MP, DM de SI Pour le jeudi 27 février 2025

Corrigé prochainement sur le site : http://perso.numericable.fr/starnaud/

Ce DM comporte :

- ✓ Un exercice, pages 1 et 2.
- ✓ Un problème, nouvelle pagination, pages 1 à 12.

Exercice

Identifier les fonctions de transfert correspondant aux 3 diagrammes de Bode suivants :

2/2

I Introduction

I.A – Présentation générale

Les exosquelettes sont des solutions biomécaniques destinées à apporter une assistance ou un soutien physique à ceux qui les utilisent. La figure 1 représente l'exosquelette lombaire conçu par la société Japet. Il se présente sous la forme de deux ceintures (basse et haute) reliées par quatre actionneurs linéaires qui accompagnent les mouvements du patient tout en permettant un soutien de la colonne vertébrale.

Figure 1 Exosquelette lombaire Japet

Cet exosquelette lombaire est en priorité destiné au marché du travail et a vocation à soulager les salariés qui l'utilisent dans leurs mouvements quotidiens, en particulier dans les domaines de l'industrie ou de la logistique. Il est également destiné au soin de patients souffrant de lombalgie, en hôpital ou à domicile. Cet exosquelette n'a pas pour but d'augmenter les capacités physiques de l'être humain mais de les maintenir à un niveau satisfaisant. Cette assistance permet ainsi de conserver une activité professionnelle normale.

Grâce à l'effort de traction créé par les quatre actionneurs linéaires, le dispositif diminue la pression sur la colonne vertébrale afin de limiter la compression lombaire et soulager l'utilisateur des douleurs. Le système suit les mouvements de l'utilisateur en temps réel afin de conserver une liberté de mouvement totale et de préserver l'activité musculaire.

I.B – Pré-dimensionnement des quatre actionneurs

La société Japet a développé un modèle numérique biomécanique (figure 2 à gauche) du corps humain permettant de déterminer la valeur de la force de traction à exercer par les actionneurs pour soulager les disques intervertébraux en diminuant la pression intra-discale.

Le modèle numérique biomécanique a permis d'obtenir les courbes de la figure 3 décrivant les évolutions des pressions intra-discales entre les vertèbres L3–L4 et L4–L5. Celles-ci ont été obtenues dans les conditions de simulation suivantes :

— colonne vertébrale verticale ;

- chaque actionneur linéaire développe une force de traction progressivement de 0 à 100 N ;

— l'évolution des forces de traction est lente afin de négliger les effets dynamiques.

Q 1. Après analyse des courbes de la figure 3, justifier que la force de traction choisie par le constructeur, afin de limiter la pression intra-discale, est de 40 N par actionneur.

Figure 2 Modèle numérique biomécanique (à gauche) et détail de la structure vertébrale avec numérotation des vertèbres (à droite)

Figure 3 Évolution de la pression intra-discale simulée en L3–L4 et L4–L5 en fonction de la force de traction développée par un seul actionneur linéaire

I.C – Validation expérimentale du pré-dimensionnement des quatre actionneurs linéaires

— Objectif -

Montrer qu'il est possible de diminuer la pression intra-discale de 25 à 50% dans le cas d'une utilisation au quotidien de l'exosquelette.

Des capteurs de pression ont été positionnés sur un cadavre (équipé de l'exosquelette Japet) dans le disque intervertébral L3–L4 en trois positions différentes du disque (avant, milieu, arrière) afin de mesurer la pression intra-discale réelle. Un effort de traction a été appliqué pour valider expérimentalement la baisse de pression intra-discale entre les vertèbres. Celles-ci ont été obtenues dans les conditions d'expérimentation suivantes :

- à l'instant t = 0, et pour une durée de 2 minutes, chaque actionneur linéaire développe une force de traction constante égale à 40 N ;
- à l'instant $t = 2 \min$, les forces de traction sont annulées.

Figure 4 Évolution de la pression intra-discale mesurée et normalisée dans les trois positions du disque intervertébral L3–L4

Les résultats ont été normalisés afin de tenir compte des conditions initiales (t < 0) en divisant les pressions mesurées par la pression intervertébrale initiale.

Q 2. Déterminer, pour les trois positions du capteur de pression dans le disque intervertébral L3-L4, la diminution moyenne de la pression intra-discale (en %) pendant les deux minutes d'application de l'effort de traction, sans prendre en compte la phase transitoire de 0 à 0,5 min.

Cette pré-étude théorique ainsi que la validation expérimentale permettent de montrer l'efficacité du soulagement intra-discal par un système externe actif. Le développement de l'exosquelette est basé sur ces résultats. L'analyse des résultats des expérimentations décrites précédemment a permis de définir le cahier des charges partiel proposé dans le tableau 1.

Id	Exigence	Critère	Niveau	Flexibilité
Id1	Limiter la compression lombaire pour soulager les douleurs	Force de traction pour chaque actionneur linéaire	40 N	$<\pm 2,5\%$
		Vitesse maximale de la montée de la force de traction	$100 \mathrm{N} \cdot \mathrm{s}^{-1}$	nulle
Id2	Préserver l'activité musculaire, en garantissant la liberté de mouvement naturel du corps humain	Liberté totale de mouvement entre les ceintures basse et haute	6 degrés de liberté	aucune

 Tableau 1
 Extrait du cahier des charges fonctionnel de l'exosquelette

I.D – Problématique et organisation de l'étude

L'exosquelette lombaire, répertorié comme un système médical par les autorités de santé, doit garantir un fonctionnement sûr afin de ne causer aucun dommage à la colonne vertébrale tout en assurant une traction au niveau des vertèbres pour soulager les disques intervertébraux. Le mouvement naturel du corps devra être conservé. Ceci implique que l'amplitude des mouvements de l'exosquelette lombaire devra s'adapter aux mouvements du corps et que l'effort d'assistance devra correspondre aux valeurs définies dans le cahier des charges partiel.

La problématique globale du sujet est de valider un modèle de connaissance simulant la capacité des actionneurs linéaires à exercer un effort de traction maitrisé tout en garantissant la liberté de mouvement naturel du corps humain.

L'étude est limitée au mouvement de l'ensemble dans le plan sagittal (figure 5). Pour aborder la problématique, l'étude s'intéresse à :

- -- un degré de liberté particulier de la ce inture haute par rapport à la ce inture basse ;
- la capacité d'un actionneur linéaire à exercer une force de 40 N.

Figure 5 Plan et axe sagittal

Après avoir déterminé l'amplitude nécessaire du déplacement des actionneurs linéaires, l'étude portera sur la caractérisation dynamique et la commande d'un des quatre actionneurs linéaires. Cette dernière nécessite l'élaboration d'un modèle de connaissance du système étudié. La société Japet a construit un banc d'essai et de mesure. Ce banc d'essai a pour finalité de :

- contrôler l'amplitude nécessaire du déplacement des actionneurs linéaires ;
- comparer les résultats issus des simulations aux résultats expérimentaux pour une position particulière d'un actionneur linéaire, dans un premier temps.

Par la suite, le constructeur validera chaque actionneur linéaire commercialisé à l'aide du banc d'essai dans une démarche qualité.

II Étude de l'amplitude du déplacement de l'actionneur pour conserver un mouvement naturel

— Objectif -

Déterminer la course des actionneurs permettant de suivre les mouvements du corps conformément à l'exigence Id2 du cahier des charges partiel.

L'exigence Id2 « Préserver l'activité musculaire » est composée de deux exigences Id2.1 et Id2.2 (tableau 2). Le fonctionnement de l'exosquelette nécessite une mise en précontrainte. Pour cette mise en précontrainte, chaque actionneur linéaire doit exercer une force de 40 N. Cette valeur est obtenue par déplacement vertical de la ceinture haute par rapport à la ceinture basse.

Id	Exigence	Critère	Niveau	Flexibilité
Id2.1	Permettre le mouvement de	Déplacement vertical Δh de la	$\Delta h = 50 \text{ mm}$	< 10 %
	translation de la ceinture haute	ceinture haute par rapport à la		
	par rapport à la ceinture basse	ceinture basse		
Id2.2	Permettre le mouvement de	Amplitude de rotation φ	$[0, +20^{\circ}]$ selon l'axe sagittal	< 10 %
	rotation de la ceinture haute			
	par rapport à la ceinture basse			

Tableau 2Extrait du cahier des charges fonctionnellimité au mouvement dans le plan sagittal de l'exosquelette

L'exigence Id2.1 correspond à la valeur du déplacement vertical nécessaire à la précontrainte. Cette valeur est propre à chaque utilisateur. Dans le cas extrême, cette valeur correspond à un déplacement vertical de 50 mm. L'étude cinématique est limitée à un mouvement de flexion avant. La figure 6 décrit le mouvement ainsi que le positionnement de l'exosquelette dans le plan sagittal. La figure 7 décrit le modèle géométrique paramétré de l'exosquelette. La liaison sphère-cylindre en C modélise les degrés de liberté supprimés par les éléments extérieurs au système (colonne vertébrale + tissus mous).

Q 3. Déterminer l'expression de la longueur $l_2(t)$ en fonction de $\varphi(t)$, h(t), b et a.

Figure 6 Mouvement de flexion et implantation de l'exosquelette

Figure 7 Paramétrage cinématique

Le protocole de mise en précontrainte et d'utilisation de l'exosquelette est le suivant :

- 1. à t = 0, mise en place de l'ensemble en ajustant sur le corps de l'usager les deux ceintures basse et haute $(h_0 = h(0))$;
- 2. pour $t\in [0,T],$ mise en précontrainte $(h(T)=h_0+\Delta h)$;

3. pour t > T, mouvement libre (dans notre étude, $\varphi(t)$ est limité de 0° à 20° selon l'axe sagittal).

On définit la course d'un actionneur linéaire comme étant la distance que peut parcourir la tige par rapport au corps entre ses positions extrêmes.

Q 4. Le point *C* restant sur l'axe (O, \vec{y}) , déterminer la course du vérin 2 à partir du protocole défini précédemment pour les valeurs a = 100 mm, b = 150 mm, $h_0 = 100$ mm et $\Delta h = 50$ mm.

Une étude équivalente montre que la course du vérin 2 est supérieure à celle du vérin 1.

La course obtenue permet donc de dimensionner géométriquement les actionneurs en fonction des positions des points d'accroche sur les ceintures haute et basse. On peut ainsi définir la valeur de contrôle à mettre en place sur le banc d'essai. Cette valeur est vérifiée pour chaque actionneur fabriqué.

L'exigence sur la liberté de mouvement angulaire étant vérifiée, la suite de l'étude a pour but de caractériser la dynamique et la commande d'un des quatre actionneurs ce qui nécessite l'élaboration d'un modèle de connaissance. La validation sera faite à partir des résultats de la force de traction mesurée sur le banc d'essai.

III Élaboration du modèle de connaissance d'un actionneur linéaire placé sur un banc d'essai

III.A – Étude de la dynamique de l'actionneur linéaire dans le cas particulier représentatif de la mise en précontrainte étudiée à la question 3 modélisant le système dans cette configuration particulière

— Objectif -

Définir un modèle de connaissance de la dynamique du système permettant d'obtenir les équations d'un modèle de simulation comparable aux mesures du banc d'essai.

Le système est placé sur un banc d'essai en position horizontale (figure 8). Dans cette configuration, la pesanteur est portée par la direction \vec{z}_0 . On rappelle que le banc fonctionne selon deux protocoles distincts

- $-\!-$ vérification de la course définie précédemment (non étudiée ici) ;
- vérification de la force exercée par un actionneur linéaire pour effectuer la précontrainte.

Figure 8 Banc d'essai

Pour la vérification de la force de précontrainte, l'actionneur linéaire est bloqué en H et un capteur d'effort, noté cap (figure 8), supposé indéformable, est placé en K. Cette configuration permet uniquement de valider la performance relative à la mise en précontrainte.

La raideur du ressort du capteur d'effort de l'actionneur linéaire (figure 9) a été choisie à partir d'une campagne d'essais réalisée par différents utilisateurs qui ont exprimé leur ressenti en donnant une note de confort. L'exploitation des données recueillies a permis au fabricant de déterminer le meilleur compromis parmi les retours des différents utilisateurs.

Chaine d'action : transmission de l'énergie par une chaine moteur-réducteur-vis-écrou

Figure 9 Actionneur linéaire

Dans la configuration spécifique retenue, les points K et H sont immobiles par rapport au châssis du banc d'essai. Les solides (0) et (4) sont immobiles par rapport au châssis du banc d'essai. L'action mécanique de l'actionneur linéaire sur le capteur d'effort du banc d'essai est un glisseur de support passant par K et de résultante $\vec{F}_{4\to cap}$. Le capteur du banc d'essai mesure ainsi $\vec{F}_{4\to cap} \cdot \vec{y}_0$. On suppose que c'est une image fidèle de la force de traction exercée par l'actionneur linéaire.

Figure 10 Modèle d'étude de l'actionneur linéaire sur le banc d'essai

On note $\ell(t)$ le déplacement de (3) par rapport à (4).

On a $y(t) = \ell_0 - \ell(t)$ avec ℓ_0 la longueur à vide du ressort du capteur installé sur le système réel. Le ressort n'est pas préchargé avant le début de l'essai soit $\ell(t = 0) = \ell_0$.

Le repère $R_0(H;\vec{x}_0,\vec{y}_0,\vec{z}_0)$ lié au châssis du banc d'essai est supposé galiléen.

Les différentes grandeurs utiles à cette partie sont regroupées dans le tableau 3.

Éléments	Caractéristiques et notation
Corps du vérin 0	Masse : m_0
Moteur	Couple moteur : $C_{3 \rightarrow \text{arbre moteur}}(t) = c_m(t)$
	Moment d'inertie de l'arbre moteur suivant son axe : I_m
	Vitesse de rotation de l'arbre moteur : $\omega_m(t)=\omega_{m/3}$
	Masse négligeable devant les autres masses
Réducteur planétaire $+$ pignon 1	Vitesse de rotation en sortie du réducteur : $\omega_r(t)=\omega_{1/3}$
	Rapport de réduction : $\lambda = \frac{\omega_r(t)}{\omega_m(t)}$
	Moment d'inertie équivalent reporté sur l'arbre de sortie du réducteur : ${\cal I}_r$
	Masse négligeable devant les autres masses
Transmetteur par engrenage	Nombre de dents du pignon d'entrée 1 : ${\cal Z}_1$
	Nombre de dents du pignon de sortie 2 : $Z_2 = Z_1$
Vis + pignon 2	Moment d'inertie suivant l'axe $(J,\vec{y}_0):I_V$
	Vis de pas géométrique : pas en m·tr ⁻¹
	Masse négligeable devant les autres masses
Ressort	Raideur $K_{\rm res}$
	Masse négligeable devant les autres masses
Ensemble 3	Masse m_3 (les masses du carter moteur et du carter réducteur sont
	comprises dans la masse m_3)
Tige de vérin 4	Masse : m_4
Rendement	Rendement global de l'actionneur linéaire, supposé constant : η

 Tableau 3
 Caractéristiques principales de l'actionneur linéaire

Q 5. En prenant soin de préciser le solide isolé et le théorème utilisé, déterminer l'expression littérale de la résultante $\vec{F}_{cap \to 4}$ en projection sur \vec{y}_0 , en fonction de K_{res} et y(t).

Q 6. Déterminer le rapport $\frac{\omega_{1/3}}{\omega_{2/3}}$ en fonction de Z_1 et Z_2 et faire l'application numérique. En déduire l'expression de $\vec{V}_{J,3/R_0}$ en fonction de $\omega_m(t)$, pas et λ .

On note $\Sigma = \{(0), \text{arbre moteur}, (1), (2), (3), \text{ressort}, (4)\}$ l'ensemble mobile en mouvement par rapport à R_0 . **Q 7.** Déterminer l'expression des énergies cinétiques $E_c(\text{arbre moteur}/R_0), E_c(1/R_0), E_c(2/R_0)$ et $E_c(3/R_0)$ en fonction de $\omega_m(t)$, pas, λ , de la masse m_3 et des inerties. **Q 8.** Écrire l'expression de l'énergie cinétique $E_c(\Sigma/R_0)$ et en déduire l'expression du moment d'inertie équivalent $I_{\rm eq}$ de l'ensemble mobile Σ reporté sur l'arbre moteur en fonction de *pas*, λ , de la masse m_3 et des inerties.

Q 9. Établir le bilan des puissances galiléennes des actions extérieures s'exerçant sur Σ et montrer qu'elles sont toutes nulles.

Q 10. Établir le bilan des puissances des actions intérieures à Σ et déterminer leurs expressions littérales en justifiant les résultats.

Q 11. Par composition des vecteurs vitesse en K entre les solides (4), (3) et (0), déterminer la relation entre $\dot{y}(t)$, $\omega_m(t)$, pas et λ .

Pour la suite, on définit $K_{\rm trans}$ tel que $\dot{y}(t)=K_{\rm trans}\cdot\omega_m(t).$

Q 12. En appliquant le théorème de l'énergie cinétique à l'ensemble Σ en mouvement par rapport à R_0 , montrer que l'équation de mouvement s'écrit sous la forme

$$I_{\rm eq} \frac{{\rm d}\omega_m(t)}{{\rm d}t} = Q c_m(t) - c_r(t) \qquad {\rm avec} \qquad c_r(t) = T y(t)$$

où l'on précisera les expressions de Q et T en fonction de η , $K_{\rm res}$ et $K_{\rm trans}$.

Q 13. Exprimer l'équation différentielle du mouvement liant le déplacement y(t) à l'action mécanique $c_m(t)$ en fonction des paramètres de Q, T et K_{trans} . En déduire la valeur numérique du facteur d'amortissement et conclure quant à l'amortissement de la réponse indicielle.

Cet ensemble d'équations permet de mettre en place un modèle de connaissance de l'actionneur linéaire placé sur le banc d'essai et son analyse justifie la mise en place d'une structure particulière de l'asservissement.

III.B – Étude de l'effort d'assistance nécessaire au soutien lombaire

— Objectif -

Proposer un modèle de connaissance de l'asservissement en force, le valider par comparaison avec une mesure sur un banc d'essai et vérifier les performances de l'actionneur linéaire sur un banc d'essai. Ce modèle permettra de valider une commande pour le cas spécifique étudié.

III.B.1) Mise en place d'un modèle de connaissance

L'actionneur linéaire placé sur le banc d'essai et sa commande peuvent être modélisés par le schéma-blocs représenté figure 11.

Notations et hypothèses :

- la transformée de Laplace de la fonction a(t) est notée A(p) dans le cas général ;
- les conditions de Heaviside sont supposées vérifiées ;
- $-F_c(p)$ représente la consigne en force de l'asservissement de force, dans le domaine de Laplace ;
- F(p) représente la force développée par l'actionneur linéaire, dans le domaine de Laplace.

Les équations modélisant le comportement du moteur électrique (moteur à courant continu) muni d'une boucle d'asservissement de l'intensité du courant $i_m(t)$, sont :

— en supposant le temps de réponse de la boucle de courant négligeable,

$$u_I(t) = R \, i_m(t)$$

- par application des théorèmes généraux de la dynamique appliqués à l'ensemble des solides en mouvement,

$$I_{\rm eq} \frac{{\rm d}\omega_m(t)}{{\rm d}t} = Q\,c_m(t) - c_r(t) \qquad {\rm avec} \qquad c_r(t) = T\,y(t)$$

— loi de couplage électromécanique,

$$c_m(t) = k_c \, i_m(t)$$

Avec :

- $u_I(t)$, la consigne en tension de la boucle d'asservissement de l'intensité du courant $i_m(t)$ (en V);
- $-i_m(t)$, l'intensité du courant d'induit absorbé par le moteur à courant continu (en A);
- R, la résistance d'induit du moteur (en Ω);
- k_c , la constante de couple (en N·m·A⁻¹);
- $I_{\rm eq}$, le moment d'inertie équivalent des solides en mouvement par rapport au référentiel lié au bâti supposé galiléen, reportée sur l'arbre moteur (en kg·m²);
- K_1 , le gain du modulateur d'énergie.

CC BY-NC-SA

Figure 11 Schéma-blocs de l'asservissement de force développée par un actionneur linéaire placé sur le banc d'essai

Q 14. Après avoir transformé les équations précédentes dans le domaine de Laplace, exprimer les gains K_3 et K_5 en fonction de Q, k_c et T.

Q 15. Exprimer la fonction de transfert $H_6(p)$ en fonction de K_{trans} .

Q 16. En supposant le système stable, déterminer l'expression de K_{adapt} en fonction de K_{trans} et K_{res} qui assure que l'écart en régime permanent ($\varepsilon(t \to \infty)$) soit nul si l'erreur en régime permanent est nulle.

III.B.2) Réglage de la boucle d'asservissement de la vitesse angulaire du moteur

Le schéma-blocs décrivant la structure de l'asservissement de la vitesse angulaire du moteur est fourni sur la figure 12. Cet asservissement doit respecter le cahier des charges fourni dans le tableau 4.

Figure 12 Schéma-blocs de la boucle d'asservissement de la vitesse angulaire du moteur électrique

Critère concepteur	Niveau
Marge de phase	$\geq 80^{\circ}$
Erreur en régime permanent pour une perturbation en échelon constante	Nulle
Pulsation de coupure à 0 dB	$\omega_{0\mathrm{dB}}=10\mathrm{rad}{\cdot}\mathrm{s}^{-1}$

Tableau 4 Critères concepteur pour la boucle d'asservissement de la vitesse angulaire

Le choix d'un correcteur proportionnel intégral est fait afin de diminuer l'influence de la perturbation en couple modélisée par $C_r(p)$. La fonction de transfert du correcteur de la boucle d'asservissement en vitesse angulaire est noté $C_v(p)$, tel que

$$C_v(p) = K_i \frac{1 + \tau_i p}{\tau_i p}.$$

On note $H_{BOv}(p) = \frac{\Omega_m(p)}{\varepsilon_v(p)}$ la fonction de transfert en boucle ouverte de l'asservissement de vitesse angulaire du moteur.

Q 17. Déterminer l'expression littérale de la phase de $H_{BOv}(i\omega)$. En déduire la valeur numérique de τ_i respectant les critères concepteur de la boucle de vitesse.

Le diagramme de Bode de la boucle ouverte $H_{BOv}(p)$, avec $K_i = 1$ et τ_i déterminé à la question 17, est donné sur la figure 13.

Figure 13 Diagramme de Bode de $H_{BOy}(p)$

Q 18. Déterminer la valeur numérique de K_i afin que la boucle d'asservissement de vitesse respecte les critères concepteur du tableau 4.

III.B.3) Simplification du modèle de connaissance

Il est possible de mettre le schéma-blocs de la figure 11 sous la forme du schéma-blocs de la figure 14, afin de faciliter la prévision des performances simulées.

Figure 14 Schéma-blocs de l'asservissement de la force développée par un actionneur linéaire

Q 19. Déterminer les fonctions de transfert $H_8(p)$ et $H_9(p)$ en fonction de K_5 , I_{eq} et $H_6(p)$. Ne pas remplacer K_5 et $H_6(p)$ par les expressions trouvées précédemment.

Pour faciliter l'analyse des performances simulées, le schéma-blocs de la figure 14 est adapté afin de disposer d'un schéma-blocs à retour unitaire, tel que décrit sur la figure 15.

Figure 15 Schéma-blocs de l'asservissement de la force développée par un actionneur linéaire à retour unitaire

Q 20. Déterminer l'expression du gain K_{10} en fonction de K_{capt} et de K_{res} .

Q 21. Déterminer la fonction de transfert G(p) en fonction de $H_2(p)$, I_{eq} , $H_8(p)$, $H_9(p)$ et K_{res} . Ne pas remplacer $H_2(p)$, $H_8(p)$ et $H_9(p)$ par les expressions trouvées précédemment.

Pour la suite, on donne la fonction de transfert G(p), obtenue avec les valeurs de réglage correctes déterminées aux questions 17 et 18,

$$G(p) = \frac{F(p)}{\Omega_c(p)} = \frac{1 + \tau_i p}{p} \frac{1.2 \times 10^{-5}}{2 \times 10^{-4} + 9.7 \times 10^{-5} p + 5.3 \times 10^{-6} p^2}.$$

III.B.4) Analyse des performances de l'asservissement en force développée par un actionneur linéaire

Il est proposé dans cette section d'analyser les performances simulées de l'asservissement en force dont un extrait du cahier des charges est présenté dans le tableau 5.

Id	Exigence	Critère	Niveau
Id1.1	Stabilité	Marge de phase	$\geq 60^{\circ}$
		Marge de gain	$> 20 \mathrm{dB}$
		Dépassement maximal	< 2,5 %
Id1.2	Précision	Erreur en régime permanent pour une entrée en échelon	< 1 %
Id1.3	Rapidité	Temps de réponse à 5 % pour une consigne en échelon de force de 40 N $^{\circ}$	
		Vitesse maximale de montée de la force de traction	$100~\mathrm{N}{\cdot}\mathrm{s}^{-1}$

 Tableau 5
 Extrait du cahier des charges fonctionnel de l'actionneur linéaire sur le banc d'essai

On note $H_{BOf}(p) = \frac{F(p)}{\varepsilon_f(p)}$ la fonction de transfert en boucle ouverte de l'asservissement en force développé par un actionneur linéaire. Dans un premier temps, le choix d'un correcteur proportionnel $C(p) = K_{cor}$ est réalisé. Le diagramme de Bode de la fonction de transfert $H_{BOf}(p) = \frac{F(p)}{\varepsilon_f(p)} = K_{cor}K_{10}G(p)$, avec $K_{cor} = 1$ et la valeur de τ_i déterminée à la question 17, est donné sur la figure 16.

Q 22. Déterminer la valeur numérique limite de K_{cor} afin que la boucle d'asservissement de force respecte les critères de marge de phase et de gain du tableau 5.

Les courbes sur la figure 17 représentent les réponses temporelles du modèle de connaissance de la figure 11, avec les correcteurs $C_v(p)$ et C(p) correctement réglés, et de l'expérimentation sur le banc d'essai pour une consigne en échelon de force de 40 N.

Figure 17 Réponses temporelles du modèle et expérimentale, pour une consigne en échelon de force de 40 N

Q 23. Quel critère du tableau des exigences (tableau 5) n'est pas pris en compte dans le modèle de connaissance ? D'après la courbe expérimentale, ce critère est-il respecté par le système réel ?

III.B.5) Amélioration du modèle. Mise en place d'une limitation en vitesse angulaire

Pour améliorer le modèle de connaissance et le valider, la comparaison entre la réponse simulée issue du modèle de connaissance amélioré et la réponse expérimentale sera traitée par résolution numérique informatique. Le langage de programmation utilisé est Python.