Corrigé du quatorzième devoir à la maison

1. Soit $k \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{n^{k+1}} S_k(n) = \frac{1}{n^{k+1}} \sum_{i=1}^n i^k = \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^k.$$

On reconnait les sommes de Riemann de la fonction continue $x \in [0,1] \mapsto x^k$, donc

$$\lim_{n \to +\infty} \frac{1}{n^{k+1}} S_k(n) = \int_0^1 x^k \, \mathrm{d}x = \frac{1}{k+1}.$$

2. Sans difficulté,

$$\underbrace{\mathbf{E}(X)}_{k=1} = \sum_{k=1}^{N} k P(X=k) = \sum_{k=1}^{N} \sum_{i=1}^{k} P(X=k) \\
= \sum_{i=1}^{N} \sum_{k=i}^{N} P(X=k) = \sum_{i=1}^{N} P(X \geqslant i).$$

Commentaire. C'est même du cours.

3. Comme X_1 suit la loi uniforme sur [1, N], elle est finie donc elle admet des moments d'ordre 1 et 2. De plus,

$$\underbrace{\mathbf{E}(X_1)}_{k=1} = \sum_{k=1}^{N} k P(X_1 = k) = \sum_{k=1}^{N} \frac{k}{N}$$

$$= \frac{1}{N} \frac{N(N+1)}{2} = \frac{N+1}{2}.$$

D'après le théorème du transfert,

$$\begin{split} & \left\lfloor \mathbf{E}(X_1^2) = \sum_{k=1}^N k^2 P(X_1 = k) = \sum_{k=1}^N \frac{k^2}{N} \\ & = \frac{1}{N} \frac{N \left(N+1\right) \left(2 N+1\right)}{6} = \frac{\left(N+1\right) \left(2 N+1\right)}{6}. \end{split}$$

Enfin, d'après le théorème de König-Huygens,

4.a.

4.b. Voici deux versions, l'une avec la fonction max de Python, et l'autre sans.

5.a. Soient $k \ge 2$ et $i \in [1, N]$. Dire que $U_k \ge i$ signifie que le plus petit de X_1, \ldots, X_k est plus grand que i, donc que les X_j sont tous plus grands que i, pour $j \in [1, k]$. Autrement dit, en terme d'évènements,

$$(U_k \geqslant i) = \bigcap_{j=1}^k (X_j \geqslant i).$$

En outre, les évènements $(X_j \geqslant i)$ sont indépendants, donc

$$P(U_k \geqslant i) = \prod_{j=1}^k P(X_j \geqslant i).$$

Enfin, pour $j \in [1, k]$,

$$P(X_j \ge i) = \sum_{n=i}^{N} P(X_j = n) = \sum_{n=i}^{N} \frac{1}{N} = \frac{N-i+1}{N}.$$

Alors

$$P(U_k \geqslant i) = \left(\frac{N-i+1}{N}\right)^k.$$

5.b. Sur le même principe, pour $i \in [1, N]$ et $k \ge 2$,

$$P(V_k \leqslant i) = \prod_{j=1}^k P(X_j \leqslant i) = \left(\frac{i}{N}\right)^k.$$

Alors, dans le cadre de la question 4.b où N = 10,

$$P(V_k = 10) = 1 - P(V_k \le 9) = 1 - \left(\frac{9}{10}\right)^k$$

et cette probabilité tend vers 1 rapidement avec k. Mieux, s'il existe $K \in \mathbb{N}^*$ tel que $X_K = 10$, alors pour tout $k \geqslant K$, $V_k = 10$.

Ainsi, $\lim_{k\to+\infty} P(V_k=10)=1$, et dès qu'un V_k vaut 10, il en est de même de tous les suivants. C'est ce qui explique la présence d'un grand nombre de 10 en fin de simulation.

5.c. D'après les questions 2 et 5.a,

$$\underline{\mathbf{E}(U_k)} = \sum_{i=1}^{N} P(U_k \geqslant i) = \sum_{i=1}^{N} \left(\frac{N-i+1}{N}\right)^k$$
$$= \frac{1}{N^k} \sum_{j=1}^{N} j^k = \frac{1}{N^k} S_k(N),$$

où l'on a posé j = N - i + 1. D'après la question 1, quand N est grand, $S_k(N) \sim N^{k+1}/(k+1)$ donc

$$\mathbf{E}(U_k) \sim \frac{N}{k+1}.$$

6.a. Les Y_i sont indépendantes, car elles sont des fonctions des X_i , elles-mêmes indépendantes, en vertu du théorème qui affirme que si X et Y sont indépendantes et f et g sont des fonctions, alors f(X) et g(X) sont indépendantes.

De plus, pour tout $i \in [\![1,N]\!], Y_i(\Omega) = [\![1,N]\!]$ et pour tout $k \in [\![1,N]\!],$

$$P(Y_i = k) = P(X_i = N + 1 - k) = \frac{1}{N}.$$

| Ainsi, les Y_i suivent toutes la même loi uniforme que les X_i .

6.b. Introduisons $W_k = \max(Y_1, \dots, Y_k)$, pour $k \in \mathbb{N}^*$. Comme les Y_i suivent la même loi que les X_i , les W_k suivent la même loi que les V_k : en particulier, elles ont mêmes espérance et variance. De plus,

$$W_k = \max(N + 1 - X_1, \dots, N + 1 - X_k)$$

= N + 1 + \max(-X_1, \dots, -X_k)
= N + 1 - \min(X_1, \dots, X_k) = N + 1 - U_k.

Alors

$$\underline{\mathbf{E}(V_k)} = \mathbf{E}(W_k) = \mathbf{E}(N+1-U_k)$$

$$\underline{= N+1-\mathbf{E}(U_k),}$$

$$\underline{\mathbf{V}(V_k)} = \mathbf{V}(W_k) = \mathbf{V}(N+1-U_k)$$

$$= (-1)^2 \mathbf{V}(U_k) = \mathbf{V}(U_k).$$

7.a. Comme $U_2 = \min(X_1, X_2)$ et $V_2 = \max(X_1, X_2)$, $U_2 + V_2 = X_1 + X_2$ et $U_2 V_2 = X_1 X_2$.

7.b. Comme X_1 et X_2 sont indépendantes,

$$\underbrace{\begin{aligned} \mathbf{V}(U_2 + V_2) &= \mathbf{V}(X_1 + X_2) = \mathbf{V}(X_1) + \mathbf{V}(X_2) \\ &= \frac{N^2 - 1}{6}, \\ \underbrace{\mathbf{E}(U_2 V_2)} &= \mathbf{E}(X_2 X_2) = \mathbf{E}(X_1) \mathbf{E}(X_2) \\ &= \frac{(N+1)^2}{4}. \end{aligned}}$$

7.c. D'après la question 6.b, $\mathbf{V}(U_2) = \mathbf{V}(V_2)$. De plus,

$$\mathbf{V}(U_2 + V_2) = \mathbf{V}(U_2) + \mathbf{V}(V_2) + 2 \operatorname{Cov}(U_2, V_2).$$

Done

7.d. Par définition,

7.e. Alors, quand N augmente.

$$\underline{\rho_2(N) \sim \frac{N^4}{2N^4} = \frac{1}{2}}.$$

8.a. Sur le même principe qu'à la question 2,

$$\begin{aligned} \mathbf{E}(X^{2}) &= \sum_{k=1}^{N} k^{2} P(X = k) \\ &= \sum_{k=1}^{N} (k (k+1) - k) P(X = k) \\ &= \sum_{k=1}^{N} 2 \sum_{i=1}^{k} i P(X = k) - \sum_{k=1}^{N} k P(X = k) \\ &= \sum_{i=1}^{N} 2 i \sum_{k=i}^{N} P(X = k) - \mathbf{E}(X) \\ &= \sum_{i=1}^{N} 2 i P(X \geqslant i) - \sum_{i=1}^{N} P(X \geqslant i) \\ &= \sum_{i=1}^{N} (2i - 1) P(X \geqslant i). \end{aligned}$$

8.b. Alors, d'après la question 5.a, et en posant j = N + 1 - i,

$$\begin{split} \left[\mathbf{E}(U_k^2) &= \sum_{i=1}^N (2i - 1) P(U_k \geqslant i) \\ &= \sum_{i=1}^N (2i - 1) \left(\frac{N + 1 - i}{N} \right)^k \\ &= \frac{1}{N^k} \sum_{j=1}^N (2(N + 1 - j) - 1) j^k \\ &= \frac{1}{N^k} \left((2N + 1) S_k(N) - 2 S_{k+1}(N) \right). \end{split}$$

8.c. D'après la question 5.c,

$$\frac{|\mathbf{V}(U_k)|}{|\mathbf{V}(U_k)|} = \mathbf{E}(U_k^2) - \mathbf{E}(U_k)^2
= \frac{1}{N^k} ((2N+1)S_k(N) - 2S_{k+1}(N)) - \frac{1}{N^{2k}} S_k(N)^2.$$

8.d. D'après la question 1, quand N est grand,

$$S_k(N) = \frac{N^{k+1}}{k+1} + o(N^{k+1}).$$

Alors,

$$| \mathbf{V}(U_k) | = \frac{1}{N^k} \left((2N+1) \left(\frac{N^{k+1}}{k+1} + o(N^{k+1}) \right) - 2 \left(\frac{N^{k+2}}{k+2} + o(N^{k+2}) \right) \right)$$

$$- \frac{1}{N^{2k}} \left(\frac{N^{k+1}}{k+1} + o(N^{k+1}) \right)^2$$

$$= \frac{1}{N^k} \left(\frac{2N^{k+2}}{k+1} - \frac{2N^{k+2}}{k+2} + o(N^{k+2}) \right)$$

$$- \frac{1}{N^{2k}} \left(\frac{N^{2k+2}}{(k+1)^2} + o(N^{2k+2}) \right)$$

$$= N^2 \left(\frac{2}{(k+1)(k+2)} - \frac{1}{(k+1)^2} + o(1) \right)$$

$$\sim N^2 \frac{k}{(k+1)^2(k+2)} .$$