Troisième devoir à la maison

[E3A16]

Soit n un entier naturel non nul.

- 1. Soit $\theta \in [0, 2\pi[$. Déterminer, s'ils existent, le module et l'argument du nombre complexe $u = 1 + e^{i\theta}$.
- **2.** On note P_n le polynôme de $\mathbb{C}[X]$ défini par

$$P_n(X) = \frac{1}{2i} \left[(X+i)^{2n+1} - (X-i)^{2n+1} \right].$$

- **2.1.** Étude des cas n = 1 et n = 2.
 - **2.1.1.** Déterminer les polynômes P_1 et P_2 .
 - **2.1.2.** Vérifier que $P_1 \in \mathbb{R}_2[X]$ et $P_2 \in \mathbb{R}_4[X]$. Sont-ils irréductibles dans $\mathbb{R}[X]$?
- 2.2. On revient au cas général.
 - **2.2.1.** Montrer que $P_n \in \mathbb{C}_{2n}[X]$. Donner son degré et son coefficient dominant.
 - **2.2.2.** Soit $N \in \mathbb{N}^*$. Donner l'expression des racines N-ièmes de l'unité.
 - **2.2.3.** Calculer $P_n(i)$.
 - **2.2.4.** Prouver par un argument géométrique que les racines de P_n sont réelles.
 - **2.2.5.** Soit $a \in \mathbb{C}$. Prouver l'équivalence :

a racine de P_n

$$\iff \exists k \in [1, 2n],$$

$$a(e^{2ik\pi/(2n+1)} - 1) = i(e^{2ik\pi/(2n+1)} + 1).$$

2.2.6. Déterminer les racines du polynôme P_n . Vérifier alors le résultat de la question 2.2.4.

- **2.2.7.** En développant P_n , déterminer un polynôme Q_n de degré n et à coefficients réels tel que $P_n(X) = Q_n(X^2)$. On admettra l'unicité du polynôme Q_n obtenu.
- **2.2.8.** Expliciter Q_1 et Q_2 et déterminer leurs racines respectives.
- **2.2.9.** Déterminer les racines de Q_n en fonction de celles de P_n .

3. On pose
$$S_n = \sum_{k=1}^n \frac{1}{\tan^2 \left(\frac{k\pi}{2n+1}\right)}$$
.

En utilisant les résultats obtenus à la question précédente, montrer que

$$S_n = \frac{n(2n-1)}{3}.$$

4. Illustrer graphiquement les inégalités suivantes que l'on démontrera :

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \ 0 \leqslant \sin(x) \leqslant x \leqslant \tan(x).$$

En déduire que

$$\forall x \in \left]0, \frac{\pi}{2}\right[, \frac{1}{\tan^2(x)} \leqslant \frac{1}{x^2} \leqslant 1 + \frac{1}{\tan^2(x)}.$$

5. Justifier la convergence de la série de terme général $1/k^2$ et calculer la somme

$$\sum_{k=1}^{+\infty} \frac{1}{k^2}.$$