The equilibrium constant $\mathrm{K}_{\underline{c}}$

If you have an equilibrium reaction you can describe it with K_{c}.
It describes how much of a reaction is on the left or right side.
High $K_{c}: \longrightarrow$

$$
\text { Low } K_{c}: \longleftarrow
$$

The only thing that changes the value of $K c$ for a reaction is the temperature.

$$
a A+b B \rightleftarrows c C+d D
$$

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

[] means concentration in moles $/ \mathrm{dm}^{3}$

The ionisation of water

Water will fall apart into ions a little bit by itself.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}
\end{gathered}
$$

$$
\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{n}{V}=\frac{\mathrm{m} / \mathrm{M}}{\mathrm{~V}}=\frac{1000 / 18}{1}=55.6 \mathrm{~mol} / \mathrm{dm}^{3}
$$

A constant that is always the same.

Since $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is always the same one can introduce a new constant K_{w} that is called the ionic product constant of water:

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \text { at } 25^{\circ} \mathrm{C}
$$

The Arrhenius definition
Acids: A substance that forms H^{+}ions when mixed with water.
Bases: A substance that forms OH^{-}ions when mixed with water.
The Brönsted-Lowry definition
Acids: A substance that is a proton $\left(H^{+}\right)$donator.
Bases: A substance that is a proton $\left(\mathrm{H}^{+}\right)$acceptor.
The Lewis definition
Acids: A substance that is an electron pair acceptor.
Bases: A substance that is an electron pair donator.

Conjugate acid-base pairs

If there is a donator (acid) there has to be an acceptor (base) in a reaction. The acid and base in a conjugate acid-base pair differs with just one H^{+}

Amphoteric substances

A substance that sometimes acts as an acid and sometimes as a base is called an amphoteric substance. Water is such a substance.

The pH and pOH scales

The pH and pOH values give the concentration of H^{+}and OH^{-}ions in a liquid.

Large pH and pOH values means small concentration because

```
pH = - log[H+]
[H+
pOH = - log[OH-}
[OH-] = 10-pOH
```

The following rule is true when the temperature is $25^{\circ} \mathrm{C}$

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

Dissociation constants

An acid will in water dissociate with the following reaction

The A^{-}ions will also react with water and so there is a second reaction that creates OH^{-}ions:

In the end there will be a mixture of $\mathrm{HA}, \mathrm{A}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in the water.
K_{a} and K_{b} are constants but depends on temperature.
They give the strength of the acid or base.

$$
\begin{array}{ll}
\mathrm{p} K_{a}=-\log \left[K_{a}\right] & K_{a}=10-\mathrm{pKa} \\
p K_{b}=-\log \left[K_{b}\right] & K_{b}=10-p K_{b}
\end{array}
$$

The following rule is true when the temperature is $25^{\circ} \mathrm{C}$

$$
\mathrm{pK}_{\mathrm{a}}+\mathrm{pK} \mathrm{~b}_{\mathrm{b}}=14
$$

The larger the pK_{a} the weaker the acid.
The larger the $p K_{b}$ the weaker the base.

Strong acids

Strong acids ($\mathrm{p} \mathrm{K}_{\mathrm{a}}$ is negative) dissolve almost totally in water:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

initially: $[H A]_{\text {initially }}$
0
finally: $\quad\left[\mathrm{HA}^{\text {finally }}\right.$ ㅇ $\quad\left[\mathrm{A}^{-}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Very small number

$$
\left[\mathrm{A}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HA}]_{\text {initially }}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]_{\text {finally }}}=\frac{[\mathrm{HA}]_{\text {initially }}^{2}}{[\mathrm{HA}]_{\text {finally }}}=\text { Very large number } \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log [\mathrm{HA}]_{\text {initially }}
\end{aligned}
$$

Strong bases

Strong bases dissolve almost totally in water:

| | B | + | $\mathrm{H}_{2} \mathrm{O}$ |
| :--- | :---: | :---: | :---: |$\rightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}$

Very small number

$$
\left[\mathrm{BH}^{+}\right]=\left[\mathrm{OH}^{-}\right]=[\mathrm{B}]_{\text {initially }}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]_{\text {finally }}}=\frac{[\mathrm{B}]_{\text {initially }}^{2}=\text { Large number }}{[\mathrm{B}]_{\text {finally }}} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log [\mathrm{B}]_{\text {initially }}
\end{aligned}
$$

Examples of strong acids and bases

Strong acids:

	K_{a}	pK
H_{2}		
$\mathrm{H}_{2} \mathrm{SO}_{4}$	10^{3}	-3
HNO	10^{1}	-1
HCl	10^{8}	-8
HBr	10^{9}	-9
HClO	10^{10}	-10

Strong bases:

LiOH
NaOH
KOH
$\mathrm{K}_{\mathrm{b}} \quad \mathrm{pK} \mathrm{b}^{\mathrm{b}}$
$2.5 \quad-0.4$
$0.6+0.2$
$0.3+0.5$

Weak acids

Weak acids (pK_{a} is positive) dissolve hardly at all in water:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

initially:	$[\mathrm{HA}]$	0	0
finally:	$[\mathrm{HA}]$	$\left[A^{-}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
[H A]_{\text {final }}=[H A]_{\text {initial }} \text { and }\left[A^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \sqrt{\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}
$$

Weak bases

Weak bases dissolve hardly at all in water:

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

initially:
[B]
finally:
[B]

0 0 $\left[\mathrm{BH}^{+}\right] \quad\left[\mathrm{OH}^{-}\right]$

$$
[B]_{\text {final }}=[B]_{\text {initial }} \text { and }\left[B H^{+}\right]=\left[\mathrm{OH}^{-}\right]
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{[\mathrm{~B}]} \\
& \left.\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \right] / \mathrm{K}_{\mathrm{b}}[\mathrm{~B}]
\end{aligned}
$$

Examples of weak acids and bases

Weak acids:

$$
\begin{array}{lll}
& \mathrm{Ka}_{\mathrm{a}} & \mathrm{pK}_{\mathrm{a}} \\
\mathrm{CH}_{3} \mathrm{COOH} & 2 \times 10^{-5} & 4.8 \\
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} & 8 \times 10^{-4} & 3.1 \\
\mathrm{H}_{2} \mathrm{CO}_{3} & 4 \times 10^{-7} & 6.4
\end{array}
$$

Weak bases:

$$
\begin{array}{lcc}
& \mathrm{K}_{\mathrm{b}} & \mathrm{pK} \mathrm{~K}_{\mathrm{b}} \\
\mathrm{NH}_{3} & 2 \times 10^{-5} & 4.8 \\
\mathrm{CH}_{3} \mathrm{NH}_{2} & 4 \times 10^{-4} & 3.4 \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} & 4 \times 10^{-4} & 3.3
\end{array}
$$

$$
\begin{aligned}
& \text { Acid }+ \text { Metal } \\
& \text { Acid }+ \text { Metal } \rightarrow \text { Salt + Hydrogen } \\
& 2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \\
& 2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Acid }+ \text { Base } \\
& \text { Acid }+ \text { Base } \rightarrow \text { Salt }+ \text { Water } \\
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& \text { neutralisation reaction }
\end{aligned}
$$

Acid + Carbonate

Acid + Carbonate \rightarrow Salt + Water + Carbon dioxide

$$
2 \mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

$$
2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+\mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Buffers

Start with a weak acids that dissolve hardly at all in water:
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad$ with $[\mathrm{HA}]_{\text {final }}=[\mathrm{HA}]_{\text {initial }}$

Add the salt of that acid to the water and it will dissolve completly:
$M A \rightarrow M^{+}+A^{-} \quad$ with $\left[A^{-}\right]=[M A]$

In this way one has a solution with a high concentration of both HA and A^{-}

If one add a little bit of acid (i.e. $\mathrm{H}_{3} \mathrm{O}^{+}$) it will react with A^{-}

$$
\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}
$$

but there is a lot of A^{-}so the pH will not change much.

If one add a little bit of base (i.e. OH^{-}) it will react with HA

$$
\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

but there is a lot of HA so the pH will not change much.

Buffer equations

$$
\begin{aligned}
& \text { Weak acid + salt: }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \frac{[\text { Acid }]}{[\text { Salt }]} \\
& \qquad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}=\mathrm{pKa} \\
& \text { If }[\text { Acid }]=[\text { Salt }]
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Weak base + salt: } \quad\left[\mathrm{OH}^{-}\right] & =\mathrm{K}_{\mathrm{b}} \frac{[\text { Base }]}{[\text { Salt }]} \\
& \mathrm{pOH}=\mathrm{pK} \mathrm{~b}+\log \frac{[\text { Salt }]}{[\text { Base }]}=\mathrm{pKb} \\
\text { If }[\text { Base }]=[\text { Salt }]
\end{array}
$$

Salt Hydrolysis

Salt hydrolysis is the reverse of neutralization

Spectator ions comes from the neutralization of very strong acids and bases and they hardly react with water at all.

$$
M A+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{M}^{+}+A^{-}
$$

$$
\begin{aligned}
& \text { Group 1: } \mathrm{Li}^{+} \mathrm{Na}^{+} \mathrm{K}^{+} \mathrm{Rb}^{+} \mathrm{Cs}^{+} \mathrm{Fr}^{+} \\
& \text {Group 2: } \mathrm{Be}^{+} \mathrm{Mg}^{2+} \mathrm{Ca}^{2+} \mathrm{Ba}^{2+} \mathrm{Sr}^{2+} \mathrm{Ra}^{2+} \\
& \longrightarrow \mathrm{I}^{-} \mathrm{Br}^{-} \mathrm{Cl}^{-} \quad \mathrm{NO}_{3}^{-} \quad \mathrm{ClO}_{4}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Salt + Water } \rightarrow \text { Acid + Base } \\
& M A+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{M}^{+}+A^{-} \\
& \begin{array}{rll}
\longrightarrow & +\mathrm{H}_{2} \mathrm{O} & \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-} \\
\longrightarrow \mathrm{KOH}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a}}
\end{array} \\
& \mathrm{Ka}=\mathrm{Kb} \quad \text { the solution is neutral } \\
& \mathrm{Ka}>\mathrm{Kb} \text { the solution is acidic } \\
& \mathrm{Ka}<\mathrm{Kb} \text { the solution is basic }
\end{aligned}
$$

Does a salt give an acid or a base?

There are 4 possibilites depending on how the salt is made. $X=$ spectator

How the salt is made: Strong base + Strong acid
1)

$$
M A+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { acid + base }}{+X} \quad \text { Neutral }
$$

How the salt is made: Weak base + Strong acid
2)

$$
\begin{aligned}
& \mathrm{MA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { acid }+ \text { base }}{M^{+}+X} \quad \text { Weak acid } \\
& \longrightarrow+\mathrm{H}_{2} \mathrm{O}
\end{aligned} \mathrm{MOH}+\mathrm{H}^{+} \quad .
$$

How the salt is made: Strong base + Weak acid

$$
\begin{align*}
\mathrm{MA}+\mathrm{H}_{2} \mathrm{O} \rightarrow+A^{-} \quad \text { Weak base } \\
\text { acid + base }
\end{aligned} \quad \begin{aligned}
& \longrightarrow+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}
\end{align*}
$$

How the salt is made: Weak base + Weak acid
4)

$$
\begin{aligned}
& \mathrm{MA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{M}^{+}+A^{-} \quad \text { Depends (on } \mathrm{Ka} \text { and } \mathrm{Kb} \text {) } \\
& \text { acid + base } \\
& \longrightarrow+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-} \\
& \longrightarrow+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{MOH}+\mathrm{H}^{+}
\end{aligned}
$$

Rules regarding salt hydrolysis

> Spectators
> Group 1: $\mathrm{Li}^{+} \mathrm{Na}^{+} \mathrm{K}^{+} \mathrm{Rb}^{+} \mathrm{Cs}^{+} \mathrm{Fr}^{+}$
> Group 2: $\mathrm{Be}^{+} \mathrm{Mg}^{2+} \mathrm{Ca}^{2+} \mathrm{Ba}^{2+} \mathrm{Sr}^{2+} \mathrm{Ra}^{2+}$
> $M A+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{M}^{+}+\mathrm{A}^{-}$
> $\longrightarrow \mathrm{I}^{-} \mathrm{Br}^{-} \mathrm{Cl}^{-} \quad \mathrm{NO}_{3}^{-} \quad \mathrm{ClO}_{4}^{-}$
$M A+\mathrm{H}_{2} \mathrm{O} \rightarrow+X \quad$ Neutral
Comes from Strong Base + Strong Acid

$$
\begin{aligned}
& \mathrm{MA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{M}^{+}+X \quad \text { Weak acid } \\
& \\
& +\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{MOH}+\mathrm{H}^{+}
\end{aligned}
$$

Comes from Weak Base + Strong Acid

$$
\begin{aligned}
& \mathrm{MA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbb{X}+\mathrm{A}^{-} \quad \text { Weak base } \\
& \longrightarrow+\mathrm{H}_{2} \mathrm{O} \\
& \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}
\end{aligned}
$$

Comes from Strong Base + Weak Acid

