Cinquième devoir à la maison

Étude d'une fonction et de sa limite [CCP13]

Notations

On note:

- N l'ensemble des entiers naturels.
- \mathbb{R} l'ensemble des réels et \mathbb{R}^+ l'intervalle $[0, +\infty[$. Pour tout entier naturel n on note n! la factorielle de n avec la convention 0! = 1.

1. Étude de la fonction f.

On note f la fonction définie sur \mathbb{R} par :

$$f(x) = \int_0^x \exp(-t^2) dt = \int_0^x e^{-t^2} dt.$$

- **1.1.** Montrer que f est une fonction impaire dérivable sur \mathbb{R} .
- **1.2.** Montrer que f est indéfiniment dérivable sur \mathbb{R} . Pour tout entier $n \in \mathbb{N}^*$, on note $f^{(n)}$ la dérivée n-ième de f. Montrer qu'il existe une fonction polynôme p_n , dont on précisera le degré, telle que pour tout $x \in \mathbb{R}$:

$$f^{(n)}(x) = p_n(x) \exp(-x^2).$$

- **1.3.** Que peut-on dire de la parité de p_n ?
- **1.4.** Démontrer que f admet une limite finie en $+\infty$ (on ne demande pas de calculer cette limite). Dans toute la suite du problème, on note Δ cette limite.

- 2. Développement en série de f.
 - **2.1.** Montrer que pour tout $x \in \mathbb{R}$, on a

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}.$$

- **2.2.** Expliciter $p_n(0)$.
- 3. Calcul de Δ .

Pour tout entier n, on note :

$$W_n = \int_0^{\pi/2} \cos^n x \, \mathrm{d}x.$$

3.1. Montrer que pour tout réel u, on a

$$e^u \geqslant 1 + u$$
.

3.2. Soit n un entier naturel non nul. Montrer que :

$$\begin{cases} (1-u)^n \leqslant e^{-nu} & \text{si } u \leqslant 1\\ e^{-nu} \leqslant \frac{1}{(1+u)^n} & \text{si } u > -1. \end{cases}$$

3.3. Démontrer que pour tout entier n non nul, on a :

$$\int_0^1 (1 - x^2)^n \, \mathrm{d}x \le \int_0^{+\infty} e^{-nx^2} \, \mathrm{d}x \le \int_0^{+\infty} \frac{\, \mathrm{d}x}{(1 + x^2)^n}.$$

3.4. En déduire que pour tout $n \in \mathbb{N}^*$:

$$W_{2n+1} \leqslant \frac{\Delta}{\sqrt{n}} \leqslant W_{2n-2}.$$

En admettant que $W_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$, calculer Δ .