Corrigé du dixième devoir à la maison

CONVENTION. En suivant le programme, nous oserons dire qu'une fonction est intégrable $en\ b$ pour dire qu'elle est intégrable $sur\ un\ intervalle\ de\ la\ forme$ [a,b[, même si l'expression n'est pas très heureuse.

P.1.a. Comme $0 < f \ll_b g$ et que g est intégrable en b, |f| est intégrable en b.

Soit $\varepsilon > 0$. Il existe $c \in [a,b[$ tel que, pour tout $x \in [c,b[$, $f(x) \le \varepsilon g(x)$. Alors, par croissance de l'intégrale, et sachant que f et g sont intégrables sur [a,b[donc sur [x,b[, $\int_x^b f \le \varepsilon \int_x^b g$. On vient de prouver que

$$\forall \varepsilon > 0, \exists c \in [a, b[\,, \forall x \in [c, b[\,,\,\int_x^b f \leqslant \varepsilon \int_x^b g,$$

c'est-à-dire
$$\int_x^b f = o_b(\int_x^b g)$$
.

P.1.b. Comme $0 < f \sim_b g$ et que g est intégrable en b, |f| est intégrable en b.

On peut à nouveau utiliser les ε . Sinon, dire que $f \sim_b g$ signifie que $f = g + o_b(g)$, donc pour tout $x \in [a, b[$,

$$\int_{x}^{b} f = \int_{x}^{b} g + \int_{x}^{b} (o_{b}(g)),$$

et avec la question précédente,

$$\int_x^b f = \int_x^b g + o_b(\int_x^b g),$$

c'est-à-dire
$$\int_x^b f \sim_b \int_x^b g$$
.

P.2.a. Soit $\varepsilon > 0$. Il existe $c \in [a, b[$ tel que, pour tout $x \in [c, b[$, $f(x) \leq \varepsilon g(x)$. Fixons un tel c. Alors,

$$\int_a^x f = \int_a^c f + \int_c^x f \leqslant \int_a^c f + \varepsilon \int_c^x g \leqslant \int_a^c f + \varepsilon \int_a^x g.$$

Mais $\lim_{x\to b}\int_a^x g=+\infty$ car g n'est pas intégrable en b. Alors, il existe $d\in[c,b[$ tel que, pour tout $x\in[d,b[,\int_a^c f\leqslant\varepsilon\int_a^x g.$ Donc $\int_a^x f\leqslant2\varepsilon\int_a^x g$ et

$$\int_{a}^{x} f = o_b(\int_{a}^{x} g).$$

La fonction $g: t \mapsto 1/\sqrt{t}$ n'est pas intégrable en $+\infty$. Les fonctions $f_1: t \mapsto 1/t$ et $f_2: t \mapsto 1/t^2$ sont toutes deux négligeables devant g en $+\infty$. Mais, f_1 n'est pas intégrable en $+\infty$ et f_2 l'est.

P.2.b. Comme $0 < f \sim_b g$ et que g n'est pas intégrable en b, |f| n'est pas intégrable en b.

Comme $f \sim_b g$, $f - g = o_b(g)$. En utilisant P.2.a,

$$\int_a^x f - \int_a^x g \leqslant \int_a^x (f - g) = o_b(\int_a^x g).$$

Ainsi
$$\int_a^x f \sim_b \int_a^x g$$
.

Commentaire. Tous ces résultats s'appliquent bien-sûr à des intervalles du type]a,b], grâce à des changements de variables appropriés.

I.A.1. En 0^+ , $\frac{e^t}{\operatorname{Arcsin} t} \sim \frac{1}{t}$ et $t \mapsto \frac{1}{t}$ n'est pas intégrable en 0, donc d'après P.2.b,

$$\int_x^1 \frac{e^t}{\operatorname{Arcsin} t} dt \sim_{0^+} \int_x^1 \frac{dt}{t} = -\ln x.$$

Dorénavant, dans tout le reste du problème, sauf mention contraire, les limites, équivalences et négligeabilités sont faites en $+\infty$.

I.B.1. En intégrant par parties,

$$\int_2^x \frac{\mathrm{d}t}{\ln t} = \frac{x}{\ln x} - \frac{2}{\ln 2} + \int_2^x \frac{\mathrm{d}t}{\ln^2 t}.$$
 D'une part,
$$\frac{2}{\ln 2} \ll \frac{x}{\ln x}.$$
 D'autre part,
$$\frac{1}{t} \ll \frac{1}{\ln t},$$
 donc
$$t \mapsto \frac{1}{\ln t} \text{ n'est pas intégrable en } +\infty.$$
 Or,
$$\frac{1}{\ln^2 t} \ll \frac{1}{\ln t} \text{ donc d'après P.2.a,}$$

$$\int_2^x \frac{\mathrm{d}t}{\ln^2 t} \ll \int_2^x \frac{\mathrm{d}t}{\ln t}.$$

Ainsi.

$$\begin{split} \int_2^x \frac{\mathrm{d}t}{\ln t} &= \frac{x}{\ln x} + \mathrm{o}\left(\frac{x}{\ln x}\right) + \mathrm{o}\left(\int_2^x \frac{\mathrm{d}t}{\ln t}\right), \\ \text{c'est-\`a-dire} &\left|\int_2^x \frac{\mathrm{d}t}{\ln t} \sim \frac{x}{\ln x}. \right. \end{split}$$

I.B.2. Pour $n \in \mathbb{N}$, nommons P(n) la phrase

$$\int_{2}^{x} \frac{dt}{\ln t} = \sum_{k=0}^{n} \frac{k! x}{\ln^{k+1} x} - \sum_{k=0}^{n} \frac{k! 2}{\ln^{k+1} 2} + (n+1)! \int_{2}^{x} \frac{dt}{\ln^{n+2} t}.$$

P(0) est l'intégration par parties de la question précédente. Supposons P(n) vraie. En intégrant par parties.

$$\int_{2}^{x} \frac{\mathrm{d}t}{\ln^{n+2} t} = \frac{x}{\ln^{n+2} x} - \frac{2}{\ln^{n+2} 2} + (n+2) \int_{2}^{x} \frac{\mathrm{d}t}{\ln^{n+3} t}$$

donc P(n+1) est vraie. Comme en I.B.1, de cette égalité on tire

$$\int_{2}^{x} \frac{\mathrm{d}t}{\ln^{n+2}t} \sim \frac{x}{\ln^{n+2}x} \ll \frac{x}{\ln^{n+1}x}.$$

Dans P(n), la seconde somme est une constante, donc elle est négligeable devant $x/\ln^{n+1} x$.

Alors, pour tout $n \in \mathbb{N}$,

$$\int_2^x \frac{\mathrm{d}t}{\ln t} = \sum_{k=0}^n \frac{k! x}{\ln^{k+1} x} + \mathrm{o}\left(\frac{x}{\ln^{n+1} x}\right).$$

Commentaire. Dans ce développement asymptotique, tous les termes sont des infiniment grands en x.

I.C. D'abord, $t\mapsto \frac{e^t}{t^2+1}$ n'est pas intégrable en $+\infty$ car $\frac{e^t}{t^2+1}\gg \frac{1}{t}$. En outre, $\frac{e^t}{t^2+1}\sim \frac{e^t}{t^2}$ donc d'après P.2.b,

$$\int_1^x \frac{e^t}{t^2 + 1} \, \mathrm{d}t \sim \int_1^x \frac{e^t}{t^2} \, \mathrm{d}t.$$

De plus, en intégrant deux fois par parties,

$$\int_{1}^{x} \frac{e^{t}}{t^{2}} dt = \frac{e^{x}}{x^{2}} - e + \frac{2e^{x}}{x^{3}} - 2e + \int_{1}^{x} \frac{6e^{t}}{t^{4}} dt.$$

Avec une nouvelle intégration par parties, on a

$$\int_1^x \frac{e^t}{t^4} \, \mathrm{d}t \sim \frac{e^x}{x^4} \ll \frac{e^x}{x^3}$$

donc

$$\int_1^x \frac{e^t}{t^2} dt = \frac{e^x}{x^2} + \frac{2e^x}{x^3} + o\left(\frac{e^x}{x^3}\right),$$

où l'on a négligé les constantes additives. Enfin

$$\int_{1}^{x} \frac{e^{t}}{t^{2}} dt - \int_{1}^{x} \frac{e^{t}}{t^{2} + 1} dt = \int_{1}^{x} \frac{e^{t}}{t^{2} (t^{2} + 1)} dt.$$

Or
$$\frac{e^t}{t^2(t^2+1)} \sim \frac{e^t}{t^4}$$
 donc

$$\int_1^x \frac{e^t}{t^2(t^2+1)} dt \sim \int_1^x \frac{e^t}{t^4} dt \ll \frac{e^x}{x^3}.$$

Ainsi,

Commentaire. Là encore, tous les termes sont des infiniment grands en x.

II.A. Pour éviter les complications en 0, nous supposerons $a \ge 1$.

 $\underline{\text{Si } \alpha \neq 0}, \frac{f'(x)}{f(x)} \sim \frac{\alpha}{x}.$ Comme $x \mapsto 1/x$ n'est pas intégrable en $+\infty$,

$$\int_{a}^{x} \frac{f'}{f} \sim \alpha \int_{a}^{x} \frac{\mathrm{d}t}{t} \sim \alpha \ln x.$$

D'où $\ln f(x) \sim \alpha \ln x$, soit encore $\left| \frac{\ln f(x)}{\ln x} \to \alpha \right|$.

$$\frac{\text{Si }\alpha=0,}{f(x)}\frac{f'(x)}{f(x)}\ll\frac{1}{x}, \text{d'où }\int_{a}^{x}\frac{f'}{f}\ll\int_{a}^{x}\frac{\text{d}t}{t}.\text{ Donc},\\ \ln f(x)\ll\ln x, \text{ soit encore }\left|\frac{\ln f(x)}{\ln x}\to0.\right|$$

II.B.1. Comme $\alpha < -1$, posons $\beta = \frac{1}{2}(\alpha - 1)$, de sorte que $\alpha < \beta < -1$. Pour x assez grand, $\ln f(x) \leq \beta \ln x$ et par croissance de l'exponentielle, $f(x) \leq x^{\beta}$. Comme $\beta < -1$, $x \mapsto x^{\beta}$ est intégrable en $+\infty$, donc

| f est intégrable en $+\infty$.

II.B.2. Posons $g(x) = \frac{x f(x)}{\alpha + 1}$. Comme f est \mathscr{C}^1 , g l'est aussi. De plus,

$$g'(x) = \frac{xf'(x) + f(x)}{\alpha + 1} \sim \frac{\alpha f(x) + f(x)}{\alpha + 1} = f(x).$$

Ainsi, g' est intégrable en $+\infty$. En outre, avec les notations de la question précédente, $x f(x) \leq x^{1+\beta}$ où $1 + \beta < 0$, donc $g \to 0$. D'après P.1.b,

$$\int_{x}^{+\infty} f \sim \int_{x}^{+\infty} g' = -g(x) = -\frac{x f(x)}{\alpha + 1}.$$

II.C.1. Comme $\alpha > -1$, posons $\gamma = \frac{1}{2}(\alpha - 1)$, de sorte que $\alpha > \gamma > -1$. Pour x assez grand, $\ln f(x) \geqslant \gamma \ln x$ et par croissance de l'exponentielle, $f(x) \geqslant x^{\gamma}$. Comme $\gamma > -1$, $x \mapsto x^{\gamma}$ n'est pas intégrable en $+\infty$, donc

|f| n'est pas intégrable en $+\infty$.

II.C.2. Posons $g(x) = \frac{x f(x)}{\alpha + 1}$. Comme en II.B.2, $g'(x) \sim f(x)$. Ainsi, g' n'est pas intégrable en $+\infty$. En outre, avec les notations de la question précédente, $x f(x) \geqslant x^{1+\gamma}$ où $1 + \gamma > 0$, donc $g \to +\infty$. D'après P.2.b,

$$\int_{a}^{x} f \sim \int_{a}^{x} g' = g(x) - g(a) \sim \frac{x f(x)}{\alpha + 1}.$$

II.C.3. Soit $f: x \mapsto 2 + \sin x$, définie sur $[1, +\infty[$. Alors f est bornée, donc $\frac{\ln f(x)}{\ln x} \to 0 > -1$.

Mais $\int_1^x f = 2 x - \cos x - 2 + \cos 1$ et

Mais $\int_1^x f = 2 x - \cos x - 2 + \cos 1$ et $x f(x) = 2x + x \sin x$, et ces deux fonctions ne sont pas équivalentes en $+\infty$.

II.D.1. En posant $x=e^t$, qui est bien une bijection de classe \mathscr{C}^1 , l'intégrabilité de $x\mapsto \frac{1}{x\ln^\beta x}$ sur $[2,+\infty[$ équivaut à celle de $t\mapsto \frac{1}{t^\beta}$ sur $[\ln 2,+\infty[$.

$$\begin{vmatrix} x \mapsto \frac{1}{x \ln^{\beta} x} \text{ est intégrable en } +\infty \text{ si et seulement} \\ \text{si } \beta > 1. \end{vmatrix}$$

Commentaire. Ces intégrales s'appellent les intégrales de Bertrand.

II.D.2. Soit $f: x \mapsto \frac{1}{x^{\gamma} \ln^{\beta} x}$. Elle est de classe \mathscr{C}^1 sur $[2, +\infty[$. On a $\ln f(x) = -\gamma \ln x - \beta \ln \ln x$, donc

$$\frac{xf'(x)}{f(x)} = -x\left(\frac{\gamma}{x} + \frac{\beta}{x\ln x}\right)$$
$$= -\left(\gamma + \frac{\beta}{\ln x}\right) \to -\gamma.$$

Si $-\gamma < -1$, c'est-à-dire $\gamma > 1$, on applique II.B.1 et f est intégrable en $+\infty$; si $-\gamma > -1$, d'après II.C.1, f n'est pas intégrable en $+\infty$; et si $\gamma = 1$, on applique II.D.1.

$$\begin{vmatrix} x \mapsto \frac{1}{x^{\gamma} \ln^{\beta} x} \text{ est intégrable en } +\infty \text{ si et seulement} \\ \text{si } (\beta, \gamma) \in (\mathbb{R} \times]1, +\infty[) \cup (]1, +\infty[\times \{1\}). \end{vmatrix}$$

II.E. Avec les fonctions $f: x \mapsto \frac{1}{x \ln^{\beta} x}$ de la question II.D.1, pour lesquelles $\frac{x f'(x)}{f(x)} \to -1$, on voit que l'on ne peut pas conclure sur l'intégrabilité de f, puisque certaines sont intégrables et d'autres ne le sont pas.

III.A. Pour $t \in \mathbb{R}$, $\frac{h'(t)}{h(t)} = -\alpha + \frac{f'(t)}{f(t)} \to 0$. Alors, il existe $n_0 \in \mathbb{N}^*$ tel que, pour $n \geqslant n_0$ et $t \in [n-1, n[$, $\left|\frac{h'(t)}{h(t)}\right| \leqslant \varepsilon$. Alors, en intégrant entre t et n,

$$\left| \ln \frac{h(n)}{h(t)} \right| = \left| \int_{t}^{n} \frac{h'(u)}{h(u)} du \right|$$

$$\leq \int_{t}^{n} \left| \frac{h'(u)}{h(u)} \right| du \leq (n-t)\varepsilon \leq \varepsilon.$$

Par croissance de l'exponentielle.

$$e^{-\varepsilon} \leqslant \frac{h(n)}{h(t)} \leqslant e^{\varepsilon} \text{ d'où } e^{-\varepsilon} \leqslant \frac{h(t)}{h(n)} \leqslant e^{\varepsilon}.$$

Alors $(e^{-\varepsilon}-1)h(n) \leq h(t)-h(n) \leq (e^{\varepsilon}-1)h(n)$ donc $|h(t)-h(n)| \leq h(n) \max(e^{\varepsilon}-1,1-e^{-\varepsilon})$. Mais $1-e^{-\varepsilon}=e^{-\varepsilon}(e^{\varepsilon}-1) \leq e^{\varepsilon}-1$, donc finalement, on a l'inégalité demandée.

III.B. On a

$$\int_{n-1}^{n} f(t) dt = \int_{n-1}^{n} e^{\alpha t} h(t) dt$$

$$= \int_{n-1}^{n} e^{\alpha t} (h(n) + h(t) - h(n)) dt$$

$$= \int_{n-1}^{n} e^{\alpha t} h(n) dt + \int_{n-1}^{n} e^{\alpha t} (h(t) - h(n)) dt.$$

D'une part,

$$\int_{n-1}^{n} e^{\alpha t} h(n) dt = h(n) \frac{e^{\alpha n} - e^{\alpha(n-1)}}{\alpha}$$
$$= \frac{1 - e^{-\alpha}}{\alpha} f(n).$$

D'autre part, avec les notations et dans les conditions de la question précédente,

$$\left| \int_{n-1}^{n} e^{\alpha t} (h(t) - h(n)) dt \right|$$

$$\leq \int_{n-1}^{n} e^{\alpha t} |h(t) - h(n)| dt$$

$$\leq \int_{n-1}^{n} e^{\alpha t} (e^{\varepsilon} - 1) h(n) dt$$

$$= (e^{\varepsilon} - 1) \frac{1 - e^{-\alpha}}{\alpha} f(n).$$

Comme $\varepsilon>0$ est arbitraire, $e^{\varepsilon}-1>0$ l'est aussi, donc

$$\int_{n-1}^{n} e^{\alpha t} (h(t) - h(n)) dt = o\left(\frac{1 - e^{-\alpha}}{\alpha} f(n)\right).$$
Alors,
$$\int_{n-1}^{n} f(t) dt \sim \frac{1 - e^{-\alpha}}{\alpha} f(n).$$

III.C.1. Les fonctions u et v sont constantes sur [k-1,k[, donc leur intégrale vaut cette constante :

$$\int_{k-1}^{k} v = \int_{k-1}^{k} f \text{ et } \int_{k-1}^{k} u = f(k).$$

III.C.2. Comme f est intégrable en $+\infty$,

$$\lim_{n \to +\infty} \int_0^n f = \int_0^{+\infty} f.$$

Or, pour $n \in \mathbb{N}$,

$$\int_0^n f = \sum_{k=1}^n \int_{k-1}^k f,$$

donc la série $\sum \int_{n-1}^{n} f$ converge. D'après III.B,

$$\int_{n-1}^{n} f \sim \frac{1 - e^{-\alpha}}{\alpha} f(n),$$

| donc la série $\sum f(n)$ converge.

Alors, u est intégrable en $+\infty$, car u > 0 et

$$\int_0^n u = \sum_{k=1}^n \int_{k-1}^k u = \sum_{k=1}^n f(k)$$

admet une limite en $+\infty$.

De même, v est intégrable en $+\infty$, car v>0 et

$$\int_0^n v = \sum_{k=1}^n \int_{k-1}^k v = \sum_{k=1}^n \int_{k-1}^k f = \int_0^n f$$

admet une limite en $+\infty$.

Pour $n \in \mathbb{N}$,

$$R_n = \sum_{k=n+1}^{+\infty} f(n) = \sum_{k=n+1}^{+\infty} \int_{k-1}^k u = \int_n^{+\infty} u.$$

D'après III.B, pour n grand et $x \in [n-1, n[$,

$$v(x) = \int_{n-1}^{n} f \sim \frac{1 - e^{-\alpha}}{\alpha} f(n) = \frac{1 - e^{-\alpha}}{\alpha} u(x)$$

D'après P.1.a, pour n grand,

$$\int_{n}^{+\infty} f = \int_{n}^{+\infty} v$$

$$\sim \frac{1 - e^{-\alpha}}{\alpha} \int_{n}^{+\infty} u = \frac{1 - e^{-\alpha}}{\alpha} R_{n}.$$
Ainsi, $R_{n} \sim \frac{\alpha}{1 - e^{-\alpha}} \int_{n}^{+\infty} f.$

III.C.3. Selon le même principe, comme f n'est pas intégrable en $+\infty$,

$$\int_0^n f = \sum_{k=1}^n \int_{k-1}^k f \to +\infty,$$

donc $\sum \int_{n-1}^{n} f$ diverge et $|\sum f(n)|$ diverge.

u et v sont non intégrables sur \mathbb{R}_+ .

En utilisant les questions précédentes, on a donc

$$S_n = \int_0^n u \sim \frac{\alpha}{1 - e^{-\alpha}} \int_0^n v = \frac{\alpha}{1 - e^{-\alpha}} \int_0^n f.$$

III.D. On peut reprendre tous les calculs des questions III.A, III.B et III.C, en remplaçant $\frac{1-e^{-\alpha}}{\alpha}$ par 1. La conclusion attendue en découle.

IV.A. Clairement, les trois séries proposées divergent. Donc le comportement sur [0,1] ou [0,2] des fonctions introduites n'a pas d'importance.

IV.A.1. La fonction $f: t \mapsto \frac{1}{t}$ n'est pas intégrable en $+\infty$ et vérifie $\frac{f'(x)}{f(x)} = -\frac{1}{t} \to 0$ donc d'après III.D, $\left| \sum_{i=1}^{n} \frac{1}{k} \sim \int_{1}^{n} \frac{\mathrm{d}t}{t} = \ln n. \right|$

IV.A.2. Pour les mêmes raisons,

$$\left| \sum_{k=1}^{n} \ln k \sim \int_{1}^{n} \ln t \, \mathrm{d}t \sim n \ln n. \right|$$

IV.A.3. La fonction $f: t \mapsto 2^t \ln t$ n'est pas intégrable en $+\infty$ et vérifie $\frac{f'(x)}{f(x)} = \ln 2 + \frac{1}{t \ln t} \to \ln 2$, donc d'après III.C.3,

$$\sum_{k=1}^{n} 2^{k} \ln k \sim \frac{\ln 2}{1 - e^{-\ln 2}} \int_{1}^{n} f$$
$$= 2 \ln 2 \int_{1}^{n} 2^{t} \ln t \, dt.$$

En intégrant par parties

$$\int_{1}^{n} 2^{t} \ln t \, dt = \frac{2^{n} \ln n}{\ln 2} - \int_{1}^{n} \frac{2^{t}}{t \ln 2} \, dt.$$
Comme
$$\frac{2^{t}}{t} \ll 2^{t} \ln t, \int_{1}^{n} \frac{2^{t}}{t} \, dt \ll \int_{1}^{n} 2^{t} \ln t \, dt.$$
Finalement,
$$\sum_{k=1}^{n} 2^{k} \ln k \sim 2 \cdot 2^{n} \ln n.$$

IV.B.1. On considère la fonction en escalier f définie par $f(t) = a_{\lfloor t \rfloor}$, où $\lfloor t \rfloor$ est la partie entière de t. De même, soit $g: t \mapsto b_{\lfloor t \rfloor}$. Comme $\sum a_n$ converge et que $a_n \sim b_n$, $\sum b_n$ converge. Dire que $\sum a_n$ et $\sum b_n$ convergent équivaut à dire que f et g sont intégrables sur \mathbb{R}_+ (voir les raisonnements de la partie III). Or $f \sim g$, donc

$$R_n(a) = \int_{n+1}^{+\infty} f \sim \int_{n+1}^{+\infty} g = R_n(b).$$

IV.B.2. Comme $\sum a_n$ diverge et que $a_n \sim b_n$, $\sum b_n$ diverge et $S_n(a) = \int_0^n f \sim \int_0^n g = S_n(b)$.

IV.C.1. Posons
$$S_n = \sum_{k=1}^{n} \frac{1}{k}$$
 et $u_n = S_n - \ln n$:

$$u_n - u_{n-1} = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) \sim -\frac{1}{2n^2}$$

Alors, $\sum (u_n - u_{n-1})$ converge, donc (u_n) aussi : notons γ sa limite. D'après IV.B.1,

$$u_n - \gamma = -\sum_{k=n+1}^{+\infty} (u_k - u_{k-1}) \sim \frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

La fonction $t\mapsto \frac{1}{t^2}$ est intégrable en $+\infty$, et vérifie $\frac{f'(t)}{f(t)}\to 0$. D'après III.D,

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim \int_n^{+\infty} \frac{\mathrm{d}t}{t^2} = \frac{1}{n}.$$

Alors, $u_n - \gamma \sim \frac{1}{2n} = \frac{1}{2n} + o(\frac{1}{n}).$

Ainsi,
$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$
.

IV.C.2. Posons $S_n = \ln(n!) = \sum_{k=2}^n \ln k$ et $u_n = S_n - (n + \frac{1}{2}) \ln n + n$. On a

$$u_n - u_{n-1} = \ln n - \left(n + \frac{1}{2}\right) \ln n + n$$
$$+ \left(n - \frac{1}{2}\right) \ln(n-1) - n + 1$$
$$= \left(n - \frac{1}{2}\right) \ln\left(1 - \frac{1}{n}\right) + 1 \sim -\frac{1}{12n^2}.$$

Pour les mêmes raisons qu'en IV.C.1, (u_n) tend vers une limite γ et $u_n - \gamma = \frac{1}{12n} + o\left(\frac{1}{n}\right)$. Alors

$$S_n = \left(n + \frac{1}{2}\right) \ln n - n + \gamma + \frac{1}{12n} + o\left(\frac{1}{n}\right)$$

d'où

$$n! = \exp\left(\left(n + \frac{1}{2}\right) \ln n - n + \gamma + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$$
$$= e^{\gamma} n^{n+1/2} e^{-n} \exp\left(\frac{1}{12n} + o\left(\frac{1}{n}\right)\right).$$

En posant $\delta = e^{\gamma}$, on a bien

$$n! = \delta n^{n+1/2} e^{-n} \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right) \right).$$

IV.C.3.
$$\delta = \sqrt{2\pi}$$