Grands nombres... et plus

Contexte

On sait que

$$x^{100} \ll_{+\infty} e^x.$$

Mais

$$10^{100} \gg e^{10}$$
.

Si a = 647,277,

$$a^{100} \approx e^a \approx 1.28 \cdot 10^{281}$$
.

Taille de l'univers visible :

93 Gal =
$$8.8 \cdot 10^{23}$$
 km.

Nombre de particules dans l'univers :

environ 10^{80} .

Nombres de Mersenne

On appelle *nombres de Mersenne* les nombres $M_n = 2^n - 1$ où $n \in \mathbb{N}^*$.

Si M_n est premier, n l'est aussi.

 $M_{82\,589\,933}=2^{82\,589\,933}-1$ est premier (21 décembre 2018). Ce nombre comporte 24 862 048 chiffres (en base 10).

Itérations

 $a,\,b$ et n sont des entiers naturels.

Itérations

Successeur. a + 1 est le successeur de a.

Addition.
$$a + b = a + \underbrace{1 + 1 + \dots + 1}_{b \text{ fois}}$$
.

Multiplication.
$$a \times b = \underbrace{a + a + \dots + a}_{b \text{ fois}}$$
.

Exponentiation.
$$a^b = \underbrace{a \times a \times \cdots \times a}_{b \text{ fois}}$$
.

Flèches de Knuth

$$a \uparrow b = a^{b},$$

$$a \uparrow \uparrow b = \underbrace{a \uparrow a \uparrow \cdots \uparrow a}_{b \text{ fois}},$$

$$a \uparrow \uparrow \uparrow b = \underbrace{a \uparrow \uparrow a \uparrow \uparrow \cdots \uparrow \uparrow a}_{b \text{ fois}},$$

$$a \uparrow \uparrow \uparrow b = \underbrace{a \uparrow \uparrow a \uparrow \uparrow \cdots \uparrow \uparrow a}_{b \text{ fois}},$$

$$a \uparrow \uparrow \cdots \uparrow b = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

$$\underbrace{a \uparrow \uparrow \cdots \uparrow b}_{n \text{ fois}} = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

$$\underbrace{a \uparrow \uparrow \cdots \uparrow b}_{n \text{ fois}} = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

$$\underbrace{a \uparrow \uparrow \cdots \uparrow b}_{n \text{ fois}} = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

$$\underbrace{a \uparrow \uparrow \cdots \uparrow b}_{n \text{ fois}} = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

$$\underbrace{a \uparrow \uparrow \cdots \uparrow b}_{n \text{ fois}} = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

$$\underbrace{a \uparrow \uparrow \cdots \uparrow b}_{n \text{ fois}} = \underbrace{a \uparrow \uparrow \cdots \uparrow a}_{n \text{ fois}},$$

Flèches de Knuth

$$a \uparrow^n b = \begin{cases} a^b & \text{si } n = 1, \\ 1 & \text{si } b = 0, \\ a \uparrow^{n-1} (a \uparrow^n (b-1)) & \text{sinon.} \end{cases}$$

Nombre de Graham

Pour
$$n \in \mathbb{N}$$
, $f(n) = 3 \uparrow^n 3$.

Le nombre de Graham est

$$G = f^{64}(4) = \underbrace{f \circ f \circ \cdots \circ f}_{64 \text{ fois}}(4).$$

Autrement dit, G est le terme d'indice 64 dans la suite

$$4, 3 \uparrow \uparrow \uparrow \uparrow \uparrow 3, 3 \uparrow \uparrow \cdots \uparrow 3, \dots$$

où chaque nombre est le nombre de flèches du suivant.

Notation chainée de Conway

$$a \rightarrow b = a^b$$
.

Si X est une chaine dejà formée, $X \to 1 = X$.

$$X \to a \to b = X \to (X \to (a-1) \to b) \to b-1.$$

Notation chainée de Conway

Chaine de longueur 1 : un nombre.

Chaine de longueur 2 : une exponentielle.

Chaine de longueur $3: a \to b \to n = a \uparrow^n b$.

$$3 \to 3 \to 64 \to 2 < G < 3 \to 3 \to 65 \to 2.$$

L'infini, c'est au delà...