
graded cones.

LEMMA 1.3.8. Let : M — A be a degree p morphism of A-dg modules, with
M a minimal A-dg module. If M <9~ = 0 then A®¢ M is a minimal A-dg module.

Proof. LetM = A@ V. Then, as a graded module, AGM = AR (R V).
So we can define an exhaustive filtration in A @ M as follows. Let W(n, g) be the
R-vector spaces

0 ifn=q=0
R ifn=0andg =1
Win,q) = Vin+1—p,g—1) ifn=0andg > 1
Vin+1-p,q) ifn#0

and put

(ABp M)(n,q) = AQ® ( B wim, r)) .
{m.rys(n.g)
Then, all the inclusions (A @¢ M)(n, g — 1) — (A®p M)(n, q) are degree n Hirsch
extensions. [

1.3.9. Links with topology. Before studying the relative case, let us show one
example where these minimal dg-modules appear in topology. Let p: £ — B be
a continuous map between two topological spaces. We have the induced morphism
p*: Ar{(B) — AR(E) between the real algebras of polynomial forms making Ag (E)
an Ap(B)-dg module. Now, assume that B is connected, of finite type, with 7;(B)
acting trivially on H'(Y,) = H' (¥,, R), where Y, denotes the homotopy fiber of p.
Then, by the second Theorem of Eilenberg-Moore (see [9] and [3]), we have

H(Y,) = Tor ap(a) (R, AR(E)).
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By [20], this differential torsion product can be computed with a minimal model of
ARr(E) as an ARr(B)-dg module. Let M(E) = Ar(B) ®r V be this minimal model.
Then

H (Y,) = H (R ®anty M(E)) = H (R Qups) (AR(B)® V)) =V

because R ® 4p(5) (AR(B) ® V) = V has zero differential due to minimality. So, the
known Hirsch-Brown model of E,

M(E) = Ar(B) ® H (Y,),

is a minimal model as Ag(B)-dg modules. In particular, if we take B to be a point,
we find that H' (E) is the minimal model of Ag(E) as a R-dg module.

Extensive use of the minimal Hirsch-Brown model for the Borel construction is
made in [2].

1.4. Models of couples, existence and uniqueness. In fact, we will need some-
thing more than simply dg-minimal models over a fixed R-dg algebra. The process
we are going to perform is the following: starting with an A-dg module M, we are
going to compute first the dgc algebra minimal model of A:

oi A —=> A

(i.e., the classical Sullivan minimal model). Then, by means of the dgc algebra quis
p, we will make M an A’-dg module by defining the product with elements of A’ by

a-m=p*@)-m,

where the product in the right-hand side is the product of M as an A-module. Let us
note p* (M) for the dg module M with this structure of A’-module. Finally, we will
compute the minimal model of p*(M) as an A’-dg-module:

@ M s p*(M).

In other words, we will compute the minimal model of the couple (A, M) in the
category DGM of modules over all algebras. The objects of this category are couples
like (A, M). Morphisms are also couples

(f, @) (A, M) = (B, N)

where f: A — B is a morphism of dge algebrasand ¢: M — N isa dg-module
f-morphism; that is to say, a morphism of A-dg modules M — f*(N). In other
words,

pla-m)= f(a)-¢(m) forallue A, me M.
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The algorithm we have described brings us the “true” minimal model
(p,0): (A, M) - (A, M)

in the sense that the couple (A’, M") is unique up to isomorphism (of DGM) and the
couple of quis (o, ) is also unique up to homotopies (of DGM): this follows from
[20, Theorem 3.4], which tells us that the couple (A, M) is minimal in DGM if and
only if A is a minimal R-dgc algebra and M is an A-dg minimal module.

2. Stratifications and unfoldings

In this work we fix an effective smooth action ®; §' x M — M (non-trivial!). The
orbit space of the action is B and #: M —» B is the canonical projection. The action
@ induces on M a natural stratification by classifying the points of M according to
their 1sotropy subgroups. This stratification is invariant by the action of S', so the
orbit space B also inherits a stratified structure. In this section we specify these facts.

2.1. Stratifications. A stratification of a paracompact topological space Z is a
locally finite collection Sz of disjoint connected manifolds called strata, such that:

() Z = ses, S-
(i) SN # 0 <= 5 C § (and we write § < ).
(iii) (Sz, <) is a partially ordered set (pose?).
{iv) There exists an open stratum R which is the maximum.

We shall say that Z is a stratified space. Note that R, called regular stratum, is
necessarily dense. A singular stratum is an element of Sz different from R. We
shall write &3 for the family of singular strata and £z C Z for its union. The
length of Z, written len Z, is the biggest integer » for which there exists a chain
S < 8 < -+ < §, of strata. In particular, len Z = 0 if and only if Z is a manifold
endowed with the stratification Sz = {connected components of Z}, Notice that the
length is always finite.

A continuous map (resp. homeomorphism) f: ¥ — Z between two stratified
spaces is a morphism (resp. isomorphism) if it sends the strata of Y to the strata of Z
smoothly (resp. diffeomorphically). We shall write Iso(Z) for the group of isomor-
phisms between Z and itself. A morphism f: Y — Z induces a poset morphism
fs: Sy — Sz by putting fs(S) D f(5). We shall say that f i3 a strict morphism if
the map fs is strictly increasing.

2.1.1. Examples. Through this work we shall find the following kinds of strati-
fication.

(a) Onaconnected manifold ¥ we always may consider the 0-length stratification
Sy = {N}. A stratum § C Z inherits from &z such a stratification.
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(b} Any open subset W of Z inherits naturally from &z a stratified structure
satisfying len W < len Z. The stratification is Sy = {connected components
of SNW / § € §;}. Notice that the inclusion W < Z is a strict morphism.

(c) Suppose Z compact. On the product N x ¢Z, where ¢Z is the cone Z x
[0, 1I/ Z x {0}, we have the stratification Syxcz = {N x Sx J0,1[ / S €
Sz} U{N x {vertex ¢ of ¢Z}}. Notice thatlen N x ¢Z = len Z 4 1. A point
of ¢Z will be denoted by [[x, ¢]] with (x,?) € Z x [0, 1], The vertex ¢ of cZ
is [fx, OR.

Unless otherwise stated, we assume that the spaces W, ¢Z and N x ¢ Z are endowed
with the stratification described above. Later on, we shall show how & determines a
natural stratification on M and B,

2.2. Stratified pseudomanifolds. When the strata are assembled conically we
find stratified psendomanifolds. We introduce this notion. An open subset W of a
stratified space Z is said to be modeled on the stratified space L if there exists an
isomorphism ®: R" x cL — W . The pair (W, ¥) is said to be a chart of Z. A family
of charts {(W, ¥)}, where the family {W} is a covering of Z, is called an arlas.

We shall say that the stratified space Z is a stratified pseudomanifold if there exists
a family {Ls) ¢, st of stratified pseudomanifolds such that for any point x € Xz we
can find a chart (W, ¥) modelled on Lg with #(0, ) = x, where § is the stratum of
Z containing x. The space Ly is the link of the stratum S.

This definition makes sense because it is made by induction on the length of Z
(len Ls < len Z). A stratified space with len Z = 0 is always a stratified pseudo-
manifold. Each of the examples given in 2.1.1 is a stratified pseudomanifold when
Z is a stratified pseudomanifold. This definition is slightly more general than that of
stratified pseudomanifold of [9] since we allow the singular strata to have codimen-
sion 1.

2.3. Unfoldings. The computation of the cohomology of a stratified pseudoman-
ifold Z using differential forms is possible using the controlled forms of Verona [24];
but we need some extra data on Z so that these controlled forms will make sense.
The original definition uses a system of neighborhoods of singular strata subjected to
some compatibility conditions. A more comprehensive and less technical alternative
is presented in {21] where a desingularisation of Z is used. With this blow-up, the
controlled forms of M and B are more easily related.In this work we follow this point
of view., _

Consider Z a stratified pseudomanifold. A continuous map £: Z — Z, where
Zisa (not necessarily connected) manifold, is an unfolding if the two following
conditions hold:

1. The restriction Ly E;,'(R) — R is a local diffeomorphism.
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2. There exist a family of unfoldings {L,,: E‘;‘ ~ L} ome and an atlas A of Z
Z
such that for each chart (U, ?) € A there exists a commutative diagram

~r

L ‘P
R* x Lyx]-1,1[ —  L;'(U)

Q Lz

R” x ¢Lg > U

where
(a) ¥ is a diffeomorphism and
(b) Q(xl’ e sxﬂa?| t) = (xh ey Xy [[ﬁbs(?)a |t|:ﬂ)'

This definition makes sense because it is made by induction on the length of
Z. When len Z = 0 then £z is just a local diffeomorphism. The restriction
Lz: L 1(8) > S is a fibration with Ly as a fiber, for any singular stratum S.

For each of the examples of 2.1.1 we have the following unfoldings:

(a) N N and Ly = identity.
{b) W= ﬁz (W) and £y = restriction of .£z.

©) N xcZ=N x Zx]1—1,1[and Lyxez(3, 5, 1) = (0, [Lz ), 1]

A morphism f: ¥ — Z between two stratified spaces, endowed with unfoldings
Ly: Y — Y and £3: Z — Z, is a liftable morphism if there exists a smooth map
f ¥ —» Z with Lzo f = Lzof. Each ¢ is a liftable morphism. The inclusion
W < Z is a liftable morphism.

From now on Z denotes a stratified pseudomanifold endowed with an unfolding
£z 2 — 2.

2.4, Stratifications induced by the action. 'We present the structure of stratified
pseudomanifold of M and of the orbit space B. For technical reasons we need to
consider only in this paragraph asmooth action ®: G x M — M of a closed subgroup
of the unit circle §' on a manifold M. The properties listed below follow mainly from
the Slice Theorem (see [12]).

o Stratification. Consider the equivalence relation ~ defined on M by x ~ y if G,
is equal to G, where G, = {g € G / ®(g, z) = z} denotes the isotropy subgroup of
a point z € M. Each of the equivalence classes of ~ is an invariant sub-manifold of
M. The family Sy of the connected components of the equivalence classes given by
this relation defines a stratification on M. The family Sg = {7(S) / § € Sy} defines
a stratification on the orbit space B. When G is connected the map ng is bijective
and therefore 7 is a strict morphism.
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We shall write G ¢ for the isotropy subgroup of a point (and therefore any point) of
a stratum S. Notice that G is a closed subgroup of G. According to this subgroup
there are three types of strata: regular stratum (Gg is 1), exceptional stratum (G is
finite different from 1) and fixed stratum (G is S"). Notice that the restriction of the
canonical projection »: M — B to § is a principal fibration over n(S) with fiber
G/Ggs. We shall write F for the union of fixed strata. We shall identify F < M with
a(FYC Bbynm.

e Links. For any singular stratum § ¢ M fix a point x on it and let §*¢ be the unit
sphere of a slice transversal to the stratum § at x. The action & induces the orthogonal
action ®g: Gs x §% —» §"s; this action has no fixed points (almost free action).
Notice that ng is necessarily even for a fixed stratum, The link of § is the sphere
S*s endowed with the stratification induced by ®s. The link of 7 (S) is the quotient
space 8" /Gg. Notice that this link is homologically a sphere or a real projective
space when § is an exceptional stratum [4] and a complex projective space when S
is a fixed stratum [16].

o Unfoldings. It is proven in [12] that M possesses an eguivaﬂant unfolding
L MM (relative to a free smooth action ®: G x M — M) in such a way that
the induced map £z: M/G — B is an unfolding of B. Moreover, if 7: M- M/G
is the canonical projection, we have L£go7 = mol,s. So, the morphism  is liftable.

3. Controlled forms

Controlled forms were introduced by Verona to compute the cohomology of a
stratified pseudomanifold Z using differential forms [24]. We present this notion in
this paragraph, following the approach of [21].

3.1. Definitions. A differential form « on the regular stratum R of Z is said to
be liftable if there exists a differential form @ on Z, called the lifting of w, such that
@ = Lhwon L',El (R). By density the lifting is unique. The differential form @ can
be tangential or transversal to the strata; in the first case we get controlled forms and
in the second case we get perverse forms.

A liftable form @ is a controlled form if it induces a differential form ws on each
singular stratum S, that is, if & ‘ i = L7wg. So, we can see w as the family of
differential forms {ws € 2(8))ses;-

We shall write Q (Z) the complex of controlled forms (or the deRham-Verona
complex). This subcomplex of the deRham complex 2 (R) is in fact a dgc algebra.
To see that, notice that if the differential forms w and n are controlled, then the

differential forms w + 1, @ A n and dw are also controlled since, for cach stratum S,
they satisfy:

@+n |a;'(sy = o ‘c;‘(S} T |£;‘(S)
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= ws+ns,@nn |£Ei(s) = E"‘;|C;](S) Aalﬁgl(s) = ws A s,
and

For a stratum S, we have the restriction operator Rg: Qu (Z) — $2(8), defined
by Rs(w) = ws, which is a dgc algebra operator and therefore endows Q(8) with a
structure of 2 (Z)-dg module.

PROPOSITION 3.1.1. When § is closed the restriction operator Rs: § (Z2) —
2(5) is onto.

Proof. Fix (U, ¢) achartof A. Considerw: R* — Rand 8: 1-1,1[ — R, two
smooth maps taking the value 1 on a neighborhood of 0. Themap f: Z -2 - R
defined from f¢(xy, ..., X4, [{, r]l =~a(x1, cees Xg) - B(E) ’ij_va controlled fg_rm. In
fact, its lifting is the smooth map f: Z — R defined from f@(x, ..., x4, [£,£]) =
a(xy, ..., Xx,) - B(]t]) which is constant on the fibers of £;. A standard argument
shows that there exists a partition of unity subordinated to A.

We reduce the problem to show that Rg: @ (U) — £2(U N S) is onto. Since S is
closed then U N S is the lowest stratum of U and therefore the question becomes this:
Is the restriction operator Rg.: Q (R? x cLg) — Q(R") onto? And the answer is
clearly yes. 0O

3.2. Relative controlled forms. Consider ¥ a union of strata of Z. A relative
controlled form on (Z, Y) is a controlled form on Z vanishing on ¥, that is, wg = 0
for each stratum § C Y. We shall write 2 (Z, Y) the complex of relative controlled
forms, which is a dgc algebra. If we consider the restriction operator

Ry =[]Rs: @,(2) > Q(Y =] S) =[]e®)

ScCY sCY ScY

then we can write 2 (Z, ) == Ker Ry.

The wedge product A: §2 (Z) x  (Z,Y) —— 2 (Z,7Y) endows Q"(Z, Y)
with a structure of Q"(Z)-dg"module. The natural inclusion Q (Z,Y) <> Q (Z) is
a morphism in the category of Q (Z)-dg modules.

3.3. Controlled model. The deRham-Verona complex $2 (Z) depends on the
unfolding chosen, but for a stratified space its cohomology does not: H (9"(2)) =
H (Z), the singular cohomology with real coefficients (cf. [24],[21] where controlled
becomes zero perversity). But we have a stronger result at the level of dgc algebra
minimal models. Recall that the dgc algebra minimal model A(Z) of Z is just the dgc
algebra minimal model of Ag(Z), the dgc algebra of polynomial differential forms on
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the simplicial set Sing(Z) of singular simplices of Z. The dgc algebra 2 (Z) is easier
to handle than Ag(Z), but we need to know that their dgc algebra minimal models
are the same. This follows immediately from the following Theorem (cf. [10]).

THEOREM 3.3.1. Let Z be a stratified space. Then there exist two quis of dge
algebras

Q (2) 5 - £ AR(2).
Proof. See Appendix. [

3.4. Relative controlled model. As in the absolute case (cf. Theorem 3.3), the
model of a morphism f: Z’' — Z between two stratified spaces can be computed,
under certain conditions, using controlled forms instead of polynomial forms. These
conditions involve the unfolding:

[P1] f preserves controlled forms: f*w € Q"(Z’) forany w € @ (Z).
[P2] f preserves liftable simplices (see Appendix for the exact definition).

We shall say that an f satisfying the two conditions is good.
For good morphisms at least, we have a relative version of Theorem 3.3,

THEOREM 34.1. Let f: Z' — Z be a good morphism of stratified spaces. Then
there exists a commutative diagram of dgc algebra morphisms

! f

Q(z) —2 . Pl @y
[
@2 2. . 2 4o

in which the horizontal arrows are quis.
Proof. See Appendix. 0O

The two examples of good morphisms used in this work are described in the
following proposition.

PROPOSITION 3.4.2. The projection m: M — B and the inclusioni: F — B
are good morphisms.

Proof. See Appendix. O
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4. Models for M and F

This section is devoted to constructing the minimal models of M and F in the
category of differential graduate models over the dgc algebra minimal model A(B)
of B. As in other contexts (Euler-Poincaré characteristic, Localization Theorem,
rational homotopy theory, . ..), these two models are intimately related, in fact, they
are free A(B)-graded modules over the same (up to a shift) graded vectorial space.

4.1. Model of a stratified space. Let Z be a stratified space. As we showed in

Theorem 3.3.1, its minimal model as a dgc algebra can be computed from 2 (Z). So
let

pz: A(Z) = Q,(2)

be a quis of dgc algebras, with A(Z) a minimal one. Next, let f: Z" — Z bea
good morphism. Then we can endow & (Z') with a structure of A(Z)-dg module by
means of the composition

AZy 25 9 2) L @ (2).

Since we will always consider this structure of module in (Z’) we shall not write

P3fHR (Z’)) but simply @ (Z’). In the same way, we also consider Ar(Z’) as an
A(Z)-dg module.

PROPOSITION 4.1.1.  The minimal models of Q (Z’) and Ar(Z") as A(Z)-dg
modules are isomorphic.

Proof. It follows from Theorem 3.4.1. The commutativity of the diagram given
by this result means that pj and o} are quis of A(Z)-dg modules. O

Let us denote by M(Z’) this minimal model as A(Z)-dg module. It obviously
depends on f but not on the several choices we have made in this construction: the
dge algebra A(Z), the quis pz and the A(Z)-dg module minimal model of Q (Z’)
(or AR(Z")). Despite all these choices, the A(Z)-dg module minimal model M{Z’)
is unique up to isomorphism by Section 1.3.

4.2. Minimal model of F. The fixed point set F plugs into the category of .A(B)-
dg modules through the natural inclusion ¢: F <> B, which is a good morphism. We
have already seen in Section 3.2 that (B, F) is an Q (B)-dg module and therefore
an A(B)-dg module. We shall write M(B, F) for the relative minimal model of
(B, F), that is, the minimal model of 2 (B, F) as A(B)-dg module. Notice that the
inclusion i: Q (B, F) — § (B) is an A(B)-dg module morphism. We shall write
i’ M(B, F) - A(B) to represent any of its models (see Corollary 1.3.6). The
degree of i and i’ is 0.
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PROPOSITION 4.2.1.

(4) M(F) = A(B) &y M(B, F).

Proof. Considerthe exactsequence 0 — Q2 (B, F) LN Q (B) R, QFy— 0
{cf. Proposition 3.1.1). Then, by Remark 1.1.1 we have an .4(B)-dg module quis
between 2 (B) &, 2 (B, F) and Q(F). So, by Proposition 1.3.7 we have an A(B)-
dg module quis between A(B) &; M(B, F) and Q(F). Since A(B) &y M(B, F) is
a minimal A(B)-dg module (cf. Lemma 1.3.8) then by unigueness we get M(F) =
A(B) @y M(B, F) (cf. Corollary 1.3.5). O

COROLLARY 4.2.2. Let us suppose that B is of finite type and s:mply connected.
Then M(B, F) is the free A(B)-graded module generated by H™(7, ).

Proof From Section 1.3.9 we know that M(F) is a free A(B)-graded module
over H'(Y,) and therefore M(F) = A(B)D, [A(B) ® H (Y, )] for some h of degree 1.
From the above proposition we get the result wanted. O

4.2.3. Remarks. e M of finite type implies B of finite type. From [5] we know
that if M is of finite type then F and (B, F) are of finite type, Using the long exact
sequence associated to (B, F) one concludes that B is also of finite type.

¢ M simply connected implies B simply connected. Considering twisted neigh-
borhoods of orbits (cf. [5]) one easily checks that a loop on B lifts in a path on M.
Since the orbits of M are connected, we are done.

4.3. Minimalmodelof M. The fundamental vector field X of the action is defined
by X(x) = T1®,(1), where x € M and &,: §' > Mis given by ®,(g) = ®(g, x).
Since this vector field does not vanish on R we can consider the dual form X € Q (R),
relatively a riemannian metric 4 on R. When this metric is good (cf. [12]) the
derivative dX is a basic form relative to the projection m: R — m(R). So, there
exists a differential form ¢ € Q’ (7 (R)) such thatdX = mr*e. Both differential forms,
X and e, are liftable. We shall say that e is an Euler form. They are not controlled forms
because their restrictions to the links of fixed strata do not necessarily vanish. But the
maps X: Q (M, F) - Q (M)ande: Q (B, F) — @ (B), givenby y — X Ay
and w > ¢ A w, are well defined 4(B)-dg module morphisms. We shall write
e M(B, F) — A(B) a model of ¢, Notice that the degree of ¢ and ¢’ is 2.

The main result of this work is the following:

THEOREM 4.3.1.

5) M(M) = A(B) @ M(B, F).
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Proof. Let IS (M) = {w € £ (M)/iLxw = 0}, the complex of invariant
controlled differential forms. We have seen in [12] that the inclusion [/ 2 (M) —
§2 (M) is a dge algebra quis. We endow [§2 (M) with the natural structure of .A(B)-
dg module by means of the composition

AB) 25 @ (B) > @ (M),

which is well defined since x*(£2 (B)) C IR (M). The inclusion I (M) —
Qv (M) is now a quis of A(B)-dg modules . Each invariant differential form w is
written uniquely as w = ¥« + X A 7*8; when w is controlled then o € §2 (B) and
B € Q (B, F)because X is tangent to the links of fixed strata. So, the operator

(6) A: Q (B) ®. @ (B, F) — I (M)

givenby A(«, B) = m*a+X Ax* 8 is an A(B)-dg module isomorphism and therefore
A(B) §, M(B, F) is a model of M as A(B)-dg module (cf. Proposition 1.3.7).
Minimality again follows from Lemma 1.3.8. [

4.3.2. Remarks. (a)Foermula (4) and (5) show that M(F) and M (M) are free
A(B)-graded modules over the same (up to a shift by 2) basis.

(b) This theorem contains the classic result saying that, when the action is almost
free (that is, F = ), the dgc algebra minimal model of M is A(B) ® A(x) with
degx = 1 (cf. [8]). Let us see that.

In this case M(M) = A(B) &, A(B) and ¢’ is the multiplication by a certain ¢ €
A(B) of degree 2. The quis of .A({B)-dg modules we have constructed n: M(M) —
Q (M) satisfies n(a, b) = a-1+5-1(0, 1). Consider the product on M(M) given by
(a,b) (@,b)=(a.-a',a b +(=1)*7p.a’). A straightforward calculation shows
that 7 is a quis of dgc algebras. But the two dgc algebras M(M) and A(B) @ A(x)
are quasi isomorphic by using (@, 5) +» (e ® 1 + b ® x).

We establish now some consequences of these results,

4.4. Poincaré polynomials. Given a topological space X we shall write Py for
its Poincaré polynomial, thatis, Py(t) = » dimH (X)-¢".

n>0

COROLLARY 4.4.1. Suppose B of finite type and simply connected. Then 1 —
Pyx = fz(l - Py‘).

Proof. We have seen in Proposition 4.2.2 that M(B, F) is a free A(B)-graded
module over &’ (Y ). Applying the same method to w we conclude that M(B F}is
a free .A(B) -graded module over B "(Y,). So, dim H (¥,) = 1, dlmH (Y;) =0,
dim H’ (¥) = dim H' (Y) - 1 and finally dim H" (Y5) = dim H"~ (Y) forn > 2.
This gives the result,  []



802 AGUST] ROIG AND MARTINTXO SARALEGI-ARANGUREN

4.5. Vanishing of the Euler class. Actions with vanishing Euler class [e] €
H'(B — F) have a particular status (cf. [12] for a geometrical interpretation). In the
sequel we show how M (M) contains information about the Sullivan minimal model
of M in this case.

When the Euler class vanishes we can choose a convenient riethannian metric on
M so that ¢ itself vanishes (c¢f. [12]). Thus ¢’ = 0. The minimal model M (M) is of
the form A(B) ® E with E° = Rand dE c A(B) ® E*. It supports a dgc algebra
structure by putting on E the trivial product: 1-v = vifve Eand E' - E* = 0.
This dge algebra structure shall be called naive. It contains the following information
about M.

COROLLARY 4.5.1. If the Euler class vanishes then the naive dgc algebra struc-
ture of M(M) has the same real homotopy type of M. Moreover, mj (B) injects into
al(M).

4

Proof. The operator A: Q2 (B) @ 2 (B, F) — § (M) is a quis of A(B)-dg
modules which becomes a quis of dgc algebras when considering on the source the
following product;

(7 (@ B) @, B)=(a o, (1) . g' 4+ (—1)¥e"deiy . g),

This dgc algebra contains the real homotopy type of M.
Let pa ry: M(B, Fy — 2 (B, F) be the relative minimal model of (B, F). The
operator

08 @ pea,py M(M) = A(B) @ M(B, F) — Q. (B) ® (B, F)

is a quis of A(B)-dg modules which becomes a quis of dgc algebras when considering
the product (7) in both terms. This dgc algebra contains the real homotopy type of
M. Notice that the dgc algebra structure on M(M) given by (7) is just the naive
structure. This gives the first part of the corollary,

We shall write A(B) = AY, with differential 9, and M(M) = AY ® £, with
differential d. We have djay = d anddE C AY @ E". This last property allows us
to construct a KS-extension

(AY, 9) {(AY® E.d)
(AY ® AX,6)

such that @|oy = id oy and P(X) C AY @ E*. Recall that ;r,}‘,(B) = H (Y, d) and
:r;j(M ) = H{Y ® X, &), where 3 and Jy are the linear part of 3 and § respectively.
Since (AY, 8) is minimal we just have dp = 0 and therefore Jr,;(B) =Y. On the

other hand, the composition g = X LY AY®RAX mei;m AY pmﬂon Y vanishes: if

x € Xthen®(8x) = d(¥x) e d(AY®E") C AYQE". So, 7} (M) = YSH (X, &)
and the proof is finished since 7* becomes the inclusion ¥ — ¥ @ H (X, &). O
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4.5.2, Remarks. (a) When B is also contractible then M(M) = E is just a dgc
algebra with trivial product and, by minimality, with zero derivative. In other words,
M is a wedge of spheres.

(b) The Gysin sequence associated to (5) implies that the cohomology of B injects
into the cohomology of M; in fact, we have the short exact sequence

0— H'(B)— H' (M) > H"' (B, F) > 0.

The last statement of the corollary implies that, when M is of finite type and simply
connected, we have the short exact sequence

0> " B)QR > n*(M)@R - n*(¥z) @R - 0.

(¢) The naive structure of M (M) appears when ¢’ = 0, but the previous result
needs the vanishing of the Euler class itself as is shown in the following exam-
ple. Consider the action &: S x CP* — CP* given by z - [20, 21, ...1 2] =
[Z0,Z * 21, .-+, 2 * Z,] (in homogeneous coordinates). Here the fixed point set is
F = CP? U CP"! and the orbit space B is the closed cone over CP*~1, So, B is
ac clic and ¢’ = 0. The Euler class does not vanish since it generates H (B F)=

H (TP x]0, 1[) = R. The minimal model we have computed in Theorem 4.3.1 is

MECPHY=Rea H™ (CP° UCP**). Considering the naive structure on it we get

M(CP*) = H'(§* vS* V... v §¥) as dgc algebras. But clearly this dgc algebra
does not contain the real homotopy type of CP”.

4.6. Cohomological dimension. Write dime (X) for the cohomological dimen-
sion of the topological space X; i.e., dimec (X) = sup(n € N/ H"(X) % 0).

COROLLARY 4.6.1. Underthe hypothesis of Corollary 4.4.1, if the numbers dimc ( B)
and dimc (Y} are finite then dimc (M) = dimc (F) or dimc (F) + 2.

Proof. From Corollary 4.4.1 we get dime (¥;) = dime (Y)) = 0 or dime (Y) =
dime (¥,) + 2. Now considering the homotopy fibrations associated to 7w and ¢ we get
dimec (M) = dimc (B) + dimc (Y, ) and dimc (F) = dimc (B) + dimc (Y,) and then
we get theresult. O

We find examples of this situation when M = (C" where ' acts by complex
multiplication, and M = $"*2 = §! % §", where S acts by multiplication on the
first factor and trivially on the second factor. When M is compact and oriented the
condition dim¢ (M) = dime (F) = 0 does not occur and the condition dime¢ (M) =
dime (F) + 2 is equivalent to saying that F possesses a connected component of
codimension 2, This is also equivalent to the fact that B has a boundary. So, under
the conditions of Corollary 4.4.1, if dimc (B) < o0 and B has no boundary then
dime (¥;) = dime (¥,) = o0
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477, Egquivariant cohomology. The equivariant cohomology of M is the co-
homology of the quotient space Mg = M xg 8%, written H_, (M). The natural
projection p: Mg — B induces a natural structure of A(B)-dg module on Mgy . Here
we compute the equivariant minimal model of M, that is, Mg~ (M) = M(My).

We shail write A(e) for the polynomial algebra generated by an element ¢ of
degree 2. The trivial A(B)-dg module structure will be considered on it. The main
result in this framework is the following:

THEOREM 4.7.1.  If the fixed point set F is not empty, then
(8) Mg (M) = [A(B) @ A(e)] By [M(B, F) @ A{e)],
where ¢/ (b@e") =) @e* + (D) @ "1,

Proof. The equivariant cohomology can be computed using the complex €2 o (M)
= IQ(M)QA(e), endowed with the derivative d (0 ®Re”) = (dw)Re"+(ixw)Re*t!.
Here ix denotes the contraction by X. Proceeding as in [21, p. 213] one shows that
the two dgc algebras I€2(M) and /2 (M) are quasi-isomorphic. Therefore the
equivariant cohomology of M is computed by using /2 (M) ® A(e) and p induces
the operator P: 2 (B) — IQ (M) ® A(e) defined by P{a) = 7*a @ 1. Under
these transformations the .4(8)-dg module structure on f § (M) ® A(e} is given by

a (@®e") = P(pp(a)) - (w®e"), with a € A(B),w € IQ (M).

Now we compute the minimal model of { Q“ (M) ® A(e) relative to this structure.
The A(B)-dg module isomorphism A: 2 (BY®, 2 (B, F) — ISt (M) induces
the A(B)-dg module isomorphism

V: [2,(B)® Ale)] @, [2,(B, F) ® A(e)) — IR,(M) ® Ale),

where g(B® e®) = (B Ae) @ e" +i(B) ® e"*!. Proceeding as in Theorem 4.3.1 we
get that a model of 12 (M) @ Afe) is just [A(B) ® A(e)l @y [M(B, F) ® Ale)],
where /(b ® e") = €'(b) ® e" +i'(b) ® e"*!. This model is minimal because of
Lemma 1.3.8. O

Notice that for the almost free case (F = @) we have obtained the following non-
minimal A(B)-dg module model: [A(B) @ A(e)]®Pvg. [A(B) ® A(e)]; the minimal
one is just A(B).

4.7.2. Remarks. (a) Poincaré polynomial. When F # @, B is of finite type and
simply connected the relation between the homotopy fibers of p and 7 is given by
Py =(1- %) Py, (same proof as that of Corollary 4.4.1).

(b) Extension of scalars. The complexes 2 gl (M) and Mgee (M) naturally support
a structure of A(e)-dg module. The A(B)-dg module quis we have constructed is in
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fact a A(e)-dg module quis. For this structure, the extension of scalars of Mg (M)
is just M(M), that is, R @a(y Mg= (M) = M(M). In other words, the model of
the fiber of M — Mg - B is “the fiber of the model” (cf. [10]).

(c) Vanishing Euler class. Since ¢’ = 0 one has Mgee (M) isomorphic to A(B)
[M(F ) ® A*(e)] , relative to both module structures. We conclude that the coho-
mology of B injects into the equivariant cohomology of M, that is, we have in fact
the exact sequence 0 — H (B) — H, (M)} — H(F)® AT(e) = 0.

(d} Equivariant cohomology. Formula (8) says that we can compute the equivariant
minimal model Mge (M) in terms of basic data: i’,¢": M(B, F) > A(B). The
equivariant cohomology H_, (M) can also be computed in terms of basic data. In fact,
the shortexact sequence 0 — A(B)® A(e) - Mg (M) > M(B, F)@A(e) - 0
associated to (8) (¢f. Lemma 1.1.2) gives the long exact sequence

« > [H(B)® A@)] — Hy(M)
S HB. oA S HEB @A - -,

which determines H, (M) in terms of i*, e*: H (B, F) = H(B).
(e) Equivariantly formal spaces. Put v: M -— Mg the inclusion given by

t(x) = class of (x, 1). The manifold M is equivariantly formal if the restriction
map t*: Hs' (M) — H (M) is surjective (cf. [5], [6]). We can translate this condition

in terms of basic data by considering the commutative diagram

»

a |
C- H ) —  gEnese] —  [HEmee!” —

- E .
e‘i

= HM — H'B R —_ @B —

where R} [¢,] ® €") = [e,]. Since the restriction !R: Coker g* — Coker ¢*
is surjective, the manifold M is equivariantly formal if and only if the restriction

R: Ker q — Kcr et is sur_lcctwe In othcr words any string [op] 5 0 fits into a
string 0 < [ota] = [Ba] < -+ > [Bo] <[] > 0.
(f) Localization Theorem. This theorem asserts that the restriction map Rp: M —

F induces an isomorphism between their localizations S~'H_, (M) and S‘iH ().
We can translate this theorem in terms of basic data saying that the map

V: H(B,F; $T'A(e)) — H (B, F; S'A(e)),

defined from V([w]) = e - [w] + [w A €], is an isomorphism. This comes from the
fact that the Localization Theorem is equivalent to the vanishing of $~! Hsl (M, F)
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and from the exact sequence
. = [H(B,F)®A(e)] — Hy(M, F)
— [H(B e AE]™ > [HB, o™ >

obtained as in (d). In fact, for § = {l,e?,e?,...}, the inverse of V is given

by VI([@]) = 3o Soimg (=1)HDP=1=i(=Pynt 0] . [ A eP+D=J1], which
makes sense since the differential form ¢™ vanishes for large enough m.

4.8. Semifree S*-actions. The results developed until here for circle actions
extend directly to semifree §°-actions, This comes essentially from the fact that
formula (6) applies (up to a shift) here (cf. [22]). We don’t give all the results but just
the main one.

Consider ®: 8 x M — M, a semifree smooth action of S* on a smooth manifold
M. Let F be the submanifold of fixed points. Semifreeness means that S* acts freely
on M — F. The orbit space B is a stratified pseudomanifold whose singular strata
are the connected components of F. The inclusion 1 F <+ B induces the inclusion
operatori: 2 (B, F) — Q (B)whichisan A(B)-dg module morphismof degree 0.
Here the Euler form ¢ lies on Q‘(B — F) and induces the A(B)-dg module morphism
e: Q (B, F) —  (B) of degree 4. The A(B)-dg module minimal models of these
operators are i’ and ¢’ respectively. The main result in this framework is the following:

THEOREM 4.8.1.

M(M) = A(B) &, M(B, F)
M(F) = A(B) &y M(B, F).

Proof. Follow the path taken in the Theorem 4.3.1. 0O

4.9. Isometric flows. An isometric flow is areal smooth action ®: Rx M — M
preserving a riemannian metric 1 on the smooth manifold M. The fundamental vector
field X of the action is a Killing vector field. We shall write F for the singular foliation
determined by the orbits of the action. The fixed point set is a manifold denoted F.
Notice that in this case the orbit space B = M /R can be very wild (even totally
disconnected!). For this reason it is customary to work with “basic objects” (objects
living on M transverse to the flow and invariant by the flow) instead of working
directly with the objects living on B. For example, a basic form is a differential form
on M which is transverse to the flow (i y« = 0) and invariant by the flow (L xw = 0),
a basic controlled form is a controlled form on M verifying ixw = ixdw = 0, ...
We shall write

QM/F) for the complex of basic forms,
2 (M/F) for the complex of basic controlled forms,
Q (M, F) /F) for the complex of basic relative controlled forms.
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When the action is periodic we have in fact a circle action and these complexes
become, up to isomorphism, (B}, 2 (8) and Q (B, F) respectively.

The three complexes above are in fact dgc algebras. The dgc algebra minimal
model of 2 (M/F) and 2 (M/F) are the same and they will be denoted by A(M /F)
(cf. [23]). We work in the category of A(M/F)-dg modules. The A(M/F)-dg
module minimal model of @ ((M, F) /F) will be denoted by M{(M, F)/F).

The inclusion ¢ F <> M gives the inclusion operator i: 2 ((M, F)/F) —
Q (M/F) which is an A(M/F)-dg module morphism of degree 0. Here the Euler

form e lies on 92((M — F)/F) and it induces the A(M/F)-dg module morphism
e: @ ((M,F)/F) — Q (M/F) of degree 2. The A(M/F)-dg module minimal
models of these operators are i’ and ¢’ respectively.

We shall write X = 8/0¢ if there exists a diffeomorphism M = B x R sending X
on a multiple of 8/d¢. The main result in this framework is the following:

THEOREM 4.9.1. If X # 8/9t then

MM = AM/F) S, MM, F)/F)
M(Fy = AM/F) &y MM, F}/F).

Proof. If we prove that the inclusion 72 (M) — Q (M) and the restriction
Q(M) — Q (M) are dge algebra quis, then it suffices to follow the path taken in the
proof of the Theorem 4.3.1.

An isometric flow defines a singular riemannian foliation F where the orbits
are all closed or the closures of the orbits are all tori (cf. [14]). In the first case
the natural projection x1: M — M/F becomes a locally trivial fibration and, by
orientability, a trivial one. So, X = 9/3¢ and we are in the second case. Using
the Mayer-Vietoris argument we can replace M by a torus T endowed with an R-
linear action. The problem is then to prove that the inclusion 72 (T) — Q"(T)
and the restriction Q(T) — & (T) are dgc algebra quis. Since the flow is regular
then 2 (T) = Q(T). By density, the complex I (T) = I2(T) becomes Q¢ (T) =
{w € S2(T) invariant by T}. Since T is compact, we already know that the inclusion
Qr(T) — Q(T) is a dgc algebra quis {cf. [7]). O

In the case X = 3/d¢ this result would imply H' (M) = H" (B x S‘), which is
false. We finish the work by extending to isometric flows a well-known result related
to periodic actions.

COROLLARY 4.9.2. [f X £ 0/0t then, foranyr = (),

H™ (M, FY/F)+ Y dimH ™ (F) <) dimH™ (M)
i=0 i=0
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Proof. From the above formula we get the following long exact sequences:
oo~ H(MJF) —> H(M) > H (M,F)/Fy—> H " (M/Fy— -+,
o> H (M, F)JF) = H (M}F) > H (F) > H" (M, F)|F) - ---.

Since the action is free out of F the above theorem admits the relative version
MM, F) = M((M, F}/F)®, MM, F)/F). This gives the long exact sequence

. = H'((M,F)/F} > H (M, F)
- H (M, F}/F) = H" (M, F)/F) > ---
Finally, by considering the long exact sequence associated to (M, F) one gets all
the ingredients to proceed as in [3, pag. 161] to obtain the following Smith-Gysin
sequence:
co > H'((M, F)/F) > H (M)
- H (M, F)/F)®H(F) > H (M, F)/F)—> .

Now it suffices to follow the procedure of [5, page 127]. OO

When M is compact the group of isometries of (M, 1) is a compact Lie group.
So, the action of R extends to an action of a torus T. For this action we have the
inequality

H (M, FYT)+ Y dimH™"(F) < Y dimH™ (M),
i=0 i=0

for each r > 0 (cf. [5]), but notice that in general H' (M, F)/F) and H ((M, F)/T)
are not equal.

5. Appendix

In this Appendix we give the proof of Theorem 1.3.1 {existence of a minimal KS-
extension), Theorem 1.3.3 (uniqueness of a minimal KS-extension), Theorem 3.3.1
(minimal model versus controlled forms), Theorem 3.4.1 (relative minimal model
versus controlled forms) and Proposition 3.4.2 (examples of good morphisms).

5.1. Proof of Theorem 1.3.1. To begin with, put N(0,0) = M, ¢p,9y = id s and
Po,00 = ¥. Let us assume that we have already constructed

tn,0): M — N(n,0) and P Nn,0 — X
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such that
() noy  in,0) i8 2 minimal KS-extension,
(Dm0 Protepn =9, and

(i)o (Pwo): H (N(,0)) > H'(X) is an isomorphism for
O0<i<n-—1and (p(“_m)': is a monomorphism.
Now, for ¢ > 0, take V(n,q) = H”'(N(n,q — 1), X) and consider it as a ho-
mogeneous vector space of degree n. Take also a linear section s of the natural
projection Z"'(N(n, g—1),X) — Vin,g). Soforevery v € V(n,q), we have
sv = (&, %,) € N(n,g — D™ @ X" such that

()= (e ) (),

Nn,gy=Nng-1)® A V(nq)

with differential dv = ¢,. Also define 1,4): M —> N(n, q) as the composition
of t(4,4—1) with the natural inclusion of N¥{(n,g — 1) — N(n,g). Finally, take
Pingy: N(n, g} — X to be the morphism of A-dg modules induced by p(y ;1) and
the linear map f: V(n,q) — X defined by fv = x,.

Let us verify that

Define

Dng)  tng 15 @ minimal KS-extension because of
(i}(n,q-1) and the definition of ¢ 43,

iDng)  P.9)n0) = Ping-1ing—1) = ¥ because of
the definitions and (i), . _)),

i)y (Ong).: H (N(n,q)) — H'(X)isan
isomorphism fori = 0, ..., a.

In fact, for i < n, p( 4 coincides with p¢, .1y and so the morphism induced
in cohomology is an isomorphism by (iii), ,—i). In degree n, the natural inclusion
N(n,g — 1) — N{(n, g) induces a monomorphism in cohomology because new
generators can only kill cocycles in degree > n. So (p(,,,q})': is a monomorphism
and all we need to prove is that it is also an epimorphism: Let [x] € H "(X) and
[x] &€ Im (p(,,_q_”)': {otherwise we are done). Then x defines a non-zero relative
cohomology class v = [(0, x)] € V(n, g). By definition, v = [(dv, pm.g))v]. So

(o =) = (g <2) ) = (et =)
Pin.g)V — X Png-ty —4d)\y Ping-1t —dy
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witht € N(n,g — 1), vy € X". As a consequence,
(Pogy). [0 — 1] = [x]
and 50 (0.q)), is an epimorphism. Lastly, put N(n + 1,0) = lim? N(n,g),

Lnt1,0) = lim? trgy Pl = M= gy and let us verify the induction hy-

pothesis. Conditions (i)(,.+1,0y and (ii) 41,0y are trivial. For (iii) 41,0y (P(n+l.0))i:
H (N(n+1,0)) ~—> H (X) is an isomorphism for i = 0, ..., n because all of the
(O(n.q)), are isomorphisms by (iii), ,) and (;t:'(,,.,.l‘m,):+I is 2 monomorphism, because

ifa e Z"HN(n + 1, 0) is such that [p(n.+1,00¢] = 0, then, as ¢ € N(n, ¢) for some g,
we would have p, ya = dx forsome x € X. Sov = [(a,x)] € V(n,qg + 1) will

kill the class [a] in H" (N {(n, ¢)) and therefore in H'™" (N(n + 1,0)). 3

5.2. Proof of Theorem 1.3.3. 'We will confine ourselves to the case M = 0, since
this is the only case we need in this paper. Let N = A ® V, and assume we have
already built

Imoy: Nim,0) —» X
in a such way that for all m < n,
m POy =1d y(a,0y, and
() Tem0) Vim0 = O,y forall m’ < m.
We will define
OCm+1,00 Nn+1L,0)— X

satisfying (1),4., (ii),4; and then the section of p will be

o = lim T(n,00.
—
H

To do this, we will extend o, o) to morphisms
Ongy: N(n,q) > X
in such a way that forevery p < g,
Dy PTG = NG, p)» and
Dy Oy [Nenp) = Oup) forall p' < p.

Once we have these o, 4 for all g = 0, we will put

On+1,0) = liM 04 g,
q

which will satisify (i), and (i1), .
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So let us begin the construction of the g, 4). For g == 0, 6, 0) exists by induction

hypothesis. Assume we already have oy, , for all p < g. Then, consider the A-dg
module

X(n,q) =1Im (0mg: N(n,q) = X).

Since pag.q) = id yin.g)» Otn.g) 1S a monomorphism; then oy, o3: N(n, ¢) = X(n, g)
is an isomorphism, If we apply the Five Lemma to the long cohomology sequences
of the following commutative diagram of exact sequences of A-dg modules

0 —— X(n,g) - X - X/X(n,q) —0

EA

0 —— N@ng) — N — N/Nin,q) —0

it follows that o is a quis of A-dg modules.
Next, let V(n, g + 1) be an R-vector space such that

Nin,g+1)=Nn,qg)@(A®Vn,q+1))

and let j be the composition V <> N — N/N{n.g). Since dV C N(n,q),
we have jV C Z(N/N(n, ¢)), and so we have an R-linear morphism H;: V —
H (N /N(n, g)) which we can lift to Z(X/ X (n, g)):

Z(X/X(n, q))

P

vV

H(N/N(n,q)) H(X/X(n, q)).

Infact, N/N(n, q)is an A-dg module concentrated indegrees > n. So 8" (N/N(n, q)) =
0 and the previous diagram in degree » is just

Z'(X/X(n, q))

|7

J ]
V —— Z (N/N(n, g)).
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Next, consider the pull back

(X/X(n @) Xyminpy N

X/X(n,q)

N/N(n,q)

and the morphism induced by 7: X — X/X(n,q)and p: X — N,

(T, p) X — (X/X(n,q)) X N

NiNn.g) -

It is an epimorphism: if (x, y) € (X/X(n,9)) X4 ,o N then px —y € N(n, q).
So,

(7, pY(x —applex —¥)) = (X —0,px — (px —y))
= (isY)°

So, we can lift (&, i) to X:
X

(7, p)

(2, 1)

(X/X(n, 2)) Xy N

Then f and oy, 4) induce the morphism of A-dg modules o g+1y: N(n,g+1) = X
we were looking for:

Omg+D) [Nmg) = Onq) A0 O gin) v == f.

To see that it is an A-dg morphism, it suffices, by definition of a Hirsch extension, to
verify that

O'(,;.q)d:df.
So,letv e V;thenmfv = ive Z'(X/X(n,q)). So,0 =dnfv=rndfv. Hence

dfve X(n,g) =Im o). Letw € N(n, q) be such that df v = oy, ). Apply p
to both sides of this equality and, by the previous diagram, we get

pdfv =dpfv =dv
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and, by induction hypothesis (i), 43
PO (p gy = @

Sodv = w, as we wanted.
Finally, o 44.1) satisfies (1) 41y and (i}, 44y by construction. [

5.3. Proofof Theorem 3.3.1. This result generalizes to stratified spaces the result
asserting that the dgc algebra minimal model of a manifold can be computed using
its deRham complex. The proof is adapted from [10] using the same notation. It will
be sufficient to prove that the dgc algebra minimal model of 2 (Z) is that of Ag(Z).
For this purpose we construct a commutative diagram

o L
(2) - E{LS(Z)) - Ar(Z)
P3
CLS(Z)) « C(Sing(Z)}

where f s fz' fs’ and p; induce cohomology isomorphisms and o, and p) are dgc al-
gebramorphisms. This implies that p; and o, are also dgc algebra quasi-isomorphisms
and the Proposition is proved. We construct the diagram in several steps.

1. Unfolding of A (see [21]). The unfolding of the standard simplex A, relative to the
decomposition A = Ag*-.-% A, is the map

MA: E\:E&ox---xEqul XA, — A
defined by

ia(lxo, tols ooy [Xparatp1 ]y xp) = toxo + (1 —todtix +---+ (1 —29)---
(A~ tp-2Mtp_1xp_1 + (1 —t0) - (1 — 151},

Here cA; denotes the closed cone A; x [0, 1] / A; x {0} and [x;, ;] apoint of it. This
map is smooth and its restriction pa: int (K) — int (A) is a diffeomorphism (we
write int (P) = P — 9 P for the interior of the polyhedron P). It sends a face U of
A on a face V of A and the restriction pa: int (/) — int (V) is a submersion.

This blow-up is compatible with face and degeneracy maps,
1. Face. Let ér: F —> A be a codimension one face of A; the induced
decomposition is F = Aq* - % Ajy * F; % Ay % -+« % Ap (we have written

% X = X). The lifting of 65 is the map ég: F — A defined by

2 ifF; #£0
—~ (200 Lo Dy Zpals oo n Tpm |1 Xp) ifF;mﬁ.j;&p:_tzjwnexofEﬁj
3p(z) = and z = {20, .o, Zfs o v 1 Zp_1+ Xp)
(200 -+ Zpe2s [Bpet, 1D if F, =, j = p, and

Z=(ZDs+1+1Zp-24 Xp_1h
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This map is smooth (affine in barycentric coordinates), sends F isomorphically on a

face of A and satisfies ptaodp = dpopir.

2. Degeneracy. Leto: D = A x {P} — A be a degeneracy map with op(P) =
@ € Aj. The induced decompositionis D = Dgk---k Aj_yx (A % {P}) % Ajyp
-+ % Ap). The lifting of o is the map &p: D — A defined by

[tx; + (8 =P, 1) o Zp1) Xphe
e Zp- 1 Py + (1 =23 ifj=pandzis
T Zp-1stxp + (1= 1) P}

(20... s x; + {1 =030, 5) ..., 251, %) if j < pand 2 is(zg. ...,
o) = { @

This map is smooth (linear in barycentric coordinates) and verifies waodp =
Opoltp. - —

On the boundary 8 A we find not only the blow-up d A of the boundary 3A of A
but also the faces B; = ¢Ag X -+ X CA;_1 X (A; x {1} X €A1 X -0+ X E&p_l *® Ap
withi € {0, ..., p—2}ori = p—1landdim A, > 0, which we shall call bad faces.
Notice that dim s (B;) = dim(Ag* - - * A;)) < n — 1 =dim B;.

II. The simplicial set'

L8(Z). Onastratified pseudomanifold it is not possible to define smooth simplices
directly as in [10]. For this reason we introduce the notion of liftable simplices. Let
Z=2Znctimr D2z =2Zp1 DD Zy D Z_1 = @ be the filtration of Z, that is,
Z; is the union of strata with dimension smaller than i, A liftable simplex is a singular
simplex ¥: A — Z satisfying the following two conditions.

[LS1] Each pull back ©~'(Z;) is a face of A.

Consider {ig, ..., i} = {i €(0,...,n}/P"U(Z;) # ¢"1(Z;_1)} andlet A; be the
face of A with 9~'(Z;,) = ¢7'(Z; _1) * A;. This defines on A the ¥-decomposition
A=LNAgk- %A,

(LS2] There exists a smooth map P A — Z with ch@ = Poup, where the
unfolding of A is taken relative to the ¥-decomposition of A.

The 0 r-decomposition (resp. Yoo p-decomposition) is just

F=Ap*x - xAj_ 1 xFixAjp1 % - %A
(resp. D= Ag k- Ay (A; % [P % Djpq %+ % Ap),
So, for aliftable simplex ¥ the simplices 3p(¥) = Podr and sp(¥) = ¥Poop are liftable
simplices. The face map dr and the degeneracy map sp, verify the usual compatibility

conditions. Put LS(Z) the family of liftable simplices. So, (LS(Z), 3, s) define a
simplicial set.

IFor the notions related with simpliciat sets, local systerns, . .. we refer the reader to [10].
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Notice that a liftable simplex ¥ sends the interior of a face A of A on a stratum
S of Z and that the restriction ¢: int{(A) — S isﬂsmooth (using face maps we can
suppose A = A and there we know that z14: int (A) — int A is a diffeomorphism) .

I, The local systems C and E. The local system C on Sing(Z) (resp. LS(Z)) is
defined in [10, 14.2] in such a way that the space of global sections C(Sing(Z))
(resp. C(LS(Z))) is the complex generated by the singular simplices (resp. liftable
simplices) of Z.

Consider a simplex A endowed with the decomposition Ap % -+ - * A,. A liftable
Jorm on A is a family n = {n4 € 2(nt (A} }14 face of a) Of differential forms pos-
sessing a common lifting 77 € (A) that is,

i = Wi N O int (H), for each face H of A.

The lifting 7 is unique. Since j14 is an onto submersion with connected fibers then
the lifting forms are exactly the differential forms w on A satisfying w(v, -} =
dw(v, =) = 0 for any vector of A with (¢4 ).(v) = 0, that is, the basic forms on A.
In the sequel we shall use both of points of view.

A liftable form on {¥: A — Z} € LS(Z) is a liftable form on A relative to its
®-decomposition, For any ¥: A — Z liftable simplex we shall write Egp = {liftable
forms on ¥}, which is a dgc algebra complex.

Consider 65: F — A afacemap andop: D — A adegeneracy map. We define
the face operator dr: E@p —> Ej,(, and the degeneracy operator sp: Egp —> Ej )
by 8r (77} = 857 and sp(3f) = J},7 respectively. These operators verify the usual
compatibility conditions and thus define a local system E on LS(Z). Notice that the
space E(LS(Z)) of global sections of E is a dgc algebra.

When Z is a manifold endowed with the stratification { Z}, liftable simplex becomes
smooth simplex and so LS(Z) = Sing™(Z). Moreover, E becomes the local system
Ay of C® differential forms.

IV. Operators p and {.

e The operator p3 is just the inclusion, which makes sense since any liftable
simplex is a singular one Proceeding as in [21] one proves that this inclusion induces
an isomorphism in homology and therefore that p; is a quasi-isomorphism in the
category of graded vector spaces.

¢ The operator p; is defined as follows. For each w € Agr(Z) and each liftable
simplex ¢ of Z we let i’} w, be the lifting of (p2(w)),. This operator is a dgc algebra
operator.

» The operator p; is defined as follows. For each @ € €2 (Z) and each liftable
simplex ¢ of Z we let #*% be the lifting of (p; (w)),. This operator is a dgc algebra
operator,
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o The operator f| is given by integration of differential forms on simplices:

([

where w € Ag(Z) and ¥ is a singular simplex of Z. The deRham Theorem says that
f | 1s a quasi-isomorphism in the category of graded vector spaces [10].
» The operator f, is given by integration of differential forms on simplices:

(fw)(so)=f fp*w=ﬁ6*5,
2 int (A} A

where @ € 2 (Z) and ¥ is a liftable simplex of Z. This operator is differential if
we have f 3, ¢'%5=0. To prove this, we write § for the stratum of Z containing
@(int (wa(B:))); since '& = ph®*ws we get f 5, $'% = 0 because dim B; >
dim zea (B;). Proceeding as in [21] one proves that fz is a guasi-isomorphism in the
category of graded vector spaces.

e The operator fs is is given by integration of differential forms on simplices:

(f ’?) (¥) = f (Ne)a = ﬁﬁtp,
3 int (A) A

where n € E(LS(Z)) and ¥ is a liftable simplex of Z. This operator is differential
since fp 7, = 0; this comes from the equality 7, = 1} (1p)u,(8) on int (B;). We
already know that the local system € on LS(Z) is an extendable local system [10,
Proposition 14.11]; if we prove that D is an extendable local system it will follow that
Jf3is aquasi-isomorphism in the category of graded vector spaces [10, Theorem 12.27].
This fact comes from the Poincaré Lemma and the Extension Property we prove below.
For this purpose we fix a decomposition A = Ag* -+~ * A,

POINCARE LEMMA.  H ({liftable forms on A}) = R,
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We prove H ({basic forms on A}) = R. First suppose that dim A, > 0. Let & be
a vertex of A,. Consider the following maps:

hit A %[0, 1] — A defined by
Ri(roxo + - -+ rpxp.t) = roxo+ - +rp1xp— + 10 + (1 — 2)x,),
hy A x [0,1] = A defined by
halze, ..., Zp—1:Xp 1) = (20, ... s Zp-1, 88 + (1 —1)xp).

They are smooth homotopy maps between A (resp. E) and A’ = Ap*- - Ay %
{#) (resp. A"). Since ua(h2(zo, ..., 2p-1, Xp. 1)) = By (ta(20, - .. Zp—1, Xp), 1) the
basic forms are preserved and £, induces a homotopy operator between the complex
of {basic forms on A} and the complex of {basic forms on A"}

Suppose dim A, = 0, that is, A, = {¢#}. Write V for the simplex A endowed
with the decomposition Ag * -+ * Ap_2 * (A,_; % {#}). Since the map 7: V — A,
defined by t(zp,...,2p-2,txp—1 + (1 — )F) = (20, ..., Zp-2, [Xp-1, 2], D), is a
diffeomorphism verifying (a0t = fiy, we getthat the complexes {basic forms on A}
and {basic forms on V} are isomorphic.

Alternatively applying these two procedures we arrive at the case A = {#} and
here it is clear that the cohomology of {basic forms on A= (#11isR.

EXTENSION PROPERTY. Each liftable form on 8 A possesses an extension to a
liftable form on A.

Let n = {ns € Q(int(A)) / A face of 3A} be a liftable form on JA. Letn ¢
£2 (3 A) be the 11ftmg, which is a basic form satlsfymg N = WhiNu. ) onint (;) for
each face H of A. Since the fibers of Hat §A — 3A are not necessarily connected
then we cannot identify liftable forms with basic forms.

First notice that any form on 9 A possesses an extension to a form on A, Moreover,
if the form is basic then its extension is necessarily basic (the restriction j 5 int (A) -
int (A) is a diffeomorphism). So, it suffices to extend 7 to a basic form defined on 8 A.

Consider ép: F —> A where F is a face of A. Using face maps one con-
structs a smooth map 8;: Ft > A sending isomorphically F on a face of dA
and satisfying u Aoﬁ r = dpoup. Notice that in this case the map s F 18 not neces-
sarily unique (codim 5 F can be greater than 2). This equality implies that n|r =
{na / A face of F}, the restriction of n to F, is a liftable form with lifting 5 +7. Recall
that this form is p g-basic.

Foreachi ¢ {0,...,p — 1} we put V; = u,(8;), whose induced decom-
position is just V; = Ap % --- % A;. Define the projection pr;: B; — V; by

PVE(ZO, B4 i (‘xi? 1)} Ligls ooy ZP--ls xp) = (ZO? LR Z.I'—l’xf)' This map sends
(the interior of)~a face of B; on (the interior of) a face of V;. We define on B; the
form y; = pr*a‘{, 7, which is a basic form because ua = py opr;. Moreover, y; is

the lifting of n|v,: if H is a face of B; then yi = prdy wAnu, ny = B3 Muay ON
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int (H). Since the lifting is unique the forms {yy, ..., ¥p-1} define a basic form on
dA — dA, the union of bad faces. Again, the uniqueness of the lifting implies that
this form coincides with 77 on 3A. Therefore, the extension of 7 is constructed.

s Commutativity. One easily checks that f; op; = f, and f; 002 = p3o f|, that is,
diagram (9) is commutative. Since [, [, f,. p3 induce isomorphisms in cohomology
(as graded vector spaces) and p», p; are dgc algebra morphisms then p;, o are dge
algebra quasi-isomorphisms, So, the dgc algebra minimal model of Z is that of
Q(z). O

5.4. Proof of Theorem 3.4.1. We shall say that a morphism f: Z' — Z between
two stratified spaces is good if it satisfies the two following conditions:

[P1] f preserves controlled forms: f*w € 2 (Z') for any @ € Q (Z).
[P2] f preserves liftable simplices, fo%®'-decomposition = ¢'-decomposition and
fo¥' € LS(Z) forany ¥' € LS(Z").

Now consider the diagram

o (z) 2 Ews@zy 2 ap@)

'f* j‘*‘ f*]
oz 2 Bwszy 2 a@

where the pull backs are defined as follows.

For each w € Agr(Z) and each liftable simple ¥ of Z’ we put (f*w)¢y = o'
This operator is a dgc algebra morphism.

Since f is good then f*: 2 (Z) — & (Z’) is a well-defined dgc algebra operator.
For each € E(LS(Z)) and each liftable simple ¢ of Z* we put (f*n)p = NeoPs
which makes sense since f is good. One easily checks f*op| = p10f* and f*o0; =
p50 f*, which ends the proof 0O

5.5. Proof of Proposition 3.4.2. 'We first prove the following lemma

LEMMA. Let®: A — M be a simplex satisfying (LS1]. Then, the family of strata
of M meeting Im ¥ is rotally ordered.

We prove that if ), F; are two faces of A and §;, §; two strata of M with
PGnt(F;)NS; £0B,i =1,2,then §; < S0r $ < 5y,

Since ¢! (Mim 5, ) (xesp. N Mgim s5,—1)) is aface of A meeting int (F;) (resp. not
containing int (F;)) thenint (F;) C ¢! (Mgims, ) (resp. int (F)IN® ™ ( Mim si—1) = #).
So,int (F;) € 7' (Mgims, — Mdims,—1) and by connectivity we getint (F;) C ¢7'(S)).
Notice that this implies ¢(F}) C §;.
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Now consider F3, the smallest face of A containing F; and F,. Let S3 be a stratum
of M with ¥(int (F3)) N §3 # B (it always exists!). From the previous paragraph we
get @(int(Fa)) C S3 and ¥(Fy) C S5 and therefore S| N S3 # @, S, N'S; # B and so
§) < 5and §; < S;.

Let us suppose dim §; < dim S;, Since the face ¢~ (Mgns,) contains int (F;)
and int (#3) then it also contains F3 by minimality. Thus §3 C Main s, which gives
dim §3 < dim S, and therefore S; = §,. Finally, §; < $,.

Now, in order to verify Proposition 3.4.2, we need to verify conditions [P1]
and [P2].

e Projection .

fP1] This holds since & is a liftable morphism.

[P2]Let®: A — M bealiftable simplex. Following the lemma the family of strata
meeting Im ¥ can be written as §o < Sy < -+ < Sp-1 < §p. The $-decomposition
of Ais A = Ag%---% A, with Agk--- % A; = ¢ 1(§U...US;). Since 7 isa
strict morphism then the family of strata of B meeting Im (7mo®) is 7 (8p) < 7(§)) <

< T(Sp_3) < w(Sp). S0, Ag*+ e+ x Ay = (wo®) 1w (So) U - - Um(S;)) which
implies that the (77 o®)-decomposition of A is the ¥-decomposition. The lifting of
mo® is just Fo®.
¢ Inclusion .

[P1] Since len (F) = 0, we have Q (F) = Q(F). Notice that the operator
*: R (B) — Q(F) is just Rp.

[P2] Let ¥: A — F be aliftable simplex, that is, a smooth map ¥: A — S where
§ is a fixed stratum. So, the ¥- and the (1o¥)-decompositions are just A = A, Onthe
other hand, since Lg: 13;1 (5) —» § is a fibration and A is contractible then we can
construct a smooth map yr: A — Z with pzoyr = to®. So, this map is the lifting of
w?. 0O
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