The basic intersection cohomology of a singular riemannian foliation.

Finiteness and Poincaré duality

Martintxo Saralegi-Aranguren Université d'Artois Robert Wolak Uniwersytet Jagiellonski

We prove that the basic intersection cohomology $I\!H^*_{\overline{p}}(M/\mathcal{F})$ of the singular riemannian foliation \mathcal{F} determined by an abelian isometric action

$$\Phi\colon G\times (M,\mu)\to (M,\mu)$$

is finite dimensional and verifies the Poincaré duality. This duality includes two well-known fareway situations:

- Poincaré duality for basic cohomology (the action Φ is almost free).
- Poincaré duality for intersection cohomology (the abelian Lie group G is compact).

Poincaré duality

For an orientable compact m-dimensional manifold M the cohomology $H^*(M)$ is finite dimensional and the pairing product

$$\int : H^*(M) \times H^{m-*}(M) \longrightarrow \mathbb{R},$$

defined by

$$(\alpha,\beta)\mapsto \int_M \alpha\wedge\beta,$$

is non degenerate.

Riemannian foliations

- The leaves of a foliation \mathcal{F} have the same dimension ℓ .
- These leaves are locally at constant distance.
- The transverse structure M/\mathcal{F} "is a manifold".
- An almost free isometric action $\Phi: G \times M \longrightarrow M$ produces a riemannian foliation.
- Working example.

$$\Phi\colon \mathbb{R}\times\mathbb{S}^5\longrightarrow\mathbb{S}^5$$

with

 $\Phi(s, (z_1, z_2, z_3)) = (e^{ias} z_1, e^{ibs} z_2, e^{ics} z_3),$ for $a, b, c \in \mathbb{R} - \{0\}.$

The basic cohomology $H^*(M/\mathcal{F})$

- $-\mathcal{X}(\mathcal{F})$ vector fields of M tangent to \mathcal{F} .
- Basic differential forms $\omega \in \Omega^*(M)$ with

 $i_X \omega = i_X d\omega = 0$ for each $X \in \mathcal{X}(\mathcal{F})$.

- Complex of basic differential forms $\Omega^*(M/\mathcal{F})$.
- Basic cohomology $H^*(M/\mathcal{F})$. Finite dimensional.
- Poincaré duality. The pairing product

 $\int : H^*(M/\mathcal{F}) \times H^{n-*}(M/\mathcal{F}) \longrightarrow \mathbb{R},$

defined by

$$(\alpha,\beta)\mapsto \int_M \alpha\wedge\beta\wedge\nu$$

is non degenerate, where $\nu \in \Omega^{n=\dim \mathcal{F}}(M)$ is a tangent volume form (orientability condition): a volume form on each leaf.

Example

 $\Phi \colon \mathbb{R} \times \mathbb{S}^5 \longrightarrow \mathbb{S}^5$ with

 $\Phi(s, (z_1, z_2, z_3)) = (e^{ias} z_1, e^{ibs} z_2, e^{ics} z_3),$ for $a, b, c \in \mathbb{R} - \{0\}.$

- Actors

- Fundamental vectorfield $X \in \mathcal{X}(\mathbb{S}^5)$.
- Connection form $\chi \in \Omega^{^{1}}(M)$
- Curvature form $e = d\chi \in \Omega^2(\mathbb{S}^5/\mathcal{F}).$
- Euler class $[e] \in H^2(M/\mathcal{F}).$

$$-H^{i}(\mathbb{S}^{5}/\mathcal{F}) = \begin{cases} \mathbb{R} \cdot [1] & i = 0\\ \mathbb{R} \cdot [e] & i = 2\\ \mathbb{R} \cdot [e \wedge e] & i = 4 \end{cases}$$

– Poincaré duality ($\nu = \chi$):

$$[1] \leftrightarrow [e \wedge e]$$
$$[e] \leftrightarrow [e]$$

Singular Riemannian foliations. SRF

- The leaves of a foliation \mathcal{F} may have different dimensions.
- These leaves are locally at constant distance.
- Putting together the leaves with the same dimension one gets a stratification S. For each stratum S, the restriction (S, \mathcal{F}_S) is a riemannian foliated manifold.
- The transverse structure M/\mathcal{F} "is a stratified pseudomanifold" in the sense of Goresky-MacPherson.
- An isometric action $\Phi: G \times M \longrightarrow M$ produces a singular riemannian foliation.
- Working example.

$$\Psi\colon \mathbb{R}\times\mathbb{S}^6\longrightarrow\mathbb{S}^6$$

with

$$\Psi(s, [z_1, z_2, z_3, t]) = [e^{ias} z_1, e^{ibs} z_2, e^{ics} z_3, t],$$

for $a, b, c \in \mathbb{R} - \{0\}.$

The basic cohomology $H^*(M/\mathcal{F})$

- $-\mathcal{X}(\mathcal{F})$ vector fields of M tangent to \mathcal{F} .
- Basic differential forms $\omega \in \Omega^*(M)$ with

$$i_X \omega = i_X d\omega = 0$$
 for each $X \in \mathcal{X}(\mathcal{F})$.

- Complex of basic differential forms $\Omega^*(M/\mathcal{F})$.
- Basic cohomology $H^*(M/\mathcal{F})$. Finite dimensional.
- Poincaré duality. The pairing product

$$\int : H^*(M/\mathcal{F}) \times H^{n-*}(M/\mathcal{F}) \longrightarrow \mathbb{R},$$

defined by

$$(\alpha,\beta)\mapsto \int_M \alpha\wedge\beta\wedge\nu$$

... it does not work!!

Example

 $\Psi \colon \mathbb{R} \times \mathbb{S}^6 \longrightarrow \mathbb{S}^6$ with

 $\Psi(s, [z_1, z_2, z_3, t]) = [e^{ias} z_1, e^{ibs} z_2, e^{ics} z_3, t],$ for $a, b, c \in \mathbb{R} - \{0\}.$

$$-H^{i}(\mathbb{S}^{6}/\mathcal{F}) = \begin{cases} \mathbb{R} \cdot [1] & i = 0\\ \mathbb{R} \cdot [e \wedge dt] & i = 3\\ \mathbb{R} \cdot [e \wedge e \wedge dt] & i = 5 \end{cases}$$

– The Poincaré duality does not work since $\dim H^2\left(\mathbb{S}^6/\mathcal{F}\right) \neq \dim H^3\left(\mathbb{S}^6/\mathcal{F}\right)$

Why??

In order to understand the situation, consider the blow up

$$\mathcal{L} \colon \mathbb{S}^5 \times [-1, 1] \longrightarrow \mathbb{S}^6$$
$$(z_1, z_2, z_3 t) \mapsto [z_1, z_2, z_3 t]$$

- We compute the basic cohomology $H^*(\mathbb{S}^6/\mathcal{F})$ by using the Verona forms of the blow up. A Verona form is a form $\omega \in \Omega^*(\mathbb{S}^5 \times [-1, 1]/\mathcal{F})$ verifying

$$\deg\left(\omega_{|boundary}\right) = \deg\left(d\omega_{|boundary}\right) = 0.$$

– Examples

$$egin{aligned} f(z_1, z_2, z_3) & f(z_1, z_2, z_3) \sin 2\pi t \ e & e \wedge dt \ te & (1-t^2)e \end{aligned}$$

– Failure of Poincaré duality: $\dim H^{3}\left(\mathbb{S}^{6}/\mathcal{F}\right) = 1 \neq 0 = \dim H^{2}\left(\mathbb{S}^{6}/\mathcal{F}\right)$ since

$$e \wedge dt = d(te).$$

Recovering Poincaré duality

(Goresky-MacPherson)

- The perverse degree of a differential form ω of $\Omega^*(\mathbb{S}^5 \times [-1, 1]/\mathcal{F})$ is $\|\omega\| = \deg\left(\omega_{|boundary}\right)$
- A perversity is an integer $\overline{p} \in \mathbb{Z}$.
- $-\omega$ is a \overline{p} -intersection differential form when $\|\omega\| \leq \overline{p}$ and $\|d\omega\| \leq \overline{p}$.
- Basic intersection cohomology $I\!H^*_{\overline{p}}(\mathbb{S}^6/\mathcal{F})$
- Verona's case: $\overline{p} = 0$.
- Poincaré duality.

	$\overline{p} = 0, 1$	$\overline{p} = 2, 3$
i = 0	$\mathbb{R}[1]$	$\mathbb{R}[1]$
i = 1	0	0
i = 2	0	$\mathbb{R}[\ e\]$
i=3	$\mathbb{R}[\ e \wedge dt \]$	0
i=4	0	0
i = 5	$\mathbb{R}[\ e \wedge e \wedge dt \]$	$\mathbb{R}[\ e \wedge e \wedge dt\]$
$e \wedge dt = d(te).$		

Basic intersection cohomology BIC

– Blow up.

$$\mathcal{L}\colon (\widetilde{M}, \widetilde{\mathcal{F}}) \longrightarrow (M, \mathcal{F}).$$

– Perverse degree. For each stratum S

$$\|-\|_S\colon \Omega^*\left(\widetilde{M}/\widetilde{\mathcal{F}}\right)\longrightarrow \mathbb{Z}$$

- A perversity is a map $\overline{p} \colon \mathcal{S} \to \mathbb{Z}$. The zero perversity is $\overline{0}(S) = 0$. The top perversity is $\overline{t}(S) = \operatorname{codim}_M S 3$.
- $-\omega$ is a \overline{p} -intersection differential is a form when $\|\omega\|_S \leq \overline{p}(S)$ and $\|d\omega\|_S \leq \overline{p}(S)$, for each stratum S.
- Basic \overline{p} -ntersection cohomology $I\!H^*_{\overline{p}}(M/\mathcal{F})$
- $-I\!H^*_{\overline{0}}(M/\mathcal{F}) = H^*(M/\mathcal{F}).$
- $-I\!\!H^*_{\overline{p}}(M/\mathcal{F})$ is the intersection cohomology of Goresky-MacPherson if $\overline{0} \leq \overline{p} \leq \overline{t}$ and \mathcal{F} is compact.

Poincaré duality

– The BIC $I\!\!H^*_{\overline{p}}(M/\mathcal{F})$ is finite dimensional and the pairing

$$\int : I\!\!H^*_{\overline{p}}(M/\mathcal{F}) \times I\!\!H^{n-*}_{\overline{q}}(M/\mathcal{F}) \longrightarrow \mathbb{R},$$

defined by

$$(\alpha,\beta)\mapsto \int_{\widetilde{M}}\alpha\wedge\beta\wedge\nu$$

is non degenerate, where $\overline{p} + \overline{q} = \overline{t}$.

– This result has been proven for the case where \mathcal{F} comes from an isometric action

$$\Phi\colon G\times M\to M,$$

where G is an abelian Lie group.

Idea of the proof

We use the Mayer-Vietoris technics in order to reduce the question to the following twisted product:

$$\mathbb{T} \times_H \mathbb{R}^n$$
,

where

- $-\mathbb{T}$ is a compact Lie group containing G as a dense subgroup. Notice that G acts on \mathbb{T}/H producing a riemannian foliation \mathcal{F}_1 .
- -H is a closed subgroup of \mathbb{T} acting by isometries on \mathbb{R}^n . We write \mathcal{F}_2 the induced SRF.

The cohomology $I\!H^*_{\overline{p}}(\mathbb{T} \times_H \mathbb{R}^n/\mathcal{F})$ can be computed with the complex of \mathbb{T} -invariant forms

$$\left(\Omega_{\overline{p}}^*(\mathbb{T}\times_H\mathbb{R}^n/\mathcal{F})\right)^{\mathbb{T}},$$

which is quasi-isomorphic to (not easy!!)

$$\bigwedge^*(\gamma_{c+1},\ldots,\gamma_f)\otimes\left(\Omega_{\overline{p}}^*(\mathbb{R}^n/\mathcal{F}_1)\right)^H$$

where

$$-\{\gamma_1,\ldots,\gamma_a,\gamma_{a+1},\ldots,\gamma_b\}$$
 is a basis of \mathfrak{g} ,

 $- \{\gamma_{a+1}, \dots, \gamma_b, \gamma_{b+1}, \dots, \gamma_c\} \text{ is a basis of } \mathfrak{h}, \text{ and} \\ - \{\gamma_1, \dots, \gamma_a, \dots, \gamma_b, \dots, \gamma_c, \gamma_{c+1}, \dots, \gamma_f\} \text{ is a basis of } \mathfrak{t}.$ Finally, $I\!H^*_{\overline{p}}(\mathbb{T} \times_H \mathbb{R}^n / \mathcal{F})$ is

$$H^*(\mathbb{T}/H/\mathcal{F}_1)\otimes I\!\!H^*_{\overline{p}}(\mathbb{R}^n/\mathcal{F}_2).$$

Both terms are finite dimensional and verify the Poincaré duality.