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INTERSECTION COHOMOLOGY OF S'-ACTIONS

GILBERT HECTOR AND MARTIN SARALEGI

ABSTRACT. Given a free action of the circle 8! on a differentiable manifold
M, there ¢xists a long exact sequence that relates the cohomology of A with
the cohomology of the manifold M/S'. This is the Gysin sequence. This result
15 still valid if we allow the action 10 have stationary points.

In this paper we are concerned with actions where fixed points are allowed.
Here the quotient space M/S' is no longer a manifold but a stratified pseu-
domanifold (in terms of Goresky and MacPherson). We get a similar Gysin
sequence where the cohomology of M/S! is replaced by its intersection co-
homology. As in the free case, the connecting homomorphism is given by the
product with the Euler class [¢]. Also, the vanishing of this class is related 10
the triviality of the action. In this Gysin sequence we observe the phenomenon
of perversity shifting. This is due 10 the allowability degree of the Euler form.

Given a free action ® of the circle §8' on a manifold M there exists a long
exact sequence (the Gysin seguence) relating the cohomology of the manifolds
M and M/S!,

() o HUM) L3 BBy 2L g By 2L H (M) -

Here [e] € H*(M/S') denotes the Euler class of @ and § the integration
along the fibers of the canonical projection m: M — M/S'. This result has
been extended to almost free actions in [7). In this context, the orbit space is
not a manifold but a Sataké manifold.

If the manifold M is compact, the Euler class vanishes if and only if there
exists a locally trivial fibration T: M — S! whose fibers are transverse o the
orbits of ® (see [7, 8]). Nevertheless, there are simple examples showing that
the above results are not true if we allow the action & to have fixed points.

In this work we construct a Gysin sequence for a generic action extending
(*). The first important remark is that the orbit space M/S' is a singular
manifold (more exactly, a stratified pseudomanifold in the sense of {4]), pos-
sibly with boundary. Consequently, the intersection cohomology introduced
by Goresky and MacPherson in [4] appears as a natural cohomology theory to
study S'-actions. The main result of this work (Theorem 3.1.8) shows that for
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264 GILBERT HECTOR AND MARTIN SARALEGI

any perversity 7= (0,0, 0, rs, rg, ...} there exists an exact sequence

iy ST 0ys) 2 L0 - FS)
L H!'+](M) —

where § is the integration along the orbits of @, r+2=(0,1,2,7r+2, re+
2,...0, [ele IH%((M—F})/SW is the Euler class of ®, ¢{M/S') is the bound-
ary of the orbit space and F, C M 1s the union of the connectied components
of codimension 4 of the fixed point set.

The vanishing of the Euler class [¢] has also a geometrical interpretation.
We show that [¢] = 0 is equivalent to the existence of a singular foliation,
in the sense of {11], whose restriction to Af-{fixed points} is a locally trivial
fibration over S!, transverse 1o the orbits of the action ® (see Theorem 3.2.4).
In this case the codimension of the fixed point set is at most 2.

The main tool used here is a “blow-up” of the action P into a free action
®: S! x M — M. We know that the intersection cohomology of the orbit space

M/S' can be calculated using a complex of differential forms of M/S! (sce
[9]). Then, we can apply the usual techniques for free actions in order 1o get
the Gysin sequence and the Euler class.

In §1 we introduce the “blow-up” of the action ¢ . We recall in the second
section the notion of intersection differential form. Section 3 is devoted to the
proof of the main results of our work: the Gysin sequence and the geometrical
interpretation of the vanishing of the Euler class. In the Appendix we prove
some technical lemmas stated on previous sections.

In a coming paper we expect to extend this study to the action of a com-
pact Lie group and obtain a spectral sequence relating the cohomology of the
manifold, the intersection cohomology of the orbit space and the Lie algebra of
G.

The second author is grateful to the Department of Mathematics of the Uni-
versity of Illinois at Urbana-Champaign for the hospitality provided during the
writing of this paper.

In this work all the manifolds are connected and smooth and “differentiable”
means “of class C*.” The cohomology H*(X) (resp. the cohomology H,{X))
is the singufar cohomology (resp. homology) of the space X with real coefhi-
cients.

l. STRATIFICATIONS AND UNFOLDINGS

Let ®: S! x M — M be an effective differentiable action of the circle §' on
an m-dimensional manifold A . This action induces on A a natural struc-
ture of stratified pseudomanifold, invariant by S'. In this section we study
this structure and we construct an unfolding of M (see {9]), invariant by S'.
Finally, we show the orbit space M/S' inherits a similar structure in a natural
way.

1.1. Stratification and unfolding of A . The stratification of M comes from
the classification of the points of M according to their isotropy subgroups.
Since the stratified pseudomanifold M is a stratified space {see [13]) it possesses
an unfolding (see [! and 10]). We recall in this paragraph these notions.
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INTERSECTION COHOMOLOGY 265

1.1.1. Definitions (see [2]). Let &: Gx M — M an action of a closed subgroup
G c 8!, We will write ®(g, x) = O,(x) = g- x. Throughont this paper every
action will be supposed to be ¢ffective, that is, each @, is different from the
identity, for g # ¢. The map n: M — M/G is the canonical projection onto
the orbit space M}G .

Consider on M the equivalence relation ~ defined by x ~p ff G, =G, .
where G, denotes the isotropy subgroup {g € G/g-z =1z} ofapoint ze M.
The connected components of the equivalence classes of this relation are the
strata of M , which are proper submanifolds of A/ . For each stratum S we
will write Gs the isotropy subgroup of any point of S. There arc three types
of strata: regular stratum (if Gg = {identity element ¢ }), fixed stratum (if
G, = ) and exceptional stratum (if Gg # {e}, G). The projection n: .S — n{3}
is a principal fibration with fiber G/Gs. The union of regular strata is an open
dense subset of M (see [2, p. 179]).

We will write MC the fixed point set of M. The action is said to be a
free action (resp. almost free action) if the strata of @ are regular strata (resp.
regular or exceptional strata).

Since in this section it will be necessary to deal with actions of S' and with
the induced actions on the links §', we introduce the notion of good action
which includes both. The action ®; ¢ x M — M will be said a good action if
G =S8! or M =8 and G is a finite abelian subgroup of SO(f + 1). Notice
that in this case we have the relation $(G x S) C § for each stratum §.

Throughout this section we will suppose that & is a good action. In order to
describe the stratification and the unfolding of M we need to recall some facts
about the local structure of the action @.

1.1.2. Local structure of M (see [2, p. 306]). Each stratum § possesses a
tubular neighborhood A5 = (7, 1, S, D'*') satisfying:

(1) 7 is an open neighborhood of S,

(i) 7:9 — § is a locally trivial fibration with fiber the open disk D'*'
and O/ + 1) as structural group,

(iii) the restriction of 7 to § 1is the identity,

(iv) t is equivariant (or G-equivariant), that is, 1{g-y) =g t(¥},

{v) there exist an orientable orthogonal action Wyg: Gg x & — 8§/ and an
atlas & = {{U, p)} such that ¢: 17" (U) — U x D'*! is Gg-equivariant, that
is,

(lp(g -X) = [:T(X), [g * 93 ?"]:]
foreach g € Gs and x = ¢~'(z(x), [@, r]) € t='(U). Here we have identified
D+! with the cone ¢S = 8 x [0, 1[/S' x {0} and written (&, r] an element
of the cone ¢S'.
Notice that the action W5 is a good action without fixed points. The chart
(U, @) of (v) will be said a distinguished chart of the tubular neighborhood

s .

1.1.3. Stratification of M . For each integer / we put M, the union of strata
S of M with dimS < /. This defines a filtration of M by closed subsets:

M=M,DOM,.,D>---DMOMy2M_ =9
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266 GILBERT HECTOR AND MARTIN SARALEGIE

If the subset AM,,_, — M,_» is not empty then it is a submanifold, not
necessarily connected, of codimension 1, The group (fs acts trivially on S C
M,_—M, > and each g € Gg actstransversally by the antipodal map. This is
impossible because the action @ is a good action. Therefore the above filtration
becomes

M=M,>2M, =My, .=XyD>--- DM DO>My>M., =2.

For the definition of a stratified pseudomanifold we refer a reader to [5]. A
stratified pseudomanifold 1s said to be differentiable if the sirata are differen-
tiable manifolds.

Proposition 1.1.4, The above filtration endows M with a structure of differen-
tiable stratified pseudomanifold.

Proof. We proceed by induction on the dimension of M . For dim M =0 the
proposition is obvious. Suppose that the statement holds for each manifold with
dimension strictly smaller than that of M . We first check the local structure
near a stratum S of M.

Let (U7, @) and W be as in §1.1.2(v). By induction hypothesis the sphere
S’ is a stratified pseudomanifold with the structure induced by the action ¥s.
We show that ¢ sends diffeomorphically the strata of '(U} to the strata of
U xS

Since the isotropy subgroup of any point in t=!(U) is included in Gy, the
map ¢ induces a diffeomorphism between t='(U)n (M; - M,;_,) and

2 ifj<m-1-2,
U x {vertex} if j=m-1{-1,
U x {8 jirom — (8 o JX10, 10 0f j 2 m —1,
where 8/ = (8); > (8),_, = (§),_; > --- 2 (8/)y D @ is the stratification

induced by ¥s.

If the stratum § is not regular we have = (U)N (M — M,_) = U x {S/ -
(8"),_2}x 10, 1[, which by induction hypothesis is a dense open subset of U x
¢S!. Hence the open set M — M,,_, is a dense subsetof M. &

Remark that the trace on - '({/) of the stratification defined by &, is the
same as the stratification defined by Gs. The open M — M,,_» is the union of
regular strata.

An isomorphism between two differentiable stratified pseudomanifolds is a
homeomorphism whose restriction 1o the strata is a diffeomorphism. In partic-
ular, the map ¢ is an isomorphism.

The length of M is the integer len(M) satisfying M, _ienary # Mpotentaty—1
= . For example, len(M) > len(8/) . Notice that the action is free if and only
if len{M)=0.

1.1.5. Equivariant unfolding. If the action ® is free, an equivariant unfolding
of M isjust an equivariant trivial differentiable finite covering. In the general
case, an equivariant unfolding of M is given by

{1) a manifold M supporting a free action of &,

(2) a continuous equivariant map .z : M — M such that the restriction to
M- _fz%;'(z,w) is a finite trivial differentiable covering, and
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[INTERSECTION COHOMOLOGY 267

(3) for each xp € S, § stratum nonregular, and for each %, € %7 (xy) the
following diagram commutes

Y e Ux S x[-1, 1]
(1} _'fjwl Pl

/A U x c8
where

(i) % c M and % C M are Gg-invariant neighborhoods of xg and X
respectively,
(1) (U, ) is a distinguished chart of a tubular neighborhood of §,
(iii) @ isa Gg-equivariant diffeomorphism, and _
(iv) P(x,8,r)=(x, %), |r|]]) fora Gs-equivariant unfolding %y : &
— 8.
Remark that for each stratum S the restriction Zy: %;'(S) — S is a

submersion. The map Zs: # — % is a Gg-equivariant unfolding.

Since the construction of an equivariant unfolding is a technical point without
influence for the rest of the work, the proof of the following statement can be
found in the Appendix.

Propositien 1.1.6. For every good action ©: G x M — M there exists an equi-
variant unfolding of M .

1.2, Stratification and unfolding of 5. Now, we show how the stratification
and the unfolding of M induce a siratification and an unfolding in the orbit
space B = M/G, by means of the canonical projection =: M — B. To this
end, we study the local structure of B.

1.2.1.  Local structure of B. For each stratum S of Af, the image n{5)
is a neighborhood of n(S) (see §1.1.2). The map p: #(.7) — =n(S) given
by p(r(x})) = mt(x) is well defined. We are going to show that 4§, =
(n(F), p, 7(S), D'*'/Gs) is a tubular neighborhood of #{(S} in B.

Lemma 1.2.2. The map p: n{.7) — n(S) is a submersion.
Proof. Let yo be a point of #(S). We choose a distinguished charl {U . ¢} of
A% such thart;

(1) ¥V = n(U} is a neighborhood of yy. and

{2) there exists a differentiable section o of 7: U — V.
Thus, if x is a point of U there ¢xists g € & with g-x € o(V). The
element g is not unique, but g’-x € g(V) implies g~ 'g’ € Gy, then #n({/) =
no(V)=o(V)/Gs. Because 1 is equivariant we get a1t~ (U} = nrlo(V) =
1='e(V)/Gs . Since the restriction ¢: 1~ '6{V) — o(V) xcS' is an equivariant
diffeomorphism we obtain the commutative diagram

lo(V) —2— (V) xS

| |

p VY e ¥ x e(8/Gs)
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268 GILBERT HECTOR AND MARTIM SARALEGI

where p: 8 — §//Gg is the canonical projection and

[y, (8, r]) = (=), [p(6), r]).

Finally, the homeomorphism  satisfies pr, wr({x) = n1(x) = pr(x), where
pry: V x c(8/Gs) - V is the canonical projection. &

The family & = {(V', y)} previously constructed is an atlas of 45,5, . Each
{(V, w) will be said a distinguished chart of #5,;. . In order to simplify some
calculations, we shall suppose that each V' is a cube, that is, it is diffeomorphic
to a product of intervals.

1.2.3. We have already seen that the family {a(S}/S stratum of M} is a par-
tition of B in submanifolds, called strata of B . This leads us to the filtration

"'DB}DB;‘-[D"'DB(}DBq=®,

where each B; is the union of the strata of B with dimension less than or
equal to j. This filtration enjoys the following three properties:

(a) B =B, , where n = m-dim 7,

{b) B— B,_, is a dense apen set, and

{€) Bu_\ — By_z =) n{{strata of codimension 2 with Gs = 8'}).

In order to prove (a) consider a regular stratum S . The projection 7: § —
#(S) is a G-principal bundle and hence dimn(S) = m-dim G. Let § be a
stratum of M, _;. Consider (U, ¢) a distinguished chart of %5 . The density
of M — M,,_, implies the existence of a m-dimensional stratum R of M
satisfying ' (/YN R # @. There exists a stratum # of 8§ (for the action
W¥s) verifying ¢{t ' ({U)NR) = U x #x10, 1[. Hence, dimz(S) = dim¥U <
dim R = m-dim &', and therefore B = B, .

Property (b} is proved in a similar way.

Finally, if n{S) is a stratum of dimension n# — |, we get from the previous
diagram dim(S!/Gg) =0. Thus Gs =8’ and /=1.

For the definition of stratified pseudomanifold with boundary we refer the
reader to [4].

Proposition 1.2.4. The filtration B =8B, D B, 2 =Xg > B,_3 D -2 By >
B_, = @, endows B with a differentiable stratified pseudomanifold structure,
possibly with boundary.
Proof. Assume that the statement is true for any good action of length smaller
than len(M). The boundary 88 = |){=(S)} strata of B/Gs=8' and dim$§ =
m — 2} is a manifold. According to §1.2.2, 8B possesses a neighborhood N
diffeomorphic to the product B x [0, 1[. It remains to show that B - 38 s
a stratified pseudomanifold. We need to check the local behavior of the above
filtration.

Let 7(S} be a stratum of B -8B and (V, y) € # a chart. According to
§1.2.2, for each stratum 7(Sg) # =(S) of B meeting p~' (V) there exists a
stratum dp of S such that the diagram

1V (VIN Sy —5— o(Vyxapx 10, 1]

ﬂl J'ﬂxpxidemity

PV YN A(Sy) — L ¥ x p(ag)x 10, 1
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INTERSECTION COHOMOLOGY 269

commutes. By induction, the quotient 8//Gg is a stratified pseudomanifold,
with strictly positive dimension and without boundary {see §1.2.3(c)). Finally,
since # and p are submersions and ¢ is a diffeomorphism we get that w
is a diffeomorphism. Analogousiy we show that yw sends diffeomorphicalty
p~1nn(S) to V. Moreover y is an isomorphism. &

1.2.5. Unfolding of B. We recall the definition of unfolding of a stratified
pseudomanifold given in [9). For the case len(M) = 0 an unfolding of B 1s
a finite trivial covering. Assume len{M) > 0. An unfolding of B is a contin-
uous map .23 from a manifold B 10 B, such that the restriction .%3: B -
Z7(Zp) — B - Zp is a diffeomorphism in cach component and the following
condition holds:

For each yg € z(S}, S noaregular stratum, and for each § € _%?;"(yg)
there exists a commutative diagram

7 Y VxS Gex] -1, 1]

(2) % | r|

7 2 V x o8 /Gs)
where:

{iy Z c B and ¥ c B are neighborhoods of yy and j respectively,
(i) (¥, w) € & is a distinguished chart of a tubular neighborhood of

S/Gs
(iii) ¥ isa diffeornorphism and .
(ivi Rix, E.r {x, [_z”S;J,G‘(C) |ri) . for an unfolding Zg . : S;'/Gg —
S'/Gs.
Remark that for each stratum S of M the restriction .%%: %, {S/Gs) —

S$/Gs is a submersion. The existence of equivariant unfoldings for M implies
the existence of unfoldings for B.

Proposition 1.2.6. For every good action ®: G x M — M there exists a commu-
tative diagram

— - -

M —L— B
{3) J_-,,l l.x;,

M2~ B
where
(a) 7i: M —Bisa principai fibration,
(b)Y Hy: M — M s an equivariant unfolding of M . and
(¢) % is an unfolding of B.
Proof. See Appendix. &

2. DIFFERENTIAL FORMS

The aim of this section is to recall the notion of intersection differential forms
{see [9]). We also establish a first relation between the intersection differential
forms of A and those of B.
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270 GILBERT HECTOR AND MARTIN 5ARALEG]

From now on we will suppose G = S!. We will write X,y = M,,.» and
Xp = B,_, the singular parts of M and B respectively. We fix two unfoldings
M - M and £3: B — B satisfying §1.2.6. By 7 = (g2, ..., gm) We
denote a perversity, thatis ¢; = 0 and g, < gry < gp + 1 (see [4]).

2.1. Intersection differential forms, The intersection cohomology of M and
B can be calculated with a complex of differential forms on M -Zy, and B-Xp
respectively. This corresponds to the complex of intersection differential forms
{see [9]), which we recall now,

2.1.1. A differential form w on Af — EM (resp. B —Zg) is lifiable if there exists
a differential form & on M (resp. B), called the /ifting of , coinciding with
o oon L (M —Zy) (resp. F5w on %' (B —Zp)). By density this form
is unique.
If the forms ¢ and » are liftable then the forms @w+#%, wAy and dw are
liftable, and we have the following relations:

win=d+i, wAn=dnri, and dw=do.
Hence, the family of liftablg diﬂ“crengial forms is a differential subcomplex of
the De Rham complex of M (resp. B).

2.1.2. Cartan's filtration. Let k: N — € be a submersion with &N and C
manifolds. For each differential form « £ 0 on N we define the perverse
degree of @, written | w]|c, as the smallest integer k verifying

(4) If &, ..., & are vectorfields on N tangents to the fibers of x then
ig,-ig,w = 0. Here iz denotes the mlenor product by ;. We will write
IOle = —oc. Foreach k > 0 we let F; = {w € Q*(N)/|lwll¢c € £ and
ldw| ¢ < k}. This is the Cartan’s filtration of K (see [3]).

Notice that for o, § € Q*(N) we have the following relations

(3)  lle+ Bllc <max{llaflc, (1Bllc) and [laa Bllc < laflc +1lBllc -

2.1.3. The allowability condition is written in Ierms of the Cartan’s filtration
of the submersions .Eii’w:.,&p,l; (S) — S and %:.%; '1S/Gs) — S/Gs, where
S is a stratum of M .

A liftable form « on M — X, is a g-intersection differential form if for
each stratum § included in Iy the restriction of & to %7 '(S) belongs to
Fo Yois) where & is the codimension of §.

Analogously, a liftable form @ on B—Xy isa F-intersection differential form
if for each stratum S/Gs included in I the restriction of & to 5 '(S/Gys)
belongs to F, Q7 STPRE where k 1s the codimension of S/Gy .

We shall write L%’_*(M ) (resp. Z*(B)} the complex of g-intersection dif-
ferential forms. It is a differential subcomplex of the De Rham complex of
M (resp. B), but it is not always an algebra. It coincides with Q*(M) (resp.
O (B)) if the action @ is free.

We show in [9] that the complex of F-intersection differential forms computes
the intersection cohomology. In fact we have the isomorphisms

o HY(Z (M) =THIM) = H(M)= H(M),

o H"(HA(B)) = IHF(B),
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INTERSECTION COHOMOLOGY 271

o H*(%(B,0B))~IHI(B,8B).
Here p denotes the complementary perversity of § (see [4]) and FF(B, 9B)
the complex of differential forms of .Z;(8) which vanish on 8B. In or-
der to make uniform the notations, we will write: H*(Z(M)) = THX (M),
H*(%(B)) = THZ(B), and H*(F% B, 0B))=1H(B, 0B).

2.1.4. An important tool, used in §3 to get the Gysin sequence, is the study of
the relationship between the degrees defining the Cartan’s filtration on M and
B . A first step in this direction is given by

(6) 17 nlls = s

where § is a stratum of Zj; and # is a differential form on #; '(S/Gs). IT
the actien @ has not fixed points, then the codimensions of § and $/Gs are
the same. Therefore, the equality (6) implies

w € F(B) & n'we F (M),

In this case the map #n”: IH-(;(B) — H"(M) 1s well defined.
In order to prove (6) it suffices to remark that in the followings commutative
diagram

FUS) —E— T US/Gy)

£ J_ l-fir
§ ——  S/Gs
the restriction of 7 to the fibers of %4 is a submersion onto the fibers of .75 .

2.2, Invariant forms. It is well known that the De Rham cohomology of a
manifold supporting an action of & is calculated by the complex of differen-
tial forms invariant by the action. The same phenomenon happens when the
intersection cohomology is involved.

2.2.1. A differential form w on M — Z,, 15 called invariant under the action
of & if it satisfies @y = w for each g € . The invariant differential forms
are a subalgebra of Q*(M - X)), which will be denoted by I (M —Z,). It
is shown in [6] that the inclusion JQ* (M — Z,) — Q*(M — Ly) induces an
isomorphism in cohomology.

The following lemmas are devoted to prove that the operators used in [6] send
the liftable differential forms to themselves, This will prove that the inclusion
1722 (M) = T (M — Ly) 0.2 (M) — 727 (M) induces an isomorphism in
cohomology.

Lemma 2.2.2, Consider ©: Gx M — M and ¥'. G x M’ = M' two actions
and f: M — M an equivariant differentiable map. _Suppose there exists an
equivariant differentiable map f: M — M’ with Zpf = f L If G, = Gy
Joreach x € M, then the map f* sends ﬁ%‘(M’) to ‘%E*(M}‘

Proof. For cach form w € A (M') thelifting of f*w is f*@ because £ f*w

= f”i‘;}.w on ﬂ—.,é"g‘(z_w). Furthermore, for each stratum S of X,; there
exists a stratum 8’ of X, with f(§) C 8. This gives us the commutative
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272 GILBERT HECTCOR AND MARTIN SARALEGI

diagram ]
Zsy =L #7sh

fﬁfl l-fw
s —— &

Therefore ||f *@®||s < (|5, which implies f‘(Fqu‘L‘;z(s,}) CF Q. and
then f‘in(M*) C KE‘{M). [

For each manifold N, we will consider on the product N x M the action
G defined by g-(x,y) = (x, g -y) and the equivariant unfolding Zyxy =
identity x Fy: Nx M — Nx M . We shall write 2y NxM — N the canonical
projection.

Lemma 2.2.3. Let A be a differential form on N with compact support. Then,
weZ(NxM)=> fvw/\:r}‘w&e Az (M)

where §,, denotes the integration along the fibers of ny .
Proof. Apply Lemma 2.2.2 to the following commutative diagram

NxM 25, M

Fyx MJ' J_-'/.’u

NxM 2 M
where @y is the canonical projection. We get that 23,A belongs to 2 (N xM).
The result follows by noticing that the N-factor is tangent to the strata. &

Lemma 2,2.4,
w e %"(M) = O'w € F7 (G x M).
Proof. Apply Lemma 2.2.2 to the commutative diagram

GxM -2 . M

-'!(’Ix M J, l—‘ﬂlf

G x M L M
where @ is the action of G on M (see §1.1.61. &

Lemma 2.25. Let H: Nx[0, 1)< M — N =x M be a differentiable map defined
by H(x,t,y)={(Ho(x, 1), y). Then

W€ F (N x M) = hw e F7 (N x M),

where ho(x,y) = [I(H @)(x, t, y{d /a0y d! .
Proof. Consider the commutative diagram

Nx[0,1]xM =~ NxM

“Z:Vxlu.ux.ﬁl lJi\x\r

Nx[0,I]xM —2 NxM
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where H(x, 1, p) = (Hp(x, 1), §). Using §2.2.2 we deduce that H*o belongs
to J(N x [0, 1] x M). Now, since the [0, 1]-factor is tangent to the strata,
we get that ke belongs to 227 (N x M). &

The operators used in [6] to show that the inclusion

IQM —Za) o Q' (M - Zyy)

induces an isomorphism in cohomology are composition of operators of type
§§2.2.3, 2.2.4, and 2.2.5. Therefore we get
Propesition 2.2.6. The inclusion I%‘(M } L%%*(M ) induces an isomorphism
in cohomology.
2.3. Decomposition of invariant forms. In the case of a free action, each in-
variant form on M is written in terms of the differential forms on the orbit

space B and the fiber G. We extend this decomposition to the case of nonfree
actions. First we need some definitions.

2.3.1. The fundamental vectorfield X of @ is defined by the relation X(x) =
T.d. (1), where @, (g) = g-x. This vectorfield is invariant by the action of &
and tangent to their orbits. In particular, it vanishes on the set of fixed points.
Since %, is equivariant then the fundamental vectorfield X and @ and X
are (fjy).-related. That is, (;Z’M).f =Xo%y.

We define the fundamental forms y and ¥ by y = (X, ) and j = alx, ),
where y and ji are two riemannian metrics on M — Zp and M respectively.
These forms depend on the choice of u and . Improving the properties of
# and @ we will have richer fundamental forms.

Lemma 2.3.2. There exist two riemannian metrics p and ji, on M — Xy and
M respectively, satisfying:
{a) p and Qi are invariant,
(b) Fu =i on M - %" (Zu), N
(€) (X, &) =0 for each vectorfield & on M tangent to the fibers of £y
7' (Sy— S, where S is an exceptional stratum of M, and
_{d) Jor each fixed stratum S there exists a Gs-equivariant riemannian metric
A on 8! such that the structural group of Ly : % ' (S) — S can be reduced
to the group of isometries of (§f LA
Proof. See Appendix. &
2.3.3. A riemannian metric x on M —Z,, is said to be a good metric of M if
there exists j satisfying the previous conditions (a)}, {b), (¢) and (d). From now
on we fix a good metric g of M . The following properties of the fundamental
forms associated to u and i arise directly from the preceding lemma.
(1) The Lie derivatives Lxx and L7 are 0.
(i) #(X)=h 0 (and we will suppose / = 1).
i} [[¥{s =0 if § is an exceptional stratum.
iv} lizlls=11f § isa fixed stratum.
(v)
S

1
(
( N .
v) For each fixed stratum § we have ¢*xg = 7 on the fibers of .Z:

F7'(S) = S. Here yg denotes the fundamental form associated to (S, .#)
and {¢, U) 15 a distinguished chart.
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2.3.4, For each @ € IQ* (M —Z;;) there exist two forms @), mnp € Q*(B-Ly)
such that
W="n"tw + ¥ AT,
The forms w; and w-» are unique, in fact 7*w, = iyw and *wr =w— x A
iyw . The above expression will be called the decomposition of w .
Analogously, for each n € IQ*(M) there exist two unique forms %, #; €
Q*(B) such that
n=Rmt AR
This expression is called the decomposition of n.
If w is liftable we get the following relation between the two decompositions:

= + § A,
The relation between the perverse degree of #», n, and #; 1s the following.

Proposition 2.3.5. For each form n € Q*(M) and for each stratum S of M, we
get

I7lls = max{lin sG> NZls + N2llss6,)-
Proof. By (5) and (6) it suffices to show that

Inlls = max{||n s/, > 12)s + In2lls/a,)-
We distinguish two cases.

s S is an exceptional stratum. Fix k > 0. The condition {4) on # is
equivalent to iz - i ¥ = g - I A2 = 0 for each family {&o, ..., &k}
of vectorfields tangent to the fibers of Fy: %571 (S) — § (see §2.3.2(c)).

From (3} this condition is equivalent to iz, -+ ig, 11 = i, - fg,m2 = 0 for each
family {&, ..., &} of vectorfields tangent to the fibers of &5 _%_E(S/Gs) —
§/Gs , which holds if and only if k& > max({llm|ssa,. |#:1s;6,). Thus |Inlls =
max([|mlls/cs » IXlls + Imlls/cs) (see §2.3.3Gin)).

o S is a fixed stratum. Fix k > 0. Since X 1s tangent to the fibers
of %y: Z;(S) — S, condition (4) on # becomes iy --- g #*n = 0 and
ig, - - ig,_ #*my = 0 for each family {&, ..., &) of vectorfields tangent to the
fibers of Fs: F7'(S) = S.

Now we proceed as above taking into account that |7 ls = | (see §2.3.3(iv)).

&»

The form iydy vanishes identically. Thus, the decomposition of dy 1is
reduced 10 dy = n*e for a form e € QB - Lp), called the Euler form of @

(we will also write e,). Remark that e is a cycle. The Euler form & of @ is
the lifting of e.

Propasition 2.3.6. For each stratum S of M we get

] 2 ifScMS and dimS <m -2,
elsras = )
—oc, 0 otherwise.
Proof. We distinguish two cases. N
e S is an exceptional stratum. Since X is orthogonal to the fibers of
G F7U(S)— S then dg(&, )= 2([¢, -1) = 0 for each unitary vectorfield ¢
tangent to the mentioned fibers. Hence we get |é(ls;g, = [ d¥lls < 0 (see (6)).
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Remark that if ® is almost free, then e € ﬁ/ﬁz(B) .

» § is a fixed stratum. Each fiber F of Fy: . %7 (8) — § is equivariantly
isometric to [§" , Jéﬁ’ﬁ) endowed with the free action ‘}TS The restriction 7|
becomes the fundamental form 37 of ‘i’} Then, we get the decomposition

(N é=6+6
where the restriction &|r is the Euler form £ of ‘f’; and &|; vanishes iden-
tically. —

If { > 1 we claim that the Euler form & € Q?(8!//Gs) is not zero; in this
case the restriction é|r does not vanish identically and therefore the perverse
degree ||&||s;g, 1s 2. In order to prove the claim it suffices to verify that [¢] €
IHEZ(S"/GS) is nonzero. Suppose that there exists 7 € % (S/Gs) with dy =
¢. Thus, the differential form xg — p*y is a cycle of FZ'(S!), where xg
is the fundamental form of ¥s. Since [H}(S') = H'(S') = O there exists
fe ﬁ%ﬂ(S’) with df = g — 5*7. We have arrived at a contradiction because

f:8 =R is a differentiable map, df £ 0 (df {fundamental vectorfield of
Ys)=1)and & is compact.

If / =1 the dimension of § is 1. Since é|r is a two form, it vanishes
identically. Therefore [|é|ls;6, <0. &

Corollary 2.3.7. If the action ® has no fixed points, then for each liftable form
o € (M = Zy) we have

(8) wE€ I (M) & w, w € F(B).
Proof. The decomposition of dé is given by: (dd), = ddy + é A @, and
{d@); = —dén. For each stratum § of M we get max(|@]|s, [[d&ls) =

max(||é s/, » lev2llssas , |d@ + € A @2llgsc, . 1 dd3|ls/6,) . Moreover, since
1€ A @allsjes < ll€llsses + lldnlls/os < ll@nllsic, we obtain the relation
max(l|@||s, || délls) = max(ll@ ||/, » 16256, | D156, - | ED2lls)6,)

Notice that the codimension of § in M is the codimension of S/Gs in B.
Thus
b € Fp)_((S) iy, i € F\, Q% (S/Gs),

from which the result holds. &

2.3.8. Euler class. We write F, the unicn of 4-codimensional connected com-
ponents of MY, and also its image by n. Proposition 2.3.6 shows that the
restriction of the Euler form ¢ to B — F; belongs to ﬁ'%z(B — Fy), where 2 is
the perversity (0, 1,2,2,...}. The class [¢] € THA(B - Fy) is the Euler class

of ®. Notice that the Euler class [¢] of ® belongs to H2(B).

3. GYSIN SEQUENCE

In this section we establish the Gysin sequence that relates the cohomology
of M and the intersection cohomology of B. We also give a geometrical
interpretation of the vanishing of the Euler class. Recall that G denotes the
unitary circle S'.
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3.1. Integration along the fibers. Differential forms on A — X, and differ-
ential forms on B — X are related by the integration § along the fibers of the
projection n. The Gysin sequence obtained here arises from the study of this
integration ¢ .

3.1.1. For each differential form w € Q*(M — Xy) we define § w = w;, the
integration along the fibers of =. The form §w belongs 10 Q* (8 - Zp).

Notice that foreach o, § € Q*(B—-Lp) wehave § n*a =0 and § yAn* B = 4.
If the action P is free, the above relations show that the short sequence

0—Q'(B) = Q' (M) S, Q1B =0

is exact. The associated long exact sequence
(9) ﬁH:(M)LH' ! A[e] HH_I{B) HH'I(M)
is the Gysin sequence of the free action ¢ (see [6]).
If the action ® is almost free the relation (8) shows that the integration §
defines a short exact sequence
$

N " . =1
0 — ' (B) 7= 15 (M) — 7~ (B) = 0.

Since M and B are homological manifolds, the associated long exact sequence
is in fact {9} (see Proposition 2.2.6 and [4, §6.4]), which has been proved already
in [7].

If fixed points appear, the above relation (9} is no longer true (see §3.1.10(1)).
The Gysin sequence of ® arises from the study of the short exact sequence

{10) OHKerj{LI%*(M)iﬂlmfﬂO,

where ¢ is the inclusion. The crucial point is to compare Ker ¢ and Im § with
ﬁ’q_"(B) . We will observe a shift in the perversities involved: this is due to the
fact that for each fixed siratum S we have

(1) codimension of § in M = (codimension of S/Gs in B}+ 1,

(3) llxlls=1, and

{3) lléllsiG; = 2 (except for the case dimS =m — 2).
This led us to consider the following perversities:

F=(r,r,rn,r,...) with n=ri=r; =0,

F+2=(0,1,2,r5+2,r+2,...),and

q= (0, 1,2,2, r5+2,r6+2, .

We begin recalling Propositions 3.2.3 and 3.3.2 of [§].

Proposition 3.1.2. Let 4 be an unfoldable pseudomanifold (possibly with bornd-
ary). Fix i=)1—c¢, e[ aninterval of R. The maps pr: I x {4 —Z4) - A —2Z,
and J: A - X, — I x (4 LX,), defined respectively by pr(t.a) = a and
Ja) = (Ig a} for a fixed ty € I, induce the quasi-isomorphisms:

D H(A) = T (I x A) and J7 (T x A) — FZ(A).

Pmof(skgtch}. Consider pr; x4 — A and J: 4 — I x A defined by pr(f., a) =
& and J(a) = (to, a). The two operators pr* and J* are well defined be-
cause, for each stratum S of A4, we have lpriew = pr @|;.s < ||@|ls and
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IJ*n = J*Alls < |[#ll;xs. for any liftable form & € Q*(4 — E4) and 5 €

(] x (A —-Z4)). In fact, these two operators are homotopic; a homotopy
operator is given by Hp = fm_ 1. This comes from the following facts:

. m:fro_ﬁ (on [ x A),

o [Hnllres < WAllrxs . and
. dHﬂ—_qu = (=)~ -prdn,
where € Q( x (A—Z,)) is a liftable form. &

Proposition 3.1.3, Let A be an n-dimensional compact unfoldable pseudomani-
fold. Then |
. HNZ (4 iF 1< Gnel s
H!(7 (cA)) g{ (F7 () VS Gne
0 Ifl > qﬂ+| »

where the Isomorphism is induced by the canonical projection pr: (A — Z )%
10, 1[—= (4~ Z,4).

Progf (sketch). The complex .%‘(C‘A} is naturally isomorphic {(by restriction)
10 the subcomplex C* of ‘%;(Ax ]-1, 1{) made up of the forms » satisfying:

(a) n=0 on {4 —Z) x {0} if (degree of #) > guy1,

(b) dn=0 on (4 -Z)x {0} if (degree of #) =g, , and

(c) e*n=non (A-EL)x(]-1, [{-{0}) where g: Ax]-1, I[— Ax]-1, I[
is defined by o(a, {) = o{a, -1).

With the notations of the above proposition (for € = | and #; = 0), we get:
pr{ZH{A)) € CF, for i < guyyi prr(F(AYNd™HOY € O, for i = gpy1;
J*Ct = {0}, for i > g,y and H(C*) ¢ C*. The same procedure used in
§3.1.2 finishes the proof. &

3.1.4. Kernel of §. The elements of Ker¢ are the differential forms 7w
verifying

(i) we Q*(B - Zyg) 15 a liftable form,

(it) @ € F, g-“?;'(sf{?s) for each exceptional stratum § with dim .§ =

n — k and for each fixed stratum § with dim.§ =
n—k<n-4,

(i) @ € KR for each fixed stratum § with dim S = n — 4, and

5 8Gs)

(iv) o e FUQB;“{Sst) for each fixed stratum .§ with dim.S = n —- 2.

(See (6).) The last two conditions are always fulfilled. In fact, the dimension
of the fibers of Z5:. %5 '(S/Gs) — S/Gs are 2 and 0 respectively.

Proposition 3.1.5. Themap n*: [ H:+ 5

Proof. Consider Z*(8) the subcomplex of Q*(8 — Zp) made up of the dif-
ferential forms satisfying (i} and (ii}. This complex is isomorphic to Ker § by
n*. The relations § < r+2 and ¢, < r,_, + 2, for k > 6, imply that the
restriction Z*(B) — ,/"‘%(B — Fy) is well defined. Now, it suffices to show
that this restriction induces an 1somorphism in cohomology. First of all notice
that for each stratum S the space 8//Gs is a homological manifold. We have
several possibilities:

(1) B=Vxc{8/Gs) and G5 #S'. Wehave F, = & and Z*(B) =77 (B).
The result comes from the fact that B is a homological manifald {see [4, £6.4]).

(B—Fyy — H*(Ker §) is an isomorphism.
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(2) B =V xc(8/Gs), Gs =S, and /> 3. We have F; = &, the local
calculations of the intersection cohomology give [ H;_z(B) = HL_E(S" 1Gs) if
j<n+2,and THL(B) =0 otherwise.

On the other hand, the operators used in §§3.1.2 and 3.1.3 preserve the Car-
1an’s filtration. Following the same procedure used there, we get:

H @ (B) = 1 (2(e8//69) = {0 € (/651 1,10

such that
@w=0  on(S'/Gs—Zg) % {0} if j > g =1 +2,
(b)dw=0 on (Sf/GS ‘ESfst) x{0}if j=qyy=r+2, and

{c)o*w=w on(S/Gs—Zg)x {0}}) ,

= H'({we Z/(8'/Gs)/w=0if j>r+2, anddw=0if j =71 +2}),

which is isomorphic to [ H:+ 2(B)l .

(3) B=V xc(8/Gs), Gs =8', and ! = 3. We have Q%’;_E(B—F;;) =
ﬁ:r_z( V x{83/Gs)x )0, 1[}. The local calculations of the intersection cochomol-
ogy show THZ (B ~ Fs) = H*(8%/Gs).

Using the same procedure as before, we get

H'(Z(B)) = H*(Z(c(8*/Gs)))
= H ({we Z (S /Gsix | -1, [)/o"w — w})
= H*(8}/Gs).

(4) B=V xc(8/Gs), Gs=8',and / = 1. Wehave Zg = @ and therefore
2*(B) = J;(B) = {liftable forms of (*(B)} .

(5) General case. The space B possesses a cover by open sets # = (W}
and every W satisfies one of the previous conditions, We finish the proof if
we construct a subordinated partition of unity {/} such that

(11) weZ (B-Fy) (resp. Z°(B)) = fwe % (B-Fy) (resp. I°(B)).

To this end, take {f} a partition of unity made up of controlled functions (see
[13]). It is easy Iohcheck that each function f is a liftable one (see [8, §4.1.5]).
Since the lifting f is constant on the fibers of each ¥5: % '(S/Gs) — S/Gs
we get ||/ |lsjas = | dfllsias £ 0. Therefore (11) holds. &

3.1.6. Image of §. Recall that for a liftable differential form w = n*a + x A

n*f on IQ*(M — L) the perverse degrees |[@||s and ||ddl|s, where S isa
stratum of X, , are calculated by

s = maxillallsse, . Exlls + 18 1si0)
and
| délls = max(lda + é A Bllsray - 1 Zs + 1 dBllsie,)-
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Therefore, a differential form z*# belongs to the image of ¢ if and only if
there exists a differential form o satisfying

(i) a, f€Q°(B - Zp) are liftable forms,
(iya, B e F, Q”f for each exceptional stratum § with dim S =
8

1 (§/Gy)
n-k,
(iii) g € Fq*_IQ};_.(S!Gs}, for each fixed stratum § with dimS=n -k <
lallsyes < gx and n-—4
lda+ & A Bllsjcs < i
{iv) Bls;, =0 for each fixed stratum S with dim S = n — 2.

The relations 7 < ¢ and ry,_ < g, — 1, for k > 4, imply that FZ7(B, @8)
is a subcomplex of Im § (1aking o = 0). Moreover we have
Proposition 3.1.7. The inclusion Z*(B, dB) < Im ¢ induces an isomorphism
in cohomology.

Proof. We consider several cases
(1) B =V xc(8/Gs) and Gy # §'. We have A (B, 0By = Z(B)
and Im § = L%‘(B). The result comes from the fact that 5 is a homological
manifold.
(2) B=Vxc(S'/Gs), Gs=8',and { > 1. We have Z'(B, 88) = #."(B)
and therefore
; .
WA B. 9B)) { H/(S'(Gs) if j<n,
0 if j=r,

(see §§3.1.2 and 3.1.3).
On the other hand, remark that we can change in (iii} the form é by the

(pullback of the) Euler form & of ‘Fi“us {see (7)). Since the operators used in
§83.1.2 and 3.1.3 preserve the form £ we get, following the same procedure
used there, the isomorphisms

H" (lm j{) = H* (Im ){: L7 (c8)) — @' (e(S - ZS;)/GS})
= H({B € (S /Gs)x 1 -1, H[}/3a € T (S'1Gs)x 1 -1, L)
satisfying

(@a=4=0 on (SI/GS—Zsf;G,JX{O} ifj>r+2,
(byda+enrf=df=0 on (8/Gs ~ Ly, ) x{0}ifj=r+1, and
(c)aa=aandg"B=p on (8/Gs—ELg,6,) x {0}})

= H* ({8 € Z/(8'/Gs)/3a € Z*'(S' | Gy) satisfying

{(ala=f=0 ifj>rn+2, and
(bydo+enf=dp=0 if j=r+1})

These calculations imply directly

- HI(S[Gs) if j <.
4 [y
" (lm){)_{o if j >+ 2
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Consider now a cycle § in L%;_’”'(S"/GS) with da+ e A B = 0, for some
o€ %””(S"/GS) . Since the action Wg has not fixed points, the map

Alel: H (7 (8'/Gs)) — H 3 (F (8 Gs))

is a monomorphism (see §3.1.1). Thus, there exists y € Z'($//Gs) with d, =
£ . This implies the vanishing of H"+(Im §) and therefore the isomorphism
H~(Im §) = H*{(J%(B, 68)).

(3) B=V xc(8/Gs}, Gs=S",and /=1. Wehave B=V x [0, If and
therefore Im § = % *(B, 3 B) = {liftable forms} N Q*(B, 88).

(4) General case. Same procedure followed in §3.1.5(5)). &

We arrive at the main result of this work.

Theorem 3.1.8. Let &: 8! x M — M be an action of S' on a manifold M .
For each perversity F=1{0,0,0, rs, rg, ...) there exists a long exact sequence
’ ¢ i-1 1 1yy Al it i
a2 -~ H'(M) — IH” (M/S", 0(M/§"})) — IHH_Z((M- Fa)/8")
_f; HJ'+I {M) ..

where

(@) § is the integration along the fibers of the projection ©: M — M/S!,

(b} r+2=(0,1,2,rs+2,rs+2,...).

(c} Fy is the union of 4-codimensional connected components of the fixed point
set of @, and

(d) [e] IH%-( (M — F3)/S"} is the Euler class of @ .
Proof. Consider the perversity §=(0,1,2,2,r5+2,rs+2,...}. The short
exact sequence

0— Kerj{_H 15 (M) S, lmf—w
produces the exact long sequence

= HU(M) £, H! (lmf) 2, gitl (Kerj() L HM M) — -
(sce (10) and Proposition 2.2.6). The connecting operator of the sequence is

defined by J[B] = [7*(e A 8)]. The result now comes from Propositions 3.1.5
and 3.1.7. &

Corollary 3.1.9. Let ©: 8! x M — M be an action of S' on a manifold M.
If the codimension of the fixed point set is at least 5, we get the following exact
sequence

oo — HY(M) 5, H= (M/SY) A, THE ' (MS") 2= H*H (M) — -

Proof. By hypothesis we have Fy = @ and 8M/S' = @. Applying Theorem
3.1.8, for F=0, and [4, p. 153] the result follows. &

3.1.10. Remarks. (1) The sequence (12) does not degenerate necessarily in (9).
In fact, consider S¥+! the unit sphere of C/*!, where the product induces the
action ¥: §' x 8¥+1 _, &1 Jdentify S¥*? with the suspension IS¥+! =
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S [—1, 1)/{8¥* x {1}, 8¥*Ix{—1}}. Consider the action ®: §! x§¥+? —
§%42 defined by (8, [x, {]) = [¥(8, x), 1]. If { > 2 then H(§¥*+?/8") =
Fy = @ and the sequence (12) becomes

N H£(521+2) - HE—I(ECPJ') _ IHEHI(ZCP-’) _ H!'+I(SZ.’+?_) -
On the other hand, the sequence (9)
. _’Hf(sl."-l—z) - Hi—l(ECPf) - H!'+1(ZCP-’) — HE+I(SSF+2) —

cannot be exact, therefore it is different from (12).
For / =1 we get

P H!-(S-t) — H(’—l(sS) _ HHI(SE) - H:’+I(s4) —_
and for [ =0 we obtain
= HU(SH = H7(j0, 1), {0, 1}) — Y0, 1)) — H'*Y(8h) —

{2) Up to a nonzero factor, the Euler class of ¢ does not depend on the
choice of the good metric. Indeed, let x4, and u: be two good metrics of M.
Suppose first that #(M/S!) = @. For ¥ = 0 we obtain from the two Gysin
sequences

HO(M/S") M

IHZ((M - F)/S') Z— HY(M),  j=1,2

The space H°(M/S') is a dimension one, then, by exactness, dimKerz* < |
and Im{Afe, 1) = Kera* = Im{A[e,,]). Now, there exists 4 € R — {0} such
that [e,, ] = Aleg,].

If (M /S') # @ we get the above result for Af/S'-8(M/S!). Now it suffices
to apply the isomorphism IHE‘(M/S') o IHE"(M/S' - 9{M/8")), induced by
restriction, to get the result.

In particular, the fact that the Euler class of & with respect to the metric x
vanishes does not depend on the choice of the good metric u.

(3) If the action @ has not fixed points, we obtain two exact sequences

= won 4 g onshy N pmogsy 2
L HY(M) 4, H-YM/SY NE H* Y M/SY

The first is {12) and the second one is given by [8]. Here E denotes the Euler
form associated to a global invariant riemannian metric on M. The same
argument used in (2) shows that [e] and [£] are that there exists 41 € R - {0}
such that [e] = A[E].

3.2. Vanishing of the Euler class. Consider $ an almost free action on a
compact manifold A . The Euler class [¢] € H*(M/S') vanishes if and only
if there exists a locally trivial fibration T: M — S', whose fibers are transverse
to the orbits of & (see [7, 8]).

We show now that if the action @ has fixed points, the vanishing of the Euler
class [e] € IH%((M— Fy)/8Y) has also a geometrical interpretation, for that we
need some preliminary results.
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Lemma 3.2.1. If the Euler class of © vanishes then the codimension of M5 is
at most 1wo.

Proof. Let S be a fixed stratum on Af . Since the Euler class of ® vanishes
then the Euler class of ¥¢ also vanishes. From §3.1.10(3) and [8, §4.3] we
deduce H'(S') # 0 and therefore / = 1. &

Lemma 3.2.2, Suppose that M is s compact and the codimension of M 8! s two,

There exist a compact manifold M , an almost free action ®: S' x M — M and
a commutative diagram

where
(1) Fy is an equivariant differentiable map,
(ii) the restriction of Ly 1o each connected component of C of M -
Z; (M%) is a diffeomorphism, and

(iii) the adherence C is manifold with boundary Z,;' (MS').

There also exist wo good metr:cs u and i, of M and M respectively, such
that .Sﬁ}y i, on M- .S‘” HZar).
Proof. Forthe first part we proceed as in §4.1.1, taking M3 instead of My .

For the second one we remark that the set of fixed points M5 has a neigh-

borhood on M which is diffeomorphic 1o M3 x D?. The restriction of the
above diagram to this neighborhood becomes

MY S SIx]— 1, 1]
MS' x8lx] -1, I[—2 M x D2

where

Galx. 0.1 =(x, [0, 1], Zplx, é P =(x.%(8),r),
Frlx, 8, r) = (x, [Z(8), 7D
and % : S! — S is a trivial covering.
Out of that neighborhood we take u the restriction of a good meltric of M
and 2 =.Zju. Inside we consider: = v + 20 d0+dr?, f=v+df+dr

and g = v +d6 + dr? where v is a riemannian metric on MS' . 48 is an
invariant metric on 8' and dr? is the canonical metricon } -1, 1[. It is easy
to see that they satisfy the given conditions. &

Lemma 3.2.3. Suppose that the codimension of MS' is two. The Euler class of ®
and the Euler class of @' 8 x (M — M3y — (M — M%) vanish simultaneously.
Proof. The orbit space M/S' is a homological manifold with boundary
MS'/S' . Thus, the inclusion (M — MS')/S' — M/S' induces an isomor-
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phism H*((M — M5'}/S") = H"(M/S"). We have finished, because the Euler
class of @' 1s the restriction of the Euler class of @, for a good metric. &

A singular foliation # (see [11]) on M is said to be transverse to @ if for
each point x € M — M3 the leaf of & and the orbit of & passing through
X , are transverse,

Theorem 3.2.4. Let &: S' x M — M be an action of S' on a compact manifold
M . The following statements are equivalent

(a} the Euler class [e] € IHEE((M — F4}/SY) vanishes, and

(b) there exists a singular foliation transverse to O, whase restriction to M —
M3 is a locally trivial fibration over S' .

Proof. If there are no fixed points, the result was already proved in [8, §4.1],
by means of §3.1.10(3). Then, we can suppose MS £g.

(a) = (b} Take u and j the metrics given by Lemma 3.2.2. Since .Z3u = j
we get Zy7[e] = [é] and therefore [] = 0. By §3.1.10(3) and [8, §4.1], there
exists a locally trivial fibration T: M — S! _transverse to the fibers of @ .

Let C be a connected component M- Z‘;‘ (MS'). It is easily checked that
the distribution (Zs).{Ker T.NTC) is locally of finite type, therefore it defines
a singular foliation ¥ (see [8, pp. 185-186]). By §3.2.2(ii), the foliation .% 1is
transverse to @©. So, it remains to verify that the restriction of ¥ to M — MS
is defined by a locally trivial fibration over s,

Since the restriction % C — (M — M%) is a diffeomorphism it suffices
to show that T: C — S! is a locally trivial fibration, Take a fiber & of Y
we gel M = N x [0, 1]/ ~, where {x, 0 ~ [f(x), |}, for a diffeomorphism
f: N - N. The fibration T becomes T{([x, f]) = ¢*? and the action is
tangent to the [0, I]-factor. Since C is invariant, there exists a submanifold
Ny € N, invariant by f, such that C = Ny x [0, 1]/~ . This finishes the proof.

{b) = (a) We show first that the codimension of MS' is two. Let S be
a fixed stratum of ®. The locally trivial fibration given by (b) is defined by
a closed differential form. Since §' is an invariant submanifold of A — MS'
then the restriction of the above form defines a locally trivial fibration on §
transverse to ‘Fg (see [12]). From [8, §§4.1 and 4.3] we deduce that the Euler
class of Wg vanishes, and therefore / = 1.

Consider on M —MS' an equivariant riemannian metric & such that: (i) the
leaves of & and the orbits of & are orthogonal, and (i1} v(X, X) = 1. Thus,
the associated characteristic form y is a cycle. That is, the Euler class [£] (in
the sense of [8]} of @: 8! x (M — MS'y — (M - M3y vanishes. By §3.1.10(3),
the Euler class [e'} of & also vanishes, Now we apply Lemma 3.2.3. &

As in [8, §§4.3 and 4.4], we obtain

Corollary 3.2.5. Under the conditions of the previous theorem, if B has no bound-
ary and H' (M) =0 then the Euler class of ® is nonzero.

Proof. If the Euler class of @ is O then the action & is almosi free (consider
§3.2.1 and 4B = @) and we can apply {8, §4.3]. &

The example §3.1.10(1), with / = O, show that the hypothesis &8 = @ 1s
necessary.
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Corollary 3.2.6. Under the conditions of the previous theorem, if the Euler class of
& vanishes, then any equivariant unfolding M of M possesses a finite covering
of the form N x S},

Proof. Let u be a good metric of M. The relation Zj7[e] = {é] imply the

Euler class of @ vanishes. Therefore, M possesses a finite covering of the
form N xS! (see[6]). &

4, APPENDIX

The Appendix is devoted to the proofs of Propositions 1.1.6, 1.2.6, and
Lemma 2.3.2.

4.1. Preof of §1.1.6. The construction of the equivariant unfolding that we
exhibit now is the equivariant version of [1]. We need the two following lemmas.

Lemma 4.1,1. Suppose len{M) =1+ 1 > 0. Then there exists a manu"oid M

supporting an action of G and a continuous equivariant map S M = M
such that:

(a) len(A) < len(M)

(b ).S"M (M .S” WMo ) = (M ~M,,_,_1) isafinite trivial differentiable
covering, and

(c) for each stratum S of dimension m—{ -1, for each xq € S and for each

Xo € & Uxy) there exists a commutative diagram

7 P L UxS'x]-1,][
(13) l Ql

Y — U x ¢St
where

) oM and ¥ C M are neighborhoods of xo and Xa respectively,

(i) (U, @) is a distinguished chart of a tubular neighborhood of S,

(i) ¢ is a Gs-equivariant diffeomorphism, and

(iv) Q(x,8,n=_(x,[8,]D).
Proof. Let ¥ be the family of strata of M with dimension m —/— 1. We
choose for each § €% a tubular neighborhood 4% = (F5, 15, S, D'*1) asin
§1.1.2. Notice that the map ;e » 757 Uges 75 = Usesr S 1s equivariant. For
each § €.% consider

Ds = {x € Ts/o(x) = (a(x), [0, ;D). (U, ¢) e ¥}

It follows from §1.1.2(ii) that | g 5 Ds is a submanifold of M of codimension
1. The map

Se.7 Ses

(U Ds) (1- 1, 1={0}) = | J (T - 5)

defined by F{z,r) = ¢~ '(15(2), [0, |r]]), where @(z) = (15(2),[8, 3], is a
two-fold equivariant dlﬂ'ercntlable trivial covering.
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We define now .§'i{: Mo M.

j?isthequoﬁcntof{ (ﬂf——[J S) x{—l,l}}
Se.
U{(Uik)x}%,ﬂ}
Se.”

by the equivalence relation generated by
(x, j)~{z,r)iff [r| = jrand x = F(z, ]},
—~ X ify=(x,jle (M- #oyx {1, 1},
F(zser lfy:(zsr)E(USEst)x]_]&l['
The set M is a manifold supporting an action of G (taking the trivial action

on {1, 1} and ]-1,1[}. The map Py isan cqulvanant functlon By con-
struction len(M) len(M)—l and the restriction of .jM to M .f’ " M—iz))
is a finite trivial covering. This gives {a) and (b). N

In order to check (¢} we first notice Lllat near $ € .7 the map Zys becomes
_C?,;,r: Dsx] -1, 1[— Js defined by Liy(z,r) = F(z, |r]). Consider (U, ¢)
a{_flistinguished chart of #5 with xg € U and take % = ¢~ (U) and ¥ =
F %) whichis (1='(U)N Dg)x ] -1, 1[. They satisfy (i) and (ii).

Define themap ¢ by @iz, r) = (15(z), 8, r), where ¢(z2) = (15{z}, [, %]);
it is a Gs-diffeomorphism satisfying (iv).

Since the isotropy subgroup of any point of % is included in G we conclude
that the trace on % of the stratification defined by G is the stratification defined
by Gg. Therefore ¢ is an isomorphism, which gives {ii1). &

The equivariant unfolding is rigid in the following sense.

Lemma 4.1.2. Let T: Hx N - N be a good action of a Lie group H over a
manifold N. The group H also acts on N x I, where I is an interval of R,
by h-(x,ry={h-x,r). If Suxs: NxI — NxI isan equivariant unfolding,
then there exists a commutative diagram

NxI — . NXx1I

(14} _'f}gxidelm\ [.ﬁu

Nxi
where Fy: N — N is an equivariant unfolding of N and [ is an equivariant
diffeomorphism.
Proof. By definition of equivariant unfolding the map Z.; focally looks like
the application:
(15) P x identity: U x Six]—1, [[xJ — U x ¢S x J,
where J < I 1s an interval {see §1.1.5). Notice that under (15) the map

q: NxI— I, defined by g(¥) =1 for £y (3) = {x, 1), becomes the projec-
tion on the J-factor.
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Using {135) we can conclude:

s ¢ IS an equivariant submersion, and

s the restriction Fy.;: ¢~ '{0) = N x {0} = N is an equivariant unfolding
of N.

The first property implies the existence of a commutative diagram like (14)
with Fyxrxidentity: ¢ 1 {0)x] — NxI instead .Zy xidentity: NxI — NxT,
Now, the second property finishes the proof. &

4.1.3. Proof of §1.1.6. Assume inductively that _the statement 15 true for any
good action of length smaller than len{ M ) Let _z”u M — M bethe equivari-
ant map given by §4.1.1. Recall that len{ M )y < ]en(M ), therefore by induction
there exists an equivariant unfolding .,z"ﬁ- M — M. We consider the com-

position Z = QMQM, which verifies §l.1.5( ) and {2). It remains to verify

3

( )Let Xo be a point of a nonregular stratum S and let X be a point of
Fxp). If xo ¢ M,,_,_, we consider %, € M with Frl%e) = xp and we

apply the induction hypothesis to ,z‘fu If xo € M,._;_, we apply §4.1.1 and

we obtain the commutative diagram (13),

Defining # :_2?;‘(?2) , we get (1) and (ii}. Since @ isa Gg-equivariant iso-
morphism the composition @.?ﬁ is a Gs-equivariant unfolding. By the previ-
ous lemma therc exists a (s-equivariant diffeomorphism y: U/ x S§'x
1-1, I[— Z such that ¢.%%;7 = identity x .Zg x identity. We take ¢ = y~!
which verifies (iii) and (iv). &

4.2. Proof of §1.2.6. Let #y: M — M be an equivariant unfolding of M
(see Proposition 1.1.6). Since %3, is equivariant it induces the continuous map
S%: M/G = B — B defined by Z3(7(¥)) = 7.%(X). Then (a) and (b) hold.
In order to prove (¢) assume inductively that the statement is true for any good
action of length smaller than len{Af) . In particular, for any nonregular stratum
S we have a commuiative diagram

§ 2 é!/GS
(16) 4| |5y
g L . S/Gs,

satisfying (a), (b}, and (c).

Take yo € #(S), ¥o €% '(Vo), xp =7(vo), and Xo = #(Jg) . Consider the
diagram (1) given by Proposition 1.1.6. We can choose the open set /' small
enough to have

(1) ¥V =x(U) is a neighborhood of )y, and

(2) a differentiable section ¢ of n: U/ — .

Define % = p~'(V) and Z = .2, (7). We get (i) and (ii}). Following the
same method vused in the proof of Proposition 1.1.2 and using the equivanance
of iy, we can write

7 =% p Wy =22 wr e (VY = 2 e e (V) Gs.
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Since the restriction ¢: %, Li-lg(V) - a(V )x§l’x -1, 1] isa Gs-equwanam

diffeomorphism (see §1.1.5), it induces the homeomorphism : 7 — V x

§!/Gsx]1—1,1[. The map y satisfies (iii). Finally, for each #(%) € 7 we
can write

Ry#t(%) = R{m x p x identity}g(x) (definition of ),

= [1Pg(X) (see (16)),
= 234 (X) (sce( ),
= ynZy(X) (see §1.2.2),
= w257 {%) (see (3)),

from which (iv) is satisfied. &

4.3. Proof of §2.3.2. We prove this result for any good action, where we
suppose X =X =0if G#S'.

Assume inductively that the statement is true for any good action such that
the length of the induced stratification is smaller than len{df). It suffices to
construct two riemannian metrics v and 7, on M — X and M respectively,
satisfying {b), (¢), and (d); in this case the metrics

= { & and ﬁzf&"ﬁ
IR %

(see [2, p. 304]), verify {a), (b), (¢), and (d).

In order to get ¥ and & we proceed in two steps:

(I) construction of two riemannian metrics vz and g on open sets of the
type % — Xy and % respectively (see (1)), satisfying (b}, {c¢), {d}) and

(II) pasting them by a partition of unity.

(I) Fix an open set # as in (1). Consider .# and A two riemannian
metrics, on 8~y and §' respectively, satisfying (a), (b}, (¢), (d) and invariant
by the structural group of Z, which exist by induction. By means of (U, ¢)
we identify (Z, %, ) with (U x ¢8', U x §/x] -1, 1[, P). Now we

distinguish two cases.
» S is a fixed stratum. We define vy = gy +.4 +drt on % —Zy and

Dy = yy + # +dr* on ¥, where uy; is any riemannian metric on U .

We check the properties {b), (¢), and (dlu

{(b) P*uy = uy +.?S}'./f+d?2 = fy + M +drt = By .

{c) For each stratum R meeting % the fibers of %3 .27 '(R) — R are
included on thc ﬁbers of P . Notice that each of these fibers is Ge-equivariantly
isometric to (Sf ) J. We use now the induction hypothesis,

(d) By construction.

s S isan except:onaf stratum. The fundamental vectorfield X is trans-
verse to the Six J— 1, 1] factor. Thus, there exists a decomposition TY =

(S"x]—l l{)EBE where X istangentto E. The map P induces a decom-
position T(# —Zy) = T((S' - Zg)x 10, 1{} @ E, where E is the subbundle
PE The vectorfield X is tangent to £. We deﬁnc vy = M +dr’ + u, and

= A +drt+ Pru, where g, is any riemannian metric on £ . We need to
check properties (b) and ().

(b) Py = ZgM +dr’ + P ) =iy .
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(¢} The vectorfield X is orthogonal to the factor S/ 1-1, 1] and then 10
the fibers of %, : %7 (R) — R, for each stratum R meeting # .

(II) Let E = {#} and S = {2,7} be coverings of M and M respectively
made up of open sets as in ([). Consider {ry , iy }y = a family of riemannian
metrics satisfying (b), (¢), and (d). Fix a partition of unity {fz: # — [0, 1]}
subordinated to Z. Notice that the family { fy = fuBu: 7 — [0, 17} 1s
a partition of unity subordinated to 2. Deﬁngv the riemannian metrics v =
Yefuvy on M —Zpy and # = 3= fyDy on M. Ttis easily checked that v
and & satisfy (b), (c), and (d). &

Added in proof. Since then, we have learned about the work of K. Janich, On
the classification of O(n)-manifolds, Math. Ann. 176 (1968), 53-76. The equi-
variant unfolding constructed in the Appendix 1s the version without corners of
the desingularisation introduced in the above paper. So, we have the uniqueness
of this equivariant unfolding. In particular, Lemma 4.1.2 follows directly from
this fact.
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