MP, DS de SI, octobre 2024 Durée 2h

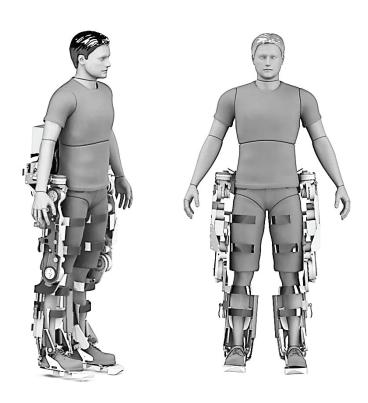
Corrigé prochainement sur le site : http://perso.numericable.fr/starnaud/

Ce DS comporte:

- ✓ Un sujet, pages 3 à 11 puis 15 à 17.
- √ 2 annexes.

La partie dynamique concerne les pages 15 à 17 et les questions 25, 26 et 27.

Exosquelette Atalante



Le questionnaire est composé de quatre parties indépendantes :

Partie I: Présentation du système

Partie II : Etude de l'adaptabilité du système pour les personnes Partie III : Etude du passage de la position assise à la position debout

Partie IV: Etude de la marche

Chaque partie est décomposée en sous-parties indépendantes les unes des autres pour la plupart des questions.

Il est précisé que le candidat devra porter l'ensemble de ses réponses sur le cahier de réponses prévu à cet effet.

I.1. Présentation du sujet

L'utilisation d'exosquelettes motorisés pour permettre à des personnes à mobilité réduite de se déplacer n'est pas nouvelle. Cependant, les exosquelettes existants ne permettent pas de stabiliser les utilisateurs, il faut donc les équiper de béquilles. Ainsi, les utilisateurs récupèrent l'usage de leurs jambes, mais perdent en partie celui de leurs mains. Or les mains sont indispensables dans la plupart de nos actions quotidiennes qui restent donc, actuellement, irréalisables pour les utilisateurs de fauteuil roulant (Figure 1).



- 1. MARCHER
- 2. TROTTOIR
- 3. ESCALIER
- 4. PARLER SANS LEVER LES YEUX
- 5. MÉTRO, BUS, TRAIN, PARKING
- 6. BUREAU, ÉCOLE, UNIVERSITÉ
- 7. ENTRER AU RESTAURANT
- 7. ENTRER DANS UN MAGASIN
- EMMENER SES ENFANTS À L'ÉCOLE
- 9. SE DÉPLACER À LA MAISON
- 10. WC, SALLE DE BAINS, CUISINE
- 11. PRENDRE UN LIVRE SUR UNE ÉTAGÈRE

Figure 1 : 11 rêves de l'utilisateur de fauteuil roulant.

Fort de ce constat, l'entreprise Wandercraft a développé l'exosquelette *Atalante* pour offrir la possibilité à ses utilisateurs de se lever, s'asseoir, marcher dans toutes les directions et de monter quelques marches en toute autonomie et sans l'aide des mains.

Pour y parvenir, Wandercraft a eu recours à des techniques de marche humanoïde innovantes.

L'exosquelette détecte l'impulsion et l'inclinaison du buste de l'utilisateur, afin d'enclencher la marche dans la direction souhaitée. Incubée à l'École des Arts & Métiers Paristech et lauréate du Concours mondial d'innovation en 2017, l'entreprise Wandercraft a lancé des essais cliniques depuis décembre 2016 pour une commercialisation en 2018.

I.2. Expressions des exigences

Les exigences principales associées à la conception de l'exosquelette *Atalante* sont données figure 2. Seules les exigences 1.1 (compatibilité) et 1.3 (mouvement) seront étudiées dans ce sujet. Le détail de leurs sous exigences est donné en annexe 1.

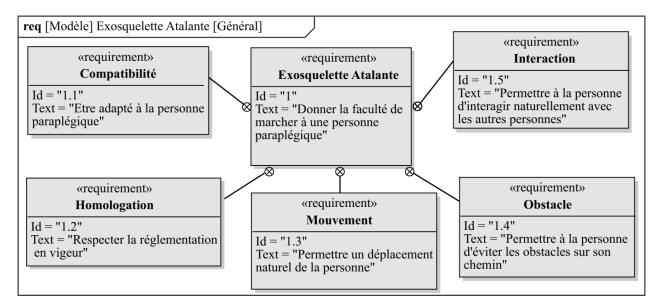


Figure 2 : exigences principales associées à l'exosquelette Atalante.

Partie II. Compatibilité avec l'utilisateur (exigence ld 1.1)

L'exosquelette est conçu pour être utilisé quotidiennement pendant plusieurs heures d'affilée par une personne paraplégique qui ne ressent, par définition, pas la douleur au niveau des membres inférieurs. Ainsi, en cours de fonctionnement, les jambes de l'usager pourraient être endommagées sans que ce dernier ne s'en rende compte à temps. Les traumatismes corporels possibles peuvent être de deux types :

- Musculaire et (ou) articulaire si les articulations de l'exosquelette se trouvent décalées par rapport aux articulations de l'usager.
- Cutanées si la chair est cisaillée par les fixations qui maintiennent l'usager dans l'exosquelette.

L'objectif de cette partie est de vérifier que la conception de l'exosquelette permet de garantir sa compatibilité avec l'usager (exigence 1.1 de la Figure 2).

Pour réaliser cette étude, un modèle cinématique simplifié de l'exosquelette est proposé **Figure 3**. Chaque jambe est composée trois solides : le fémur (2) ou (2'), le tibia (3) ou (3') et le pied (4) ou (4'). Ces solides sont reliés par des liaisons pivots situées au genou (point B) et à la cheville (point C). Le bassin (1) est également en liaison pivot à la hanche (point A) avec le fémur (2) ou (2'). Le point I représente la position théorique du nombril de l'usager.

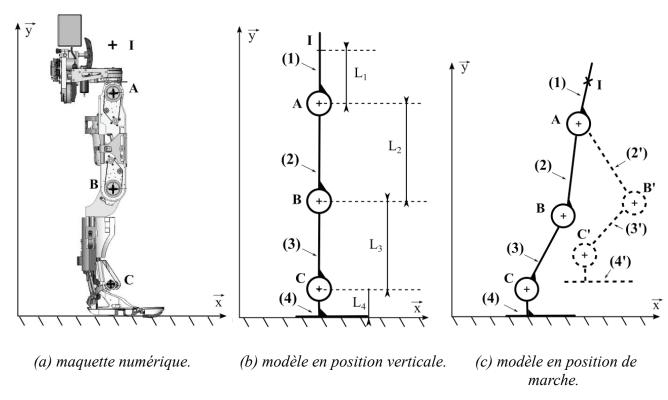


Figure 3. modèle cinématique de l'exosquelette.

La compatibilité de l'exosquelette avec l'utilisateur se traduit par le fait que les articulations du premier doivent à chaque instant de fonctionnement être coaxiales aux articulations du second. Ceci implique :

- une mise en position initiale de l'exosquelette par rapport à l'utilisateur,
- un maintien au cours du temps de la position relative entre les articulations de l'utilisateur et celles de l'exosquelette.

II.1. Mise en position initiale de l'exosquelette

II.1.1. Dimensionnement du réglage

Objectif: s'assurer que l'exosquelette peut s'adapter à toute personne mesurant entre 1,50 m et 1,90 m (ld 1.1.1.1 de l'annexe 1).

Ainsi l'espacement entre les articulations de l'exosquelette doit être réglable. Ce réglage se fait via des liaisons glissières intégrées au fémur et au tibia de chaque jambe de l'exosquelette (Figure 4).

On note Δ L2 et Δ L3 les longueurs de réglage correspondantes :

$$\Delta L2 = \max(\overline{AB}) - \min(\overline{AB})$$

$$\Delta L3 = \max(\overline{BC}) - \min(\overline{BC})$$

Question 1. A l'aide de l'annexe 2, déterminer les longueurs de réglage minimales $\Delta L2$ et $\Delta L3$ que doit permettre l'exosquelette pour respecter le cahier des charges.

La figure 5 donne une première solution technologique pour réaliser les liaisons glissières de direction \vec{y} entre les solides (2.1) et (2.2) ainsi que (3.1) et (3.2). Elle consiste à employer deux contacts cylindriques.

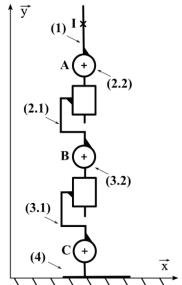


Figure 4. modèle cinématique du réglage des dimensions de l'exosquelette.

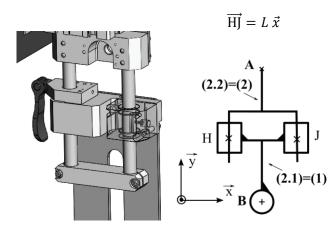


Figure 5. détail de la liaison glissière entre les solides (2.1) noté (1) et (2.2) noté (2).

Pour la guestion suivante, on note :

- i et j les indices des solides. On notera (1) le solide (2.1) et (2) le solide (2.2),
- **n**, le numéro de la liaison entre le solide (1) et le solide (2) : la liaison n°1 en H et la liaison n°2 en J.
- le torseur cinématique de la liaison n entre le solide i par rapport au solide j et le torseur des actions transmissibles du solide i sur le solide j par la liaison n :

$$\{v^{n}_{i/j}\} = \begin{cases} p^{n}_{ij} & u^{n}_{ij} \\ q^{n}_{ij} & v^{n}_{ij} \\ r^{n}_{ij} & w^{n}_{ij} \end{cases}_{h} \text{ et } \{\tau^{n}_{i \to j}\} = \begin{cases} X^{n}_{ij} & L^{n}_{ij} \\ Y^{n}_{ij} & M^{n}_{ij} \\ Z^{n}_{ij} & N^{n}_{ij} \end{cases}_{h}$$

Avec A est le point où le torseur est calculé et b la base dans lequel il est exprimé.

Question 2. Sur la figure 5, identifier les liaisons entre les solides (1) (ou (2.1)) et (2) (ou (2.2)). Démontrer par le calcul que la liaison équivalente entre ces deux solides est bien une liaison glissière.

Question 3. Déterminer le degré d'hyperstatisme du modèle donné figure 5.

Question 4. Y a t-il des contraintes géométriques à respecter pour que le mécanisme réel puisse être assemblé correctement ? Si oui, lesquelles ?

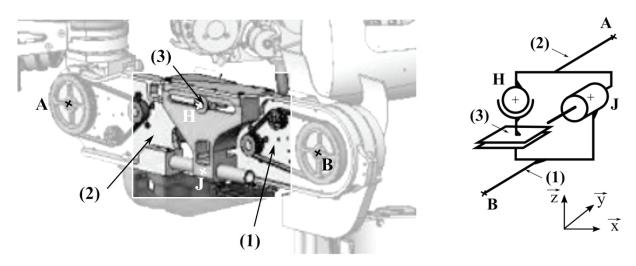
II.1.2. Conception du mécanisme de réglage

Pour des questions de confort de manipulation, le réglage des dimensions de l'exosquelette doit se faire sans difficulté pour l'utilisateur. Le respect de cette exigence passe par la nécessité d'avoir un minimum de contraintes géométriques entre les composants du mécanisme de réglage. Ainsi le modèle de ce dernier devra être isostatique (ld 1.1.2.2 de l'annexe 1).

Question 5. En modifiant/remplaçant une liaison dans le modèle donné figure 5, proposer une solution isostatique pour le mécanisme de réglage étudié.

Question 6. Tracer le schéma cinématique spatial de ce nouveau modèle.

Le schéma cinématique du modèle de la solution choisie par l'entreprise Wandercraft est donné figure 6. Cette solution nécessite de rajouter une pièce intermédiaire notée (3) entre les solides (1) (ou (2.1)) et (2) (ou (2.2)).



(a) Maquette numérique

(b) Modèle cinématique

Figure 6. solution choisie par l'entreprise Wandercraft pour réaliser le réglage en longueur de l'exosquelette.

Question 7. Réaliser le graphe de liaison de cette solution.

Question 8. Donner, sans faire de cacul, le nom de la liaison équivalente entre les solides (1) et (2). Comparer cette solution à celle trouvée à la question 5 et expliquer son intérêt.

II.1.3. Force maximale à exercer pour effectuer le réglage

Objectif : s'assurer que l'exigence 1.1.1.2.1 du cahier des charges soit respectée. Ainsi, la force exercée par l'utilisateur pour régler les dimensions de l'exosquelette ne doit pas dépasser 150 N.

Pour des raisons de sécurité, le réglage des dimensions de l'exosquelette est réalisé en position assise (Figure 7). C'est une tierce personne (différente de la personne tétraplégique) qui vient successivement régler puis verrouiller les différentes dimensions de l'exosquelette. Le réglage le plus critique est celui des dimensions du fémur (solides (2.1) et (2.2) de la figure 4). Il se fait avec celui du tibia (solides (3.1) et (3.2)) en position déverrouillée.

Pour simplifier l'étude, on considérera que :

- le bassin (1), la partie supérieure du fémur (2.2) et le pied (4) sont fixes par rapport à la chaise (ou le sol) noté (0),
- le jeu dans la liaison (déverrouillée) entre les solides (3.1) et (3.2) étant important on pourra considérer qu'il n'y a pas de contact entre ces deux solides,
- seuls les frottements dans la liaison entre les solides (2.1) et (2.2) sont pris en compte,
- le problème est plan de normale \vec{z} .

Le modèle cinématique simplifié de l'exosquelette dans cette phase est donné figure 8.

Pour simplifier les notations, on note :

- (1) la partie inférieure du fémur (2.1),
- (2) la partie supérieure du tibia (3.2),

L'action mécanique extérieure exercée sur la partie inférieure du fémur (1) pour effectuer le réglage est définie ci-dessous :

$$\{\tau_{ext\to 1}\} = \begin{cases} F \vec{x} \\ \vec{0} \end{cases}$$

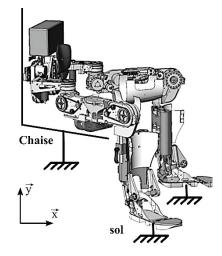


Figure 7 : position de l'exosquelette lors de la phase de réglage de ses dimensions.

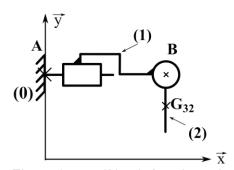


Figure 8 : modèle cinématique de l'exosquelette lors du réglage de la longueur du fémur.

Paramètres du modèle :

Solide	Paramètres géométriques	Masses et inertie
Sol (0) + chaise + partie supérieure du fémur + bassin + pied		
Partie inférieure du fémur (2.1) notée (1)		Masse du fémur : m ₂₁ = 6,4 kg Le centre de gravité du solide (2.1) est assimilé au point B.
Partie supérieure du tibia (3.2) notée (2)	$\overrightarrow{BG_{32}} = -L_3 \vec{y}$ $\text{avec } L_3 = 280 mm$	Masse partie haute du tibia : m_{32} = 4,2 kg. Le centre de gravité du solide (3.2) est noté G_{32} .

On cherche à déterminer l'effort *F* à exercer pour effectuer le réglage.

Question 9. Isoler le solide (2) et faire le bilan des actions mécaniques extérieures sous forme de torseurs. En justifiant le raisonnement, déterminer sans calcul l'action mécanique de la partie supérieure du tibia (1) sur le fémur (2).

La liaison entre le bâti (0) et le fémur (1) est la liaison pivot-glissante étudiée au paragraphe II.1.2 et décrite à la figure 6 entre les solides (1) et (2).

Sur la figure 6, le contact cylindre-cylindre modélisé par la liaison pivot-glissant en J admet un jeu radial. Ce jeu est présenté sur la figure 9. Pour le prendre en compte, une nouvelle modélisation cinématique du mécanisme est proposée à la figure 10.

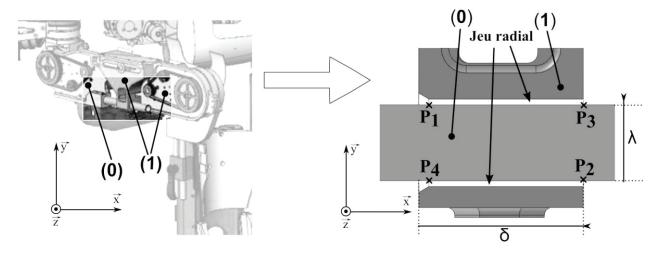


Figure 9 : détail du contact cylindre-cylindre entre le fémur suppérieur (0) et le fémur inférieur (1).

Question 10. A partir de la figure 9, justifier le nouveau modèle de liaison entre le bâti (0) et fémur (1) proposé figure 10.

On note : $\overrightarrow{BP_2} = -\mu \, \vec{x}$ et $\overrightarrow{P_1P_2} = \delta \, \vec{x}$ (l'influence de la longueur λ est négligée). Soit f = 0.33 le coefficient de frottement entre le bâti (0) et la partie inférieure du fémur (1).

On donne $\mu = 150 \ mm$.

Question 11. On se place à la limite du glissement. A partir du modèle donné figure 10, déterminer la force F en fonction de f, m_{21} , m_{32} , δ et μ . La méthode et les théorèmes utilisés seront explicités.

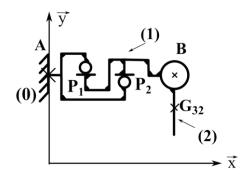


Figure 10 : nouveau modèle cinématique de l'exosquelette lors du réglage de la longueur du fémur.

Question 12. Le phénomène d'arc-boutement apparait-il avec le modèle de la figure 10 ? Expliquer en quoi ce phénomène serait un problème pour le réglage dimensionnel de l'exosquelette.

Question 13. Déterminer l'expression de δ , la longueur du contact cylindre-cylindre qui permet de respecter le cahier des charges. Faire l'application numérique.

Partie III. Passage de la position assise à la position debout (ld 1.3.2)

La phase où la personne passe de la position assise (position d'installation dans l'exosquelette) à la position debout est importante. Le but de cette partie est de déterminer les lois de commande des actionneurs permettant le passage assis/debout.

Pour cela, nous allons utiliser le modèle cinématique présenté figure 11.

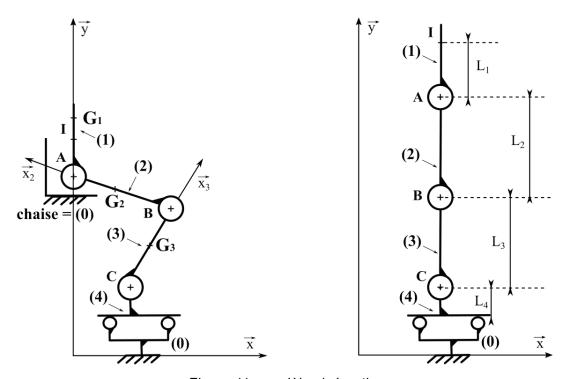


Figure 11 : modèle cinématique.

Paramètres géométriques

Solide	Repères ou Bases associés	Paramètres géométriques	Masses		
Sol (0)	$B_0(\vec{x}, \vec{y}, \vec{z})$				
Bassin (1)	$R_1(A, \vec{x}_1, \vec{y}_1, \vec{z})$	$\overrightarrow{AI} = L_1 \cdot \vec{x}_1$ $\overrightarrow{AG_1} = L_{G1} \cdot \vec{x}_1$ $\theta_1 = (\vec{x}_2, \vec{x}_1) = (\vec{y}_2, \vec{y}_1)$	Masse du bassin + Personne s'appliquant sur une jambe : m1 = 32 kg		
Fémur (2)	$R_2(B, \vec{x}_2, \vec{y}_2, \vec{z})$	$\overrightarrow{BA} = L_2 \cdot \vec{x}_2$ $\overrightarrow{BG_2} = \frac{L_2}{2} \cdot \vec{x}_2$ $\theta_2 = (\vec{x}_3, \vec{x}_2) = (\vec{y}_3, \vec{y}_2)$	Masse Fémur + Personne : m2 = 14 kg		
Tibia (3)	$R_3(C, \vec{x}_3, \vec{y}_3, \vec{z})$	$ \overrightarrow{CB} = L_3 \cdot \vec{x}_3 \overrightarrow{CG_3} = \frac{L_3}{2} \cdot \vec{x}_3 \theta_3 = (\vec{x}, \vec{x}_3) = (\vec{y}, \vec{y}_3) $	Masse tibia + Personne : m3 = 9kg		
Pied (4)	$R_4(C, \vec{x}, \vec{y}, \vec{z})$	$ \overline{\overrightarrow{CA}} = x(t).\overrightarrow{x} + y(t).\overrightarrow{y} $ $ \overline{O_1\overrightarrow{C}} = a.\overrightarrow{x} + L_4.\overrightarrow{y} $ $ \overline{O_2\overrightarrow{C}} = -b.\overrightarrow{x} + L_4.\overrightarrow{y} $			

Modélisation des liaisons

Liaisons	Définition	Figures changement de bases		
Sol (0) / Pied (4)	Sphère plan de normale (O_1, \vec{y}) Sphère plan de normale (O_2, \vec{y})	\vec{y}_1 \vec{y}_2 θ_3 \vec{x}_1 \vec{x}_2		
Pied (4) / Tibia (3)	Pivot d'axe (C, \vec{z})	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Tibia (3) / Fémur (2)	Pivot d'axe (B, \vec{z})			
Fémur (2) / Bassin (1)	Pivot d'axe (A, \vec{z})	\overrightarrow{z} $\overrightarrow{\theta_3}$ \overrightarrow{x}		

Hypothèses:

- Les liaisons sont supposées parfaites
- Le problème est plan, dans le plan (\vec{x}, \vec{y}) .
- On notera g l'accélération de la pesanteur avec g = 9.81 m/s².

III.1. Etude préliminaire

Objectif: Déterminer la loi de mouvement de l'exosquelette.

Question 14. Par une fermertue géométrique, déterminer les relations entre x(t), y(t) et les angles θ_2 , θ_3 et les paramètres géométriques :

$$\begin{cases} x(t) = f(\theta_2(t), \theta_3(t)) & (1) \\ y(t) = g(\theta_2(t), \theta_3(t)) & (2) \end{cases}$$

A partir des ces deux équations, on peut déterminer des relations inverses :

$$\begin{cases} F(\theta_3(t), x(t), y(t)) = [L_3 \cdot \cos(\theta_3(t)) - x(t)]^2 + [L_3 \cdot \sin(\theta_3(t)) - y(t)]^2 - L_2^2 = 0 \\ G([\theta_2(t) + \theta_3(t)], x(t), y(t)) = L_2 \cdot \cos(\theta_2(t) + \theta_3(t)) - x(t)]^2 + [L_2 \cdot \sin(\theta_2(t) + \theta_3(t)) - y(t)]^2 - L_3^2 = 0 \end{cases}$$
(3)

Ces quatres équations vont nous servir dans les parties suivantes.

III.2. Détermination de la position initiale assise avant le début du mouvement de redressement.

Objectif: Déterminer la position du pied pour éviter le basculement en début de mouvement de mise en position debout (exigence ld 1.3.2.2); mise en évidence d'un besoin de basculement du tronc vers l'avant.

Au début de la phase de redressement, il existe un risque de basculement vers l'arrière de la personne installée dans l'exosquelette. On cherche la position limite des pieds pour qu'il n'y ait pas basculement. A partir de cette position limite des pieds, on détermine la position générale de l'exosquelette en début de phase de redressement.

On rappelle que géométriquement on a défini : $\overrightarrow{CA} = x(t) \cdot \vec{x} + y(t) \cdot \vec{y}$

Pour cette partie on prend y(t) constant avec $y(t) = Y_0 = 400$ mm.

On supposera le solide (1) vertical donc que $\vec{x}_1 = \vec{y}$.

Le contact entre l'exosquelette et la chaise est rompu (pas d'action mécanique transmise). On cherche à régler x(t) pour cette position on note $x(t) = X_0$ (Figure 12).

 $[\hat{A} \text{ noter} : X_0 \text{ est pris en valeur algébrique}, X_0 \text{ est négatif sur la figure } 12]$

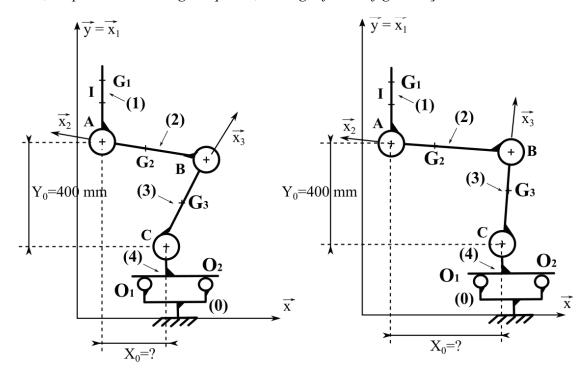


Figure 12: position du pied.

On donne les torseurs d'actions mécaniques des liaisons sphère/plan en O₁ et O₂.

$$\{T_{0\to 4}^1\}_{o_1} = \left\{\begin{matrix} Y_{01}.\,\vec{y}\\ \vec{0} \end{matrix}\right\}_{o_1} \ et \ \{T_{0\to 4}^2\}_{o_2} = \left\{\begin{matrix} Y_{02}.\,\vec{y}\\ \vec{0} \end{matrix}\right\}_{o_2}$$

Question 15. En prenant en compte le fait que la personne dans l'exosquelette peut basculer vers l'arrière lorsque le contact est rompu avec la chaise, donner la condition de non basculement sur l'effort Y_{02} .

En isolant l'ensemble $\{1+2+3\}$, et en appliquant le principe fondamental de la statique , on détermine l'effort Y_{02} en fonction des masses m_1 , m_2 , m_3 et des données géométriques. On peut tracer les graphiques donnés dans le cahier réponses (R16).

Question 16. A partir de ces graphiques déterminer la position initiale limite X_0 à donner aux pieds et l'angle θ_3 correspondant pour qu'il n'y ait pas basculement.

Pour des raisons pratiques au niveau de la mise en position debout, l'angle θ_3 doit être au minimum égal à 70° en début de mouvement.

Question 17. En prenant ce critère en compte, y-a-t-il un risque de basculement ?

Pour éviter ce problème, le corps de la personne solidaire du bassin (1) de l'exosquelette est penché vers l'avant en position initiale de redressement .

Finalement la position initiale est définie par : X_0 = -273 mm, Y_0 = 400 mm, θ_3 = 70°, θ_2 = 108.5° et θ_1 = -106.5°.

Partie IV. Permettre à l'utilisateur de se déplacer en autonomie

IV.1. Modélisation du comportement dynamique de la marche

Objectif : compléter le modèle dynamique de l'asservissement en position de l'axe de la hanche.

Dans cette partie, on s'intéresse juste au basculement d'une jambe, ensemble {(2') + (3') + (4')}, par rapport aux autres solides, supposés fixes. On suppose donc la personne immobile, c'est-à-dire le point A fixe par rapport au sol. On cherche à obtenir l'équation de mouvement de la jambe. Cette équation permettra de compléter le schéma bloc de la partie dynamique de l'asservissement en position de l'axe de la hanche (figure 17). On remarque, sur le schéma bloc, que le mouvement de la hanche est assuré par un ensemble moteur + réducteur.

Le schéma cinématique de l'exosquelette lors de la marche est donné figure 16.

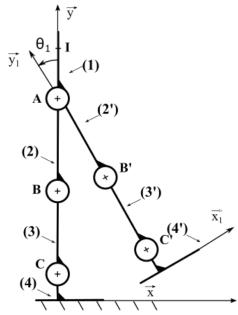


Figure 16 : schéma cinématique de l'exosquelette lors de la phase « basculement d'une jambe ».

Paramètres:

Solide	Repères et/ou Bases associés	Paramètres géométriques	Masses
(0) + (1) + (2) +(3) + (4) fixe	$B_0(\vec{x}, \vec{y}, \vec{z})$		
Fémur (2')	$R_1(A, \vec{x}_1, \vec{y}_1, \vec{z})$ $B_1(\vec{x}_1, \vec{y}_1, \vec{z})$	$\overrightarrow{G_2 A} = \frac{L_2}{2} \cdot \overrightarrow{y}_1$ $\overrightarrow{B'A} = L_2 \cdot \overrightarrow{y}_1$ $\theta_1(t) = (\overrightarrow{x}, \overrightarrow{x}_1)$ $= (\overrightarrow{y}, \overrightarrow{y}_1)$ $\omega_1(t) = \frac{d\theta_1(t)}{dt}$	Masse fémur + Personne : m2 = 14 kg Matrice d'inertie : $\begin{bmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & A_2 \end{bmatrix}_{G_2,B_1} = \begin{bmatrix} 0,3 & 0 & 0 \\ 0 & 0,03 & 0 \\ 0 & 0 & 0,3 \end{bmatrix}_{G_2,B_1}$ inertie en kg.m² G² centre d'inertie de (2')
Tibia (3')	$R_1(A, \vec{x}_1, \vec{y}_1, \vec{z})$	$\overrightarrow{G_3B'} = \frac{L_3}{2} \cdot \overrightarrow{y}_1$ $\overrightarrow{C'B'} = L_3 \cdot \overrightarrow{y}_1$ $avec L_3 = 415 mm$	Masse tibia + Personne : m3 = 9 kg Matrice d'inertie : $\begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & A_3 \end{bmatrix}_{G_3,B_1} = \begin{bmatrix} 0,15 & 0 & 0 \\ 0 & 0,02 & 0 \\ 0 & 0 & 0,15 \end{bmatrix}_{G_3,B_1}$ inertie en kg.m² $G_3 \text{ centre d'inertie de (3')}$

Pied (4')	$R_1(A, \vec{x}_1, \vec{y}_1, \vec{z})$	$\overrightarrow{G_4C'} = L_4 \cdot \vec{y}_1$ $avec \ L_4 = 100 \ mm$	Masse pieds + Personne : m4 = 2kg Matrice d'inertie : $\begin{bmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{bmatrix}_{G_4,B_1} = \begin{bmatrix} 0,03 & 0 & 0 \\ 0 & 0,02 & 0 \\ 0 & 0 & 0,05 \end{bmatrix}_{G_4,B_1}$ inertie en kg.m² G ₄ centre d'inertie de (4')
-----------	---	--	---

- On suppose les liaisons parfaites
- Soit M_t , la masse totale de la jambe M_t = m2 + m3 + m4 = 25kg
- Soit G_t le centre de gravité de la jambe $\{(2')+(3')+(4')\}$ avec $\overrightarrow{G_tA} = L_{Gt} \cdot \overrightarrow{y}_1$ et $L_{Gt} = 400 \text{ mm}$
- On note $\Theta_m(t)$ l'angle du moteur de l'articulation de la hanche, $\omega_m(t)$ la vitesse de rotation du moteur
- On note k_r le rapport de réduction global de l'articulation de la hanche tel que : $\frac{\omega_1(t)}{\omega_m(t)} = k_r = \frac{1}{303}$
- On note Cm(t) le couple fourni par le moteur. Ce couple engendre un moment que l'on peut ramener sur l'axe de l'articulation : $\overrightarrow{M}_{A,1\to 2'}=C_1$. \vec{z}
- Le rendement global du système de réduction en régime permanent est de 1 : $\frac{P_1}{P_m} = \frac{\omega_1.C_1}{\omega_m.C_m} = 1$
- Soit J_m le moment d'inertie suivant son axe du rotor du moteur avec $J_m = 70.10^{-7} \text{kg.m}^2$

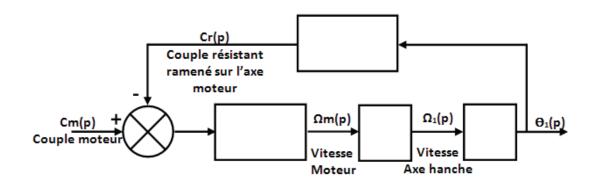


Figure 17 : schéma bloc partie dynamique de l'asservissement en position de l'axe de la hanche.

Pour obtenir l'équation de mouvement de la jambe, on isole l'ensemble en mouvement $\{(2') + (3') + (4') + axe_moteur\}$, on applique le principe fondamental de la dynamique à cet ensemble et on écrit l'équation de moment en A projetée sur la direction \vec{z} .

Question 25. Déterminer le moment dynamique en A projeté sur \vec{z} de l'ensemble $\Sigma = \{2' + 3' + 4'\}$. On note le moment dynamique en A : $\vec{\delta}_{A,\Sigma/0}$.

On rappel que $\vec{\delta}_{A,\{(2^{\circ})+(3^{\circ})+(4^{\circ})\}/0} = \vec{\delta}_{A,(2^{\circ})/0} + \vec{\delta}_{A,(3^{\circ})/0} + \vec{\delta}_{A,(4^{\circ})/0}$ et on notera $\vec{\sigma}_{M,i/0}$ le moment cinétique d'un solide i par rapport à 0 en M.

On note $\vec{\delta}_{A,\Sigma+axe_moteur/0}$ le moment dynamique des éléments en mouvement en A. Avec $\vec{\delta}_{A,\Sigma+axe_moteur/0}$. $\vec{z}=\vec{\delta}_{A,\{(2')+\;(3')+\;(4')\}/0}$. $\vec{z}+J_m$. $\frac{d\omega_m(t)}{dt}$.

Question 26. En déduire l'équation de mouvement souhaitée en appliquant le théorème du moment dynamique en A projeté sur \vec{z} à l'ensemble $\{(2') + (3') + (4') + axe_moteur\}$.

Question 27. Montrer que cette équation peut se mettre sous la forme :

$$J_{eq} \cdot \frac{d\omega_{m}(t)}{dt} = C_{m}(t) - C_{r}(t)$$

Vous exprimerez $J_{\rm eq}$ et $C_{\rm r}(t)$ en fonction des données [ne pas oublier le réducteur de la chaine d'énergie].

Question 28. Après avoir linéarisé la relation précédente et en supposant les conditions initiales nulles, compléter le schéma bloc du document réponse après avoir passé l'équation dans le domaine de Laplace.

Le modèle de la partie dynamique de l'asservissement étant maintenant déterminé, nous allons étudier cet asservissement et choisir un correcteur permettant de respecter le cahier des charges.

IV.2. Choix de la correction de l'asservissement

Objectif: choisir un correcteur permettant de respecter le cahier des charges (ld 1.3.1.2).

Pour rappel le cahier des charges stipule pour l'asservissement en position de la hanche :

	Exigences	Critères	
ld 1.3.1.2 Performances de l'axe de la hanche	ld 1.3.1.2.1 : rapidité	Bande Passante à 0db en Boucle ouverte ω _{BO-0db} ≥ 10 rad/s	
	ld 1.3.1.2.3 : stabilité	Marge de Phase ≥ 45 °	
	ld 1.3.1.2.2 : précision	écart statique nul	

Désignation	Résistance de l'induit	Inductance de l'induit	Inertie équivalente	réducteur	Masse de la jambe	Distance [AGt]	Constante de couple	Constante de f.e.m
Nom	R	L	Jeq	kr	Mt	L_Gt	km	ke
Valeur	0.8 Ohm	0,9.10 ⁻³ H	7.10 ⁻⁵ kg.m ²	1/303	25 kg	400 mm	0.044 Nm/A	0.044 V/rad/s

Le modèle de notre asservissement en position peut être représenté par le schéma bloc présenté figure 1 dans l'annexe 3.

Dans un premier temps il faut calculer la fonction de transfert du moteur $H_m(p) = \frac{\Omega_m(p)}{U_m(p)}$. Pour calculer cette fonction, on simplifie d'abord le schéma bloc.

Question 29. Montrer que le schéma-bloc de la figure 2 annexe 3 est équivalent à celui de la figure 1.

Une fois la fonction de transfert $H_m(p) = \frac{\Omega_m(p)}{U_m(p)}$ calculée et les applications numériques faites on peut modéliser de notre système par le schéma bloc de la figure 18. Ce modèle sera utilisé pour la suite du sujet.

Annexe 1

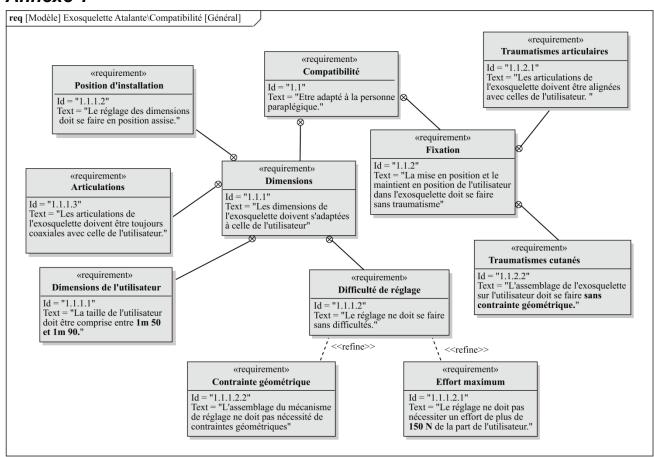


Figure 1 : sous exigences associées à la compatibilité de l'exosquelette avec l'utilisateur.

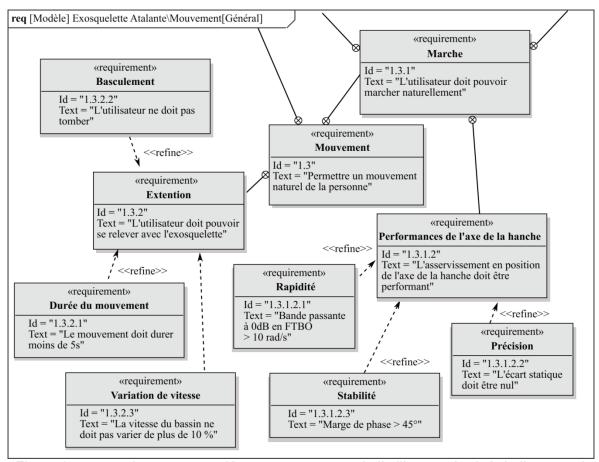


Figure 2 : sous exigences associées au mouvement de l'utilisateur équipé de l'exosquelette.

Annexe 2

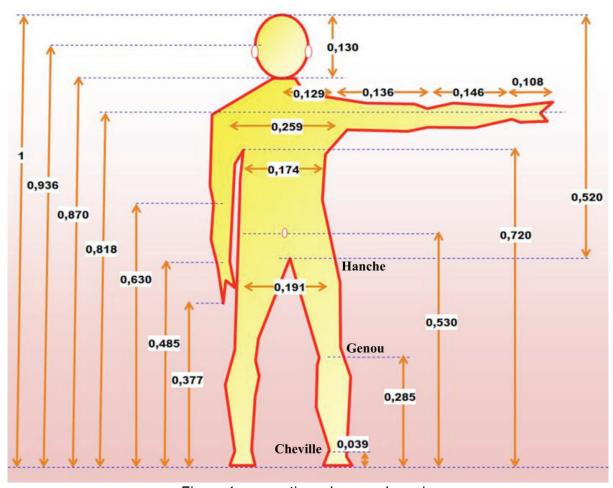


Figure 1: proportions du corps humain.

Ces données sont toutes relatives à un individu de taille 1 unité. Par exemple pour une personne de 173 cm, la taille de la main sera $173 \times 0,108 = 18,7 \text{ cm}$.