Corrigé du huitième devoir à la maison

I.1.1. Sans difficulté,

$$\begin{vmatrix} \alpha_0 = 1, & \alpha_1 = 1 \cdot 1 - 1 = 0, \\ \alpha_2 = 2 \cdot 0 + 1 = 1, & \alpha_3 = 3 \cdot 1 - 1 = 2, \\ \alpha_4 = 4 \cdot 2 + 1 = 9. & \end{vmatrix}$$

I.1.2. Prouvons par récurrence que pour tout entier $n \ge 1$, P(n) : « $\alpha_n \in \mathbb{N}^*$ ».

L'initialisation est assurée avec α_2 , α_3 et α_4 cidessus. Supposons P(n) vraie pour $n \ge 2$. D'une part, comme somme et produit d'entiers (relatifs), α_{n+1} est entier (relatif). D'autre part,

$$\alpha_{n+1} = (n+1)\alpha_n + (-1)^{n+1}$$

 $\geqslant (n+1) \cdot 1 - 1 = n \geqslant 1,$

donc P(n+1) est vraie.

Ainsi, pour tout $n \in \mathbb{N}$, $\alpha_n \in \mathbb{N}$.

1.2.1. On a
$$\beta_0 = 0! \cdot \frac{(-1)^0}{0!} = 1, \quad \beta_1 = 1 (1 - 1) = 0,$$
$$\beta_2 = 2 \left(1 - 1 + \frac{1}{2} \right) = 1,$$
$$\beta_3 = 6 \left(1 - 1 + \frac{1}{2} - \frac{1}{6} \right) = 2,$$
$$\beta_4 = 24 \left(1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} \right) = 9.$$

I.2.2. Soit $n \in \mathbb{N}$. On a

$$\underline{\left[\beta_n = \sum_{k=0}^n (-1)^k \frac{n!}{k!} = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)! \underline{\in \mathbb{Z}}.\right]}$$

I.2.3. Soit $n \in \mathbb{N}$. On a clairement

$$\beta_{n+1} - (n+1)\beta_n = (-1)^{n+1}$$
.

- **I.2.4.** Les suites α et β ont les mêmes premiers termes et véfient la même relation de récurrence. Alors, d'après le principe de récurrence, $|\alpha = \beta$.
- **I.3.1.** ρ_n est le reste d'une série alternée. Comme la suite $(1/k!)_{k\geqslant 0}$ décroit vers 0, d'après le théorème spécial des séries alternées, ρ_n est du signe de son premier terme : $|\operatorname{sgn}(\rho_n) = (-1)^{n+1}$.
- **I.3.2.** Toujours d'après le théorème spécial des séries alternées,

$$|\rho_n| \le \left| \frac{(-1)^{n+1}}{(n+1)!} \right| = \frac{1}{(n+1)!}$$

donc
$$n! |\rho_n| \leqslant \frac{1}{n+1}$$
.

D'après I.3.1, ρ_n est non nul. Or

$$\rho_n = \frac{(-1)^{n+1}}{(n+1)!} + \rho_{n+1}$$

donc $\rho_n \neq \frac{(-1)^{n+1}}{(n+1)!}$ et <u>l'inégalité est stricte.</u>

I.3.3. On a $|n!e^{-1} - \beta_n| = n! |\rho_n| < \frac{1}{n+1} \le \frac{1}{2}$, donc d'après l'énoncé,

 β_n est l'entier le plus proche de $n!e^{-1}$.

I.4.1. D'après le cours (de première année), f existe et est unique : c'est la fonction définie sur]-1,1[par

$$f(x) = f(0) \exp\left(\int_0^x \frac{t}{1-t} dt\right) = \frac{e^{-x}}{1-x}.$$

I.4.2. f est de classe \mathscr{C}^{∞} sur]-1,1[comme produit de fonctions qui le sont.

I.4.3. Pour
$$x \in]-1, 1[, | (1-x) f(x) = e^{-x}.$$

En dérivant n+1 fois ce produit grâce à la formule de Leibniz, on a

$$\sum_{k=0}^{n+1} {n+1 \choose k} \frac{\mathrm{d}^k}{\mathrm{d}x^k} (1-x) f^{(n+1-k)}(x) = \frac{\mathrm{d}^{n+1}(e^{-x})}{\mathrm{d}x^{n+1}}$$

c'est-à-dire

$$\int (1-x)f^{(n+1)}(x) - (n+1)f^{(n)}(x) = (-1)^{n+1}e^{-x}.$$

I.4.4. Pour x = 0, on a

$$f^{(n+1)}(0) - (n+1)f^{(n)}(0) = (-1)^{n+1}.$$

Comme en outre f(0) = 1, les suites $(f^{(n)}(x))$ et β ont les mêmes premiers termes et vérifient les mêmes propriétés de récurrence, donc comme en I.2.4, elles sont égales.

$$\forall n \in \mathbb{N}, \ f^{(n)}(0) = \beta_n.$$

II.1. La seule permutation à un élément est l'identité, donc $| \gamma_1 = 0$.

Il y a deux permutations à deux éléments, l'identité qui laisse les éléments fixes, et la transposition τ_{12} qui les permute donc $|\gamma_2| = 1$.

- II.2. Voici les permutations à trois éléments, notées matriciellement et par ordre décroissant du nombre de points fixes :
- l'identité, à trois points fixes,

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix};$$

— les tranpositions, avec un point fixe,

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix};$$

— les permutations circulaires, sans point fixe,

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

Ainsi, $\gamma_3 = 2$

II.3.1. Si $\tau \in \mathcal{S}_4$ a deux points fixes, les deux autres points de [1,4] s'envoient l'un sur l'autre, et τ est une transposition. Il suffit de choisir les deux points fixes dans [1,4]: il y a $\binom{4}{2} = 6$ choix possibles.

Il y a 6 transpositions dans S_4 .

II.3.2. On choisit un point fixe : il y a 4 choix possibles. Pour chaque choix, les trois points restants sont non fixes, et d'après II.2, il y a deux permutations possibles de ces trois éléments.

 $| II y a 4 \cdot 2 = 8$ permutations de S_4 à un point fixe.

II.3.3. Si une permutation τ de \mathcal{S}_4 a trois points fixes, le quatrième l'est aussi et τ est l'identité. Une permutation de \mathcal{S}_4 sans point fixe n'est donc pas l'identité, ni l'une des 6 transpositions (cf. II.3.1), ni l'une des 8 permutations de II.3.2. Comme \mathcal{S}_4 compte 4!=24 éléments, il y a 24-1-6-8=9 permutations sans point fixe, donc $|\gamma_4=9$.

II.4.1.
$$| \operatorname{card}(S_n) = n!$$

II.4.2. Comme en II.3.2, on choisit k points parmi n: il y a $\binom{n}{k}$ choix possibles. Sur les n-k points restants, on effectue une permutation sans point fixe: il y en a γ_{n-k} .

Ainsi, il y a $\binom{n}{k} \gamma_{n-k}$ permutations de S_n ayant exactement k points fixes.

II.4.3. Comme en II.2, on répartit les permutations de S_n par leur nombre de points fixes $k \in [0, n]$. Au total, il y en a n! donc

$$\underline{\lfloor n!} = \sum_{k=0}^{n} \binom{n}{k} \gamma_{n-k} = \sum_{k=0}^{n} \binom{n}{n-k} \gamma_k = \sum_{k=0}^{n} \binom{n}{k} \gamma_k.$$

II.5.1. Soit $x \in]-1,1[$. Comme $\gamma_n \leqslant n!$,

$$\left|\frac{\gamma_n}{n!}x^n\right| \leqslant |x|^n$$
.

Or $\sum x^n$ converge absolument comme série géométrique de raison |x| < 1, donc $\sum \gamma_n x^n/n!$ converge absolument. | Donc g(x) est bien défini.

II.5.2. Soit $x \in]-1,1[$. Effectuons le produit de Cauchy de la série définissant g(x) et de celle de e^x donnée par l'énoncé. C'est possible car ces deux séries convergent absolument. On a

$$\left[\underline{h(x)} = \left(\sum_{n=0}^{+\infty} \frac{\gamma_n}{n!} x^n \right) \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \right) \right.$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{p=0}^{n} \frac{\gamma_p}{p!} x^p \frac{x^{n-p}}{(n-p)!} \right)$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{p=0}^{n} \binom{n}{p} \gamma_p \right) \frac{x^n}{n!} = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}.$$

II.5.3. Il s'ensuit que

$$g(x) = e^{-x} h(x) = \frac{e^{-x}}{1-x} = f(x).$$

II.5.4. Comme f = g et que g est la somme d'une série entière, f est développable en série entière. Alors, par unicité du développement en série entière de f, pour tout $n \in \mathbb{N}$, $\gamma_n = f^{(n)}(0)$, donc

$$\beta = \gamma$$
.

II.5.5. Du coup, pour tout $n \in \mathbb{N}$,

$$\frac{\gamma_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!} \xrightarrow[n \to +\infty]{} e^{-1} \neq 0,$$

et $\sum \gamma_n/n!$ diverge grossièrement. De plus,

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} \frac{e^{-x}}{1 - x} = +\infty.$$

On ne peut ni définir ni prolonger g en 1.

II.5.6. Pour les mêmes raisons, $\sum (-1)^n \gamma_n / n!$ diverge grossièrement. Mais ici,

$$\lim_{x \to -1^+} g(x) = \lim_{x \to -1^+} \frac{e^{-x}}{1-x} = \frac{e}{2}.$$

On ne peut définir g en -1 mais on peut la prolonger par e/2.

II.5.7. Comme $\beta = \gamma$,

$$\forall n \in \mathbb{N}, \ \gamma_{n+1} = (n+1)\gamma_n + (-1)^{n+1}.$$

d'où l'on tire à la machine | $\gamma_8 = 14833$.

III.1.1. Pour tout $x \in [0,1], 1 \le e^x \le e$, donc

$$\frac{1}{n+1} = \int_0^1 x^n \, \mathrm{d}x \le J_n \le \int_0^1 x^n \, e \, \mathrm{d}x = \frac{e}{n+1}.$$

D'après le théorème d'encadrement,

$$\lim_{n \to +\infty} J_n = 0.$$

- **III.1.2.** La série $\sum v_n$ est clairement alternée et (J_n) tend vers 0 en décroissant car pour $n \in \mathbb{N}$ et $x \in [0,1[$, $x^{n+1} \leq x^n$. D'après le théorème spécial des séries alternées, $|\sum v_n|$ converge.
- III.2.1. C'est la formule de Taylor avec reste intégral pour l'exponentielle en 0.

III.2.2. En appliquant (1) en x = -1,

$$e^{-1} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} + \int_0^{-1} \frac{(-1-t)^n}{n!} e^t dt$$

d'où, en posant x = 1 + t,

III.3. D'après III.1.2, $\sum \delta_n$ converge.

Par ailleurs, d'après III.1.1,

$$|\delta_n| = e^{-1} J_n \geqslant \frac{e^{-1}}{n+1}.$$

Or $\sum 1/(n+1)$ diverge, donc $|\sum |\delta_n|$ diverge.

III.4.1. D'après III.1.1, on a

$$\frac{|\delta_n|}{n} = \frac{e^{-1}J_n}{n} \leqslant \frac{1}{n(n+1)} \sim \frac{1}{n^2}.$$

Or $\sum 1/n^2$ converge, donc $|\sum |\delta_n|/n$ converge.

III.4.2.1. La fonction $\varphi: x \mapsto e^x \ln(1-x)$ est continue sur [0,1[. De plus, le changement de variable t=1-x est une bijection de classe \mathscr{C}^1 de [0,1[dans]0,1[, donc la fonction φ est intégrable sur [0,1[si et seulement si la fonction $\psi: t \mapsto e^{1-t} \ln t$ l'est sur [0,1[. Or $|\psi(t)| \sim_0 -e \ln t$, où $-\ln$ est intégrable sur [0,1[. Donc ψ est intégrable sur [0,1[.

Ainsi, A converge (absolument).

III.4.2.2. C'est du cours.

III.4.2.3. Voici un calcul formel, qui sera justifié ensuite.

(1)
$$\underline{A} = \int_0^1 e^x \sum_{n=1}^{+\infty} \frac{x^n}{n} \, \mathrm{d}x$$

(2)
$$= \sum_{n=1}^{+\infty} \frac{1}{n} \int_0^1 x^n e^x dx$$

$$(3) \qquad = e \sum_{n=1}^{+\infty} \frac{|\delta_n|}{n}.$$

D'après III.4.2.2, l'égalité (1) est justifiée. En outre, on a vu en III.3 que $|\delta_n| = e^{-1} J_n$ donc (3) est justifiée. Par ailleurs, les fonctions $x \mapsto e^x x^n/n$ sont continues et intégrables sur [0,1[et d'après (1), leur série converge simplement sur [0,1[et sa somme, $x \mapsto -e^x \ln(1-x)$ y est continue. Enfin,

$$\int_0^1 \left| e^x \frac{x^n}{n} \right| dx = e \frac{|\delta_n|}{n},$$

et d'après III.4.1, $\sum |\delta_n|/n$ converge. Alors, l'égalité (2) est justifiée.

III.4.3. La série de l'énoncé converge absolument car

$$\left| \frac{(-1)^n}{n! (n+1)^2} \right| \leqslant \frac{1}{n!}$$

et $\sum 1/n!$ converge.

À l'aide du changement de variable rencontré en III.4.2.1,

$$A = -\int_0^1 e^{1-t} \ln t \, dt.$$

En développant e^{-t} , et en permutant comme ci-dessus (la justification est laissée au lecteur :-),

$$A = -e \int_0^1 \sum_{n=0}^{+\infty} \frac{(-t)^n}{n!} \ln t \, dt$$
$$= -e \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_0^1 t^n \ln t \, dt.$$

En intégrant par parties, ce qui est autorisé car les termes manipulés ont un sens,

$$\int_0^1 t^n \ln t \, dt = \left[\frac{t^{n+1}}{n+1} \ln t \right]_0^1 - \int_0^1 \frac{t^n}{n+1} \, dt$$
$$= -\frac{1}{(n+1)^2}.$$

Ainsi,
$$A = e \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+1)^2}$$
. D'après III.4.2.3,

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+1)^2} = \sum_{n=0}^{+\infty} \frac{|\delta_n|}{n}.$$

III.4.4. On cherche à approcher

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+1)^2}$$

par une somme partielle de rang N. Le reste mesure l'erreur commise. Or

$$\left| \sum_{n=N+1}^{+\infty} \frac{(-1)^n}{n!(n+1)^2} \right| \le \left| \frac{(-1)^{N+1}}{(N+1)!(N+2)^2} \right|.$$

Il suffit alors de choisir N tel que

$$\frac{1}{(N+1)!(N+2)^2} \leqslant \frac{1}{600}.$$

En prenant N=3, on a

$$\frac{1}{(N+1)!(N+2)^2} = \frac{1}{4! \cdot 25} = \frac{1}{600}.$$

Donc un rationnel p/q convenable est

$$\frac{p}{q} = \sum_{n=0}^{3} \frac{(-1)^n}{n!(n+1)^2} = \frac{229}{288}.$$