Corrigé du vingt-et-unième devoir à la maison

1. Soit $k \in \mathbb{N}$. Les évènements $(S_k = i)_{1 \leqslant i \leqslant 5}$ forment un système complet d'évènements : ils sont clairement incompatibles, car le rat ne peut être dans deux salles différentes simultanément ; et ils recouvrent tout l'univers, car le rat est forcément dans l'une des salles à l'instant k. Alors, d'après la formule des probabilités totales,

$$P(S_{k+1} = 1) = \sum_{i=1}^{5} P(S_{k+1} = 1 | S_k = i) P(S_k = i),$$

où l'on voit que $P(S_{k+1} = 1)$ est bien combinaison linéaire des $P(S_k = i)_{1 \leq i \leq 5}$. Rappelons que si l'une des probabilités $P(S_k = i)$ est nulle, par convention, le terme $P(S_{k+1} = 1 | S_k = i) P(S_k = i)$ est aussi nul.

2. Sur le même principe, on peut écrire

$$|X_{k+1}| = \begin{pmatrix} P(S_{k+1} = 1) \\ P(S_{k+1} = 2) \\ P(S_{k+1} = 3) \\ P(S_{k+1} = 4) \\ P(S_{k+1} = 5) \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i=1}^{5} P(S_{k+1} = 1 | S_k = i) P(S_k = i) \\ \sum_{i=1}^{5} P(S_{k+1} = 2 | S_k = i) P(S_k = i) \\ \sum_{i=1}^{5} P(S_{k+1} = 3 | S_k = i) P(S_k = i) \\ \sum_{i=1}^{5} P(S_{k+1} = 4 | S_k = i) P(S_k = i) \\ \sum_{i=1}^{5} P(S_{k+1} = 5 | S_k = i) P(S_k = i) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3}P(S_k = 2) + \frac{1}{3}P(S_k = 3) \\ + \frac{1}{3}P(S_k = 4) + \frac{1}{3}P(S_k = 5) \\ \frac{1}{4}P(S_k = 1) + \frac{1}{3}P(S_k = 3) + \frac{1}{3}P(S_k = 5) \\ \frac{1}{4}P(S_k = 1) + \frac{1}{3}P(S_k = 2) + \frac{1}{3}P(S_k = 4) \\ \frac{1}{4}P(S_k = 1) + \frac{1}{3}P(S_k = 2) + \frac{1}{3}P(S_k = 5) \\ \frac{1}{4}P(S_k = 1) + \frac{1}{3}P(S_k = 2) + \frac{1}{3}P(S_k = 4) \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \end{pmatrix} \begin{pmatrix} P(S_k = 1) \\ P(S_k = 2) \\ P(S_k = 3) \\ P(S_k = 5) \end{pmatrix}$$

$$= BX_k$$

$$où B = \begin{pmatrix}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
\frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{3} & 0 & \frac{1}{3} & 0
\end{pmatrix}.$$

3. On voit que la somme des lignes de B est la ligne $L = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$. Cela traduit que LB = L.

En effet, en notant $(L_i)_{1 \leq i \leq 5}$ les lignes de B,

$$LB = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \end{pmatrix}$$

 $= 1 \cdot L_1 + 1 \cdot L_2 + 1 \cdot L_3 + 1 \cdot L_4 + 1 \cdot L_5 = L.$

Ainsi, $B^{\top}L^{\top}=L^{\top}$, ce qui signifie que

associé est $L^{\top} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

4. D'après la question 2, par une récurrence immédiate, pour tout $k \in \mathbb{N}$, $X_k = B^k X_0$. Or on constate que $BX_0 = X_0$, donc pour tout $k \in \mathbb{N}$, $X_k = X_0$.

Comme X_0 est vecteur propre de B pour la valeur propre 1, la suite $(X_k)_{k\in\mathbb{N}}$ est constante, donc les variables aléatoires S_k ont toutes la même loi, celle de S_0 .

5. Non. En effet, comme le rat bouge forcément, les évènements $(S_0 = 1)$ et $(S_1 = 1)$, par exemple, sont incompatibles. Et comme on vient de voir qu'ils ont même probabilité non nulle, ils sont forcément dépendants : autrement dit,

$$P(S_0 = 1, S_1 = 1) = 0 \neq P(S_0 = 1) P(S_1 = 1) = \frac{1}{16}$$
.

6. Soit $x \in \text{Ker}(u - I_E) : u(x) = x$, donc pour tout $\ell \in \mathbb{N}$, $u^{\ell}(x) = x$ et pour tout $k \in \mathbb{N}^*$,

$$r_k(x) = \frac{1}{k} \sum_{\ell=0}^{k-1} u^{\ell}(x) = \frac{1}{k} \sum_{\ell=0}^{k-1} x = x.$$

ainsi,
$$\lim_{k \to +\infty} r_k(x) = x$$
.

7. Soit $x \in \text{Im}(u - I_E)$: il existe $y \in E$ tel que x = u(y) - y. Soit $k \in \mathbb{N}^*$: on a

$$r_k(x) = \frac{1}{k} \sum_{\ell=0}^{k-1} u^{\ell}(x) = \frac{1}{k} \sum_{\ell=0}^{k-1} u^{\ell}(u(y) - y)$$

$$= \frac{1}{k} \sum_{\ell=0}^{k-1} ([]] u^{\ell+1}(y) - u^{\ell}(y)$$

$$= \frac{1}{k} \sum_{\ell=0}^{k-1} u^{\ell+1}(y) - \frac{1}{k} \sum_{\ell=0}^{k-1} u^{\ell}(y)$$

$$= \frac{1}{k} \sum_{\ell=1}^{k} u^{\ell}(y) - \frac{1}{k} \sum_{\ell=0}^{k-1} u^{\ell}(y)$$

$$= \frac{1}{k} (u^k(y) - y).$$

Alors

$$||r_k(x)|| = \frac{1}{k} ||u^k(y) - y|| \le \frac{1}{k} (||u^k(y)|| + ||y||).$$

Par ailleurs,

$$||u^k(y)|| = ||u(u^{k-1}(y))|| \le ||u^{k-1}(y)||$$

et bien-sûr, $\|u(y)\| \le \|y\|$, donc par une récurrence immédiate, $\|u^k(y)\| \le \|y\|$. Alors

$$||r_k(x)|| \leqslant \frac{2}{k} ||y||$$

donc $\lim_{k\to +\infty} ||r_k(x)|| = 0$, ce qui signifie que

$$\lim_{k \to +\infty} r_k(x) = 0_E.$$

8. D'après le théorème du rang, on sait déjà que $\dim E = \dim \operatorname{Ker}(u - I_E) + \dim \operatorname{Im}(u - I_E).$

Soit alors $x \in \text{Ker}(u-I_E) \cap \text{Im}(u-I_E)$. En utilisant les questions 6 et 7,

$$\lim_{k \to +\infty} r_k(x) = x \text{ et } \lim_{k \to +\infty} r_k(x) = 0_E.$$

Par unicité de la limite, $x = 0_E$, ce qui prouve que

$$Ker(u - I_E) \cap Im(u - I_E) = \{0_E\}.$$

| Ainsi,
$$E = \operatorname{Ker}(u - I_E) \oplus \operatorname{Im}(u - I_E)$$
.

9. Soit $x \in E$. Dans la somme directe précédente, il s'écrit de façon unique x = y + z avec $y \in \text{Ker}(u - I_E)$ et $z \in \text{Im}(u - I_E)$. Alors, pour tout $k \in \mathbb{N}^*$,

$$r_k(x) = r_k(y) + r_k(z) \xrightarrow[k \to +\infty]{} y + 0_E.$$

Pour tout $x \in E$, la suite $(r_k(x))_{k \in \mathbb{N}^*}$ converge. Sa limite p(x) est la composante de x dans la somme directe ci-dessus. Donc p est la projection sur $\text{Ker}(u - \mathbf{I}_E)$ parallèlement à $\text{Im}(u - \mathbf{I}_E)$.

10. En considérant $E = \mathcal{M}_{n,1}(\mathbb{R})$, et

$$u: E \to E, X \mapsto AX$$

l'endomorphisme canoniquement associé à A, on est exactement dans les conditions des questions 7 à 9. Alors, avec les notations précédentes, pour tout $X \in E$, la suite $(r_k(X))_{k \in \mathbb{N}}$ converge vers p(X) qui est le projeté de X sur $\operatorname{Ker}(u-I_E)$ parallèlement à $\operatorname{Im}(u-I_E)$. Comme les matrices de u et r_k sont respectivement A et R_k , en notant P la matrice de p, et sachant que les colonnes de toutes ces matrices sont les images des vecteurs de la base canonique de E par les endomorphismes concernés, les colonnes des R_k convergent vers les colonnes correspondantes de P. Et comme P est la matrice de la projection p, $P^2 = P$.

Finalement, la suite de matrices $(R_k)_{k \in \mathbb{N}^*}$ converge vers une matrice P telle que $P^2 = P$.