The equilibrium constant K_c

If you have an equilibrium reaction you can describe it with K_c .

It describes how much of a reaction is on the left or right side.

High K_c : \longrightarrow Low K_c : \blacktriangleleft

The only thing that changes the value of Kc for a reaction is the temperature.

$$K_{c} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

[] means concentration in moles/dm 3

The ionisation of water

Water will fall apart into ions a little bit by itself.

$$H_2O + H_2O \Rightarrow H_3O^+ + OH^-$$

 $K_c = \frac{[H_3O^+][OH^-]}{[H_2O][H_2O]}$

$$[H_2O] = \frac{n}{V} = \frac{m/M}{V} = \frac{1000/18}{1} = 55.6 \text{ mol/dm}^3 \qquad \begin{array}{l} A \text{ constant that is always} \\ \text{the same.} \end{array}$$

Since $[H_2O]$ is always the same one can introduce a new constant K_w that is called the ionic product constant of water:

$$K_w = [H_3O^+][OH^-] = 10^{-14}$$
 at 25 °C

The definitions of Acids and Bases

The Arrhenius definition

Acids: A substance that forms H^+ ions when mixed with water. Bases: A substance that forms OH^- ions when mixed with water.

The Brönsted-Lowry definition

Acids: A substance that is a proton (H^+) donator. Bases: A substance that is a proton (H^+) acceptor.

The Lewis definition

Acids: A substance that is an electron pair acceptor.

Bases: A substance that is an electron pair donator.

Conjugate acid-base pairs

If there is a donator (acid) there has to be an acceptor (base) in a reaction. The acid and base in a conjugate acid-base pair differs with just one H^+

Amphoteric substances

A substance that sometimes acts as an acid and sometimes as a base is called an amphoteric substance. Water is such a substance.

The pH and pOH scales

The pH and pOH values give the concentration of $H^{\scriptscriptstyle +}$ and $OH^{\scriptscriptstyle -}$ ions in a liquid.

Large pH and pOH values means small concentration because

pH = $-\log[H^+]$ [H⁺] = 10^{-pH} pOH = $-\log[OH^-]$ [OH⁻] = 10^{-pOH}

The following rule is true when the temperature is 25 °C

pH + pOH = 14

Dissociation constants

An acid will in water dissociate with the following reaction

 $HA + H_2O \rightleftharpoons A^- + H_3O^+$ Example: $HCI + H_2O \swarrow CI^+ + H_3O^+$ acid base base this reaction has an acid dissociation constant: $K_a = \frac{[H_3O^+][A^-]}{[HA]}$ The A⁻ ions will also react with water and so there is a second reaction that creates OH^- ions:

In the end there will be a mixture of HA, A^- , H_3O^+ and OH^- in the water.

 K_a and K_b are constants but depends on temperature. They give the strength of the acid or base.

$$pK_{a} = -log[K_{a}] \qquad K_{a} = 10^{-pKa}$$
$$pK_{b} = -log[K_{b}] \qquad K_{b} = 10^{-pKb}$$

The following rule is true when the temperature is 25 °C

 $pK_a + pK_b = 14$

The larger the pK_a the weaker the acid. The larger the pK_b the weaker the base.

Strong acids

Strong acids (pK_a is negative) dissolve almost totally in water:

$$HA + H_2O \rightarrow A^- + H_3O^+$$

initially: [HA]_{initially} 0 0
finally: [HA]_{finally} ≈ 0 [A⁻] [H₃O⁺]
Very small number

$$[A^-] = [H_3O^+] = [HA]_{initially}$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]_{finally}} = \frac{[HA]_{initially}^2}{[HA]_{finally}} = Very large number$$

$$PH = -log[H_3O^+] = -log[HA]_{initially}$$

<u>Strong bases</u>

Strong bases dissolve almost totally in water: $B + H_2O \rightarrow BH^+ + OH^-$ initially: [B]_initially 0 0 finally: [B]_finally ≈ 0 [BH^+] [OH^-] Very small number $\begin{bmatrix} BH^+] = [OH^-] = [B]_{initially}$ $K_b = \frac{[OH^-] [BH^+]}{[B]_{finally}} = \frac{[B]_2^2}{[B]_{finally}} = Large number$ $pOH = -log[OH^-] = -log[B]_{initially}$

Examples of strong acids and bases

Strong acids:

	Ka	pΚa
H_2SO_4	10 ³	-3
HNO ₃	10 ¹	-1
HCI	10 ⁸	-8
HBr	10 ⁹	-9
HClO ₄	10 ¹⁰	-10

Strong bases: K_b pK_b

LiOH	2.5	-0.4
NaOH	0.6	+0.2
КОН	0.3	+0.5

Weak acids

Weak acids (pK_a is positive) dissolve hardly at all in water:

$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$

initially: [HA] 0 0
finally: [HA] [A^-] [H_3O^+]

 $[HA]_{final} = [HA]_{initial} \text{ and } [A^-] = [H_3O^+]$

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} = \frac{[H_{3}O^{+}]^{2}}{[HA]}$$
$$pH = -\log[H_{3}O^{+}] = -\log[K_{a}[HA]]$$

Weak bases

Weak bases dissolve hardly at all in water:

 $[B]_{final} = [B]_{initial}$ and $[BH^+] = [OH^-]$

$$K_{b} = \frac{[OH^{-}] [BH^{+}]}{[B]} = \frac{[OH^{-}]^{2}}{[B]}$$
$$pOH = -\log[OH^{-}] = -\log\sqrt{K_{b}[B]}$$

Examples of weak acids and bases

Weak acids:

	Ka	pΚa
CH ₃ COOH	2x10 ⁻⁵	
C ₆ H ₈ O ₇	8×10 ⁻⁴	3.1
H ₂ CO ₃	4x10 ⁻⁷	6.4

Weak bases:

	K _b	рК _Ь
NH ₃	2x10 ⁻⁵	4.8
CH_3NH_2	4x10 ⁻⁴	3.4
$C_2H_5NH_2$	4x10 ⁻⁴	3.3

Acid + Base Acid + Base \longrightarrow Salt + Water HCl + NaOH \longrightarrow NaCl + H₂O H⁺ + Cl⁻ + Na⁺ + OH⁻ \longrightarrow Na⁺ + Cl⁻ + H₂O

neutralisation reaction

Acid + Carbonate Acid + Carbonate → Salt + Water + Carbon dioxide 2HCl + CaCO₃ → CaCl₂ + H₂O + CO₂ 2H⁺ + 2Cl⁻ + Ca²⁺ + CO₃²⁻→ Ca²⁺ + 2Cl⁻ + H₂O + CO₂ effervescence

Buffers

Start with a weak acids that dissolve hardly at all in water:

HA + $H_2O \rightleftharpoons A^- + H_3O^+$ with [HA]_{final} = [HA]_{initial}

Add the salt of that acid to the water and it will dissolve completly:

 $MA \rightarrow M^+ + A^-$ with $[A^-] = [MA]$

In this way one has a solution with a high concentration of both HA and ${\rm A}^{\rm -}$

If one add a little bit of acid (i.e. H_3O^+) it will react with $A^ A^- + H_3O^+ \rightarrow HA + H_2O$ but there is a lot of A^- so the pH will not change much.

If one add a little bit of base (i.e. OH^-) it will react with HA

$$HA + OH^- \rightarrow A^- + H_2O$$

but there is a lot of HA so the pH will not change much.

Buffer equations

Weak acid + salt:
$$[H_3O^+] = K_a \frac{[Acid]}{[Salt]}$$

 $pH = pK_a + \log \frac{[Salt]}{[Acid]} = pKa$
If [Acid] = [Salt]

Salt Hydrolysis

Salt hydrolysis is the reverse of neutralization

Spectator ions comes from the neutralization of very strong acids and bases and they hardly react with water at all.

Group 1: Li⁺ Na⁺ K⁺ Rb⁺ Cs⁺ Fr⁺
Group 2: Be⁺ Mg²⁺ Ca²⁺ Ba²⁺ Sr²⁺ Ra²⁺
MA + H₂O
$$\longrightarrow$$
 M⁺ + A⁻
I⁻ Br⁻ Cl⁻ NO₃⁻ ClO₄⁻

Does a salt give an acid or a base ?

There are 4 possibilites depending on how the salt is made. \times = spectator

How the salt is made: Strong base + Strong acid

1)
$$MA + H_2O \longrightarrow \mathcal{K} + \mathcal{K}$$
 Neutral acid + base

How the salt is made: Weak base + Strong acid

2)
$$MA + H_2O \rightarrow M^+ + X$$
 Weak acid
acid + base
 $+ H_2O \rightarrow MOH + H^+$

How the salt is made: Strong base + Weak acid

3)
$$MA + H_2O \rightarrow K + A^-$$
 Weak base
acid + base
 $+ H_2O \rightarrow HA + OH^-$

How the salt is made: Weak base + Weak acid

4)
$$MA + H_2O \rightarrow M^+ + A^-$$
 Depends (on Ka and Kb)
acid + base
 $+ H_2O \rightleftharpoons HA + OH^-$
 $+ H_2O \rightleftharpoons MOH + H^+$

<u>Rules regarding salt hydrolysis</u>

