Minimality and Singular riemannian foliations

- J.I. Royo Prieto (Universidad del País Vasco-Euskal Herriko Unibertsitatea)
- M. Saralegi-Aranguren (Université d'Artois)
- R. Wolak (Uniwersytet Jagiellonski)

Primus Hispanico-Gallicus Conventus de Scientiis Mathematicis. Ante diem II Idus Julium MMVII. Cæsaraugusta.

The foliation \mathcal{F} is taut if there is a metric μ on M such that every leaf of \mathcal{F} is a minimal submanifold with respect to μ .

Cohomological minimality and regular riemannian foliations on compact manifolds

Let \mathcal{F} be a (regular) riemannian foliation defined on a compact manifold M and let μ be a bundle-like metric.

- + The mean curvature form κ_{μ} can be supposed to be a basic (D.Domínguez) cycle (F.Kamber, P.Tondeur).
- + The tautness class $\kappa = [\kappa_{\mu}] \in H^1(M/\mathcal{F})$ does not depend on the choice of μ (J.Álvarez López).

The following statements are equivalent:

- The foliation \mathcal{F} is taut.
- The tautness class κ vanishes.
- $H^{\text{codim}\mathcal{F}}(M/\mathcal{F}) \neq 0$ (\mathcal{F} transversally oriented) (X.Masa)

•
$$H^0_{_{\kappa_\mu}}(M/\mathcal{F}) \neq 0.$$

3/17

Singular Riemannian Foliations (definition) Molino

A Singular Riemannian Foliation (SRF) on a manifold X is a partition \mathcal{K} of X by submanifolds (leaves) verifying:

- The module of smooth vector fields tangent to the leaves is transitive on each leaf.
- There exists a bundle-like metric (i.e., a geodesic perpendicular to a leaf at a point remains perpendicular to every leaf it meets).

Singular riemannian foliations (properties)

Classifying the points of X by the dimension of the leaves, we get a stratification of X. The strata are ordered by

 $S_1 \preceq S_2 \Leftrightarrow S_1 \subseteq \overline{S_2}.$

- The restriction of \mathcal{K} to each stratum S is a regular riemannian foliation \mathcal{K}_s .
- The maximal stratum *R*, regular part, is an open dense subset of *X*.
- The other strata are called singular strata.
- The minimal strata are compact manifolds.
- Each stratum possesses a foliated tubular neighborhood
- Molino's desingularization Regular riemannian foliation $(\tilde{X}, \tilde{\mathcal{K}})$

Singular riemannian foliation (X, \mathcal{K})

S stratum

Cohomological minimality and singular riemannian foliations on non compact manifolds

A singular foliation on a compact manifold admitting an adapted Riemannian metric for which all leaves are minimal must be regular (V. Miquel, R. Wolak).

A regular foliation on a non compact manifold may not have a tautness class. (G.Cairns-R.Escobales).

Regular stratum. Theorem.

Let \mathcal{K} be a singular riemann foliation defined on a compact manifold X and let R be the regular stratum. Then

- There exists a bundle-like metric μ on R whose mean curvature form κ_{μ} is a basic cycle.
- The tautness class $\kappa_{R} = [\kappa_{\mu}] \in H^{1}(R/\mathcal{K})$ does not depend on the choice of μ

The following statements are equivalent:

- The foliation (R, \mathcal{K}) is taut.
- The tautness class $\kappa_{\scriptscriptstyle R}$ vanishes.
- $H_{c}^{\text{codim}\mathcal{K}}(R/\mathcal{K}) \neq 0$ (when (R, \mathcal{K}) transversally oriented). $H_{\kappa_{\mu}}^{0}(R/\mathcal{K}) \neq 0$.
- The foliation $\left(\widetilde{X},\widetilde{\mathcal{K}}\right)$ is taut.
- $H^{\text{codim}\mathcal{K}}(X/\mathcal{K}, \overset{\checkmark}{\partial}(X/\overset{\prime}{\mathcal{K}})) \neq 0$ (if (R, \mathcal{K}) trans. oriented).

Regular stratum. Theorem. Principle of the Proof

We lift the question to the blow up, which is a compact manifold endowed with a regular riemannian foliation.

Singular strata. Theorem.

Let \mathcal{K} be a singular riemann foliation defined on a compact manifold X and let S be a stratum. Then

- There exists a bundle-like metric μ on S whose mean curvature form κ_{μ} is a basic cycle.
- The tautness class κ_s = [κ_μ] ∈ H¹(S/K) does not depend on the choice of μ

The following statements are equivalent:

- The foliation (S, \mathcal{K}) is taut.
- The tautness class κ_s vanishes.
- $H_{c}^{\text{codim}\mathcal{K}}(S/\mathcal{K}) \neq 0$ (when (S,\mathcal{K}) transversally oriented).
- $H^{\scriptscriptstyle 0}_{\scriptscriptstyle\kappa_{\mu}}(S/\mathcal{K}) \neq 0.$

Why does it work? Compactly Embeddable Riemannian Foliation

Let \mathcal{F} be a regular riemannian foliation on a manifold M.

- A zipper of \mathcal{F} is a compact manifold N endowed with a riemannian foliation \mathcal{H} verifying the following property:
 - The manifold M is a saturated open subset of N and

- A reppiz of \mathcal{F} is a saturated open subset U of M verifying the following properties:
 - The closure \overline{U} (in M) is compact.
 - The inclusion $U \hookrightarrow M$ gives $H^*(U/\mathcal{F}) \cong H^*(M/\mathcal{F})$.

Why does it work? Theorem 1

Let (M, \mathcal{F}) be a CERF.

- There exists a bundle-like metric μ on M whose mean curvature form κ_{μ} is a basic cycle.
- The tautness class $\kappa_{_{M}} = [\kappa_{_{\mu}}] \in H^{1}(M/\mathcal{F})$ does not depend on the choice of μ .

The following statements are equivalent:

- The foliation (M, \mathcal{F}) is taut.
- The tautness class $\kappa_{\scriptscriptstyle M}$ vanishes.
- *H*^{codimF}_c(*M*/*F*) ≠ 0 (when (*M*, *F*) transversally oriented).
 *H*⁰_{κ_u}(*M*/*F*) ≠ 0.

Why does it work? Theorem 1. Idea of the proof.

• There exists a bundle-like metric μ on M whose mean curvature form κ_{μ} is a basic cycle.

Because a such metric exists on the zipper (N, \mathcal{H}) .

Why does it work? Theorem 1. Idea of the proof.

• The tautness class $\kappa_{_{M}} = [\kappa_{_{\mu}}] \in H^{1}(M/\mathcal{F})$ does not depend on the choice of μ .

Consider two candidates μ_1 and μ_2 . The first condition of the reppiz

The closure \overline{U} (in M) is compact

implies the existence of two "good" extensions $\tilde{\mu_1}$ and $\tilde{\mu_2}$ on N with $\tilde{\mu_1} = \mu_1$ and $\tilde{\mu_2} = \mu_2$ on U.

The uniqueness of the tautness class on N gives the uniqueness of the tautness class on U and therefore $[\kappa_{\mu_1}] = [\kappa_{\mu_1}]$ on U. The second condition of the reppiz $H^*(U/\mathcal{F}) \cong H^*(M/\mathcal{F})$ implies that $[\kappa_{\mu_2}] = [\kappa_{\mu_2}]$ on M.

Each stratum of a SRF defined on a compact manifold is a CERF. Let \mathcal{K} be a singular riemannian foliation defined on a compact manifold X. The tautness class of \mathcal{K} is the class $\kappa_{\chi} \in H^1(X/\mathcal{K})$ verifying

$$\iota_s^* \kappa_x = \kappa_s$$
, for each stratum S of \mathcal{K} ,

where $\iota_s \colon S \hookrightarrow X$ is the natural inclusion.

Back to Singular Riemannian Foliations

Some important facts

- The tautness class exists and it is unique.
- The following facts are equivalent
 - The tautness class κ_{χ} vanishes.
 - For each stratum S of \mathcal{K} the foliation \mathcal{K}_s is taut.
 - The foliation \mathcal{K}_{R} is taut.
- The tautness class vanishes when the manifold X is simply connected (E.Ghys for the regular case).
- The tautness class vanishes when the codimension of $\mathcal K$ is one. (J.Álvarez for the regular case).
- If $S_1 \preceq S_2$ and \mathcal{K}_{s_2} is taut then \mathcal{K}_{s_1} is taut.
- It is possible to find a stratum S_1 with \mathcal{K}_{s_1} taut and a stratum S_2 with \mathcal{K}_{s_2} no taut.(J.I. Royo Prieto).

Minimality and Singular Riemannian Foliations

AMAIERA

KONIEC