Exercices de colles – seizième semaine

 $oxed{oxed{f}}^{\pi/2}$. $oxed{oxed{f}}$

Calculer
$$\lim_{n \to +\infty} \int_0^{\pi/2} \sqrt[n]{\sin x} \, \mathrm{d}x.$$

Voici deux preuves.

PREUVE DIRECTE. On sait que pour tout $x \in [0, \frac{\pi}{2}]$, $\frac{2}{\pi} x \leq \sin x \leq 1$, donc

$$\frac{n}{n+1} \frac{\pi}{2} \leqslant \int_0^{\pi/2} \sqrt[n]{\sin x} \, \mathrm{d}x \leqslant \frac{\pi}{2}$$

et la suite tend vers $\frac{\pi}{2}$.

Preuve savante. La suite des fonctions continues $f_n: x \mapsto \sqrt[n]{\sin x}$ converge simplement sur $[0, \frac{\pi}{2}]$ vers la fonction constante $f: x \mapsto 1$, laquelle est évidemment continue sur $[0, \frac{\pi}{2}]$; et pour tout $x \in [0, \frac{\pi}{2}]$, tout $n \in \mathbb{N}, |f_n(x)| \leqslant 1$, où la fonction $x \mapsto 1$ est continue et intégrable sur $[0, \frac{\pi}{2}]$. Donc d'après le théorème de convergence dominée, les f_n et f sont intégrables sur $[0, \frac{\pi}{2}]$ —ce qui n'est pas une surprise— et l'on a

$$\lim_{n \to +\infty} \int_0^{\pi/2} f_n = \int_0^{\pi/2} f = \frac{\pi}{2}.$$

II CS15

Considérons une suite $(u_n)_{n\in\mathbb{N}}$ de réels strictement positifs qui converge vers 0. On pose

$$I = \{x \in \mathbb{R}, \sum u_n^x \text{ converge}\}.$$

- 1. Montrer que soit I est vide, soit c'est un intervalle de \mathbb{R}_+^* . On illustrera chaque cas par un exemple concret.
- **2.** On suppose que $I \neq \emptyset$ et on pose

$$f: I \to \mathbb{R}, \ x \mapsto \sum_{n=0}^{+\infty} u_n^x.$$

Étudier la continuité de f sur I, et sa limite en sup I.

1. Tout d'abord, $I \subset \mathbb{R}_+^*$. En effet, si $x \leq 0$, comme la suite (u_n) tend vers 0 et qu'elle est strictement positive, la suite (u_n^x) ne tend pas vers 0 donc $\sum u_n^x$ diverge grossièrement et $x \notin I$.

Il est possible que I soit vide. Par exemple, choisissons $u_n = 1/\ln(n+1)$. Clairement la suite (u_n) remplit les conditions requises. Mais pour tout x > 0, par croissance comparées, $(\ln(n+1))^x \ll n$ donc $u_n^x \gg 1/n$ où $\sum 1/n$ diverge, donc $\sum u_n^x$ diverge. Alors $x \notin I$ et I est bien vide.

Supposons I non vide. Soit $x \in I$: la série $\sum u_n^x$ converge. Considérons $y \ge x$. Comme la suite (u_n) converge vers 0 et qu'elle est strictement positive, à partir d'un certain rang, $0 < u_n \le 1$, donc

$$0 < u_n^y \leqslant u_n^x$$
.

Puisque $\sum u_n^x$ converge, $\sum u_n^y$ converge et $y \in I$.

Ainsi, pour tout $x \in I$, $[x, +\infty[\subset I]$. Donc I est un intervalle. De plus, dans ce cas, sup $I = +\infty$.

Voici un exemple de ce cas. Choisissons $u_n = 1/(n+1)$. Avec les séries de Riemann, $\sum u_n^x$ converge si et seulement si x > 1 et $I =]1, +\infty[$.

2. Continuité de f. Considérons les fonctions

$$f_n: I \to \mathbb{R}, \ x \mapsto u_n^x,$$

de sorte que l'on étudie $\sum f_n$.

Bien-sûr les f_n sont continues sur I, comme fonctions exponentielles.

Soit $a \in I$. On l'a dit, il existe un rang $N \in \mathbb{N}$ tel que pour tout $n \geqslant N, \ 0 < u_n \leqslant 1$. Alors, pour tout $x \geqslant a$ et tout $n \geqslant N, \ 0 < f_n(x) \leqslant f_n(a)$. Comme la série numérique $\sum_{n \geqslant N} f_n(a)$ converge — puisque $a \in I$, la série de fonctions $\sum_{n \geqslant N} f_n$ converge normalement sur $[a, +\infty[$, donc aussi la série de fonctions $\sum_{n \geqslant 0} f_n$.

D'après le théorème de continuité des séries de fonctions, on en conclut la continuité de f sur tout $[a, +\infty[$ pour $a \in I$, donc sur I.

LIMITE DE f EN $+\infty$. Considérons les ensembles

$$A = \{ n \in \mathbb{N} \mid u_n > 1 \}, B = \{ n \in \mathbb{N} \mid u_n = 1 \}$$
et $C = \{ n \in \mathbb{N} \mid 0 < u_n < 1 \}.$

Par construction, $\mathbb{N} = A \sqcup B \sqcup C$. Comme (u_n) converge vers 0, A et B sont finis, éventuellement vides, et C est infini.

Soit $x \in I$. On peut écrire

$$f(x) = \sum_{n \in A} f_n(x) + \sum_{n \in B} f_n(x) + \sum_{n \in C} f_n(x).$$

Pour tout $n \in C$, $\lim_{x \to +\infty} f_n(x) = 0$. Grâce à la convergence normale rencontrée plus haut et au théorème de la double limite, on peut affirmer que

$$\lim_{x \to +\infty} \sum_{n \in C} f_n(x) = 0.$$

Pour tout $n \in B$ et tout $x \in I$, $f_n(x) = 1$, donc

$$\lim_{x \to +\infty} \sum_{n \in B} f_n(x) = \operatorname{card}(B).$$

On se rappelle que cette somme est finie, et qu'elle peut être vide, auquel cas card(B) = 0 et cette relation est encore valide.

Enfin, si $A \neq \emptyset$, considérons un $k \in A$. Alors, pour tout $x \in I$, comme les u_n sont positifs et que $u_k > 1$,

$$\sum_{n \in A} f_n(x) \geqslant u_k^x \xrightarrow[x \to +\infty]{} +\infty.$$

Finalement,

$$\lim_{x \to +\infty} f(x) = \begin{cases} +\infty & \text{si } A \neq \emptyset \\ \text{card}(B) & \text{sinon.} \end{cases}$$

III

Calculer
$$\lim_{n \to +\infty} \int_0^1 \frac{x^n}{1+x^n} dx$$
.

Utilisons le théorème de convergence dominée.

 \circ Pour $n \in \mathbb{N}$, la fonction

$$f_n: x \mapsto \frac{x^n}{1+x^n}$$

est continue sur [0,1].

o Sans difficulté, la suite (f_n) converge simplement sur [0,1] vers la fonction

$$f: [0,1] \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & \text{si } x < 1, \\ \frac{1}{2} & \text{si } x = 1. \end{cases}$$

- \circ La fonction est continue par morceaux sur [0,1].
- o Enfin, pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$, $|f_n(x)| \leq 1$, où $x \mapsto 1$ est continue et intégrable sur [0,1].

Alors

- les fonctions f_n et f sont intégrables sur [0,1] ce n'est pas une surprise;
- et l'on a

$$\lim_{n \to +\infty} \int_0^1 \frac{x^n}{1+x^n} \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x = 0.$$

 $|\mathbf{IV}|$

_____MP

1. Considérons une suite réelle (λ_n) . Trouver l'ensemble de définition de

$$f: x \mapsto \sum_{n=1}^{+\infty} \frac{e^{i\lambda_n x}}{n^2}.$$

2. Calculer les limites en 0 et $+\infty$ de

$$\frac{1}{2T} \int_{-T}^{T} f(t) \, \mathrm{d}t.$$

1. Pour tout $n \ge 1$, considérons la fonction

$$f_n: \mathbb{R} \to \mathbb{C}, \ x \mapsto \frac{e^{i\lambda_n x}}{n^2}.$$

Pour tout $x \in \mathbb{R}$, on a $|f_n(x)| = 1/n^2$ et la série de Riemann $\sum 1/n^2$ converge car 2 > 1, donc la série $\sum f_n(x)$ converge absolument donc $\sum f_n$ converge simplement sur \mathbb{R} et f est définie sur \mathbb{R} .

Mieux, $||f_n||_{\infty}^{\mathbb{R}} = 1/n^2$, donc $\sum f_n$ converge normalement donc uniformément sur \mathbb{R} . Et comme les f_n sont continues sur \mathbb{R} , f l'est aussi.

2. Soit un réel T > 0. Comme la série $\sum f_n$ converge normalement sur [-T, T], on peut permuter :

$$\frac{1}{2T} \int_{-T}^{T} f(t) dt = \sum_{n=1}^{+\infty} \frac{1}{2T} \int_{-T}^{T} f_n(t) dt.$$

Or, pour $n \in \mathbb{N}$, si $\lambda_n = 0$,

$$\frac{1}{2T} \int_{-T}^{T} f_n(t) \, \mathrm{d}t = \frac{1}{2T} \int_{-T}^{T} \frac{\mathrm{d}t}{n^2} = \frac{1}{n^2},$$

et si $\lambda_n \neq 0$,

$$\frac{1}{2T} \int_{-T}^{T} f_n(t) dt = \frac{1}{2T} \left[\frac{e^{i\lambda_n x}}{i\lambda_n n^2} \right]_{-T}^{T}$$
$$= \frac{1}{2T} \frac{e^{i\lambda_n T} - e^{-i\lambda_n T}}{i\lambda_n n^2} = \frac{\sin(\lambda_n T)}{\lambda_n T n^2}$$

Alors, en introduisant le sinus cardinal

$$\operatorname{sinc}: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0, \end{cases}$$

on voit que pour tout n,

$$\frac{1}{2T} \int_{-T}^{T} f_n(t) dt = \frac{\operatorname{sinc}(\lambda_n T)}{n^2}.$$

Ainsi,

$$\frac{1}{2T} \int_{-T}^{T} f(t) dt = \sum_{n=1}^{+\infty} \frac{\operatorname{sinc}(\lambda_n T)}{n^2}.$$

Pour tout $n \in \mathbb{N}^*$, en notant $g_n : T \mapsto \operatorname{sinc}(\lambda_n T)$, on voit que $\|g_n\|_{\infty}^{\mathbb{R}} = 1$, donc la série de fonctions $\sum g_n/n^2$ converge normalement donc uniformément sur \mathbb{R} . En outre,

$$\lim_{T \to 0} g_n(T) = 1 \text{ et } \lim_{T \to +\infty} g_n(T) = \begin{cases} 1 & \text{si } \lambda_n = 0, \\ 0 & \text{sinon.} \end{cases}$$

Donc d'après le théorème de la double limite, on peut permuter la somme et les limites :

$$\begin{split} &\lim_{T \to 0} \frac{1}{2T} \int_{-T}^{T} f(t) \, \mathrm{d}t = \lim_{T \to 0} \sum_{n=1}^{+\infty} \frac{g_n(T)}{n^2} \\ &= \sum_{1}^{+\infty} \lim_{T \to 0} \frac{g_n(T)}{n^2} = \sum_{1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. \end{split}$$

Pour formaliser la seconde limite, introduisons le support de la suite $\lambda = (\lambda_n)$:

$$\operatorname{supp} \lambda = \{ n \in \mathbb{N} \mid \lambda_n \neq 0 \}.$$

Alors

$$\lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} f(t) dt = \sum_{n=1}^{+\infty} \lim_{T \to +\infty} \frac{g_n(T)}{n^2}$$
$$= \sum_{n \notin \text{supp } \lambda} \frac{1}{n^2}.$$

V

Soit $f \in \mathscr{C}^0([0, \frac{\pi}{2}], \mathbb{R})$. Montrer que la suite de terme général $u_n = \int_0^{\pi/2} f(x) \sin^n x \, \mathrm{d}x$ admet une limite que l'on précisera.

Utilisons le théorème de convergence dominée.

- Les fonctions $g_n: x \mapsto f(x) \sin^n x$ sont continues sur $[0, \frac{\pi}{2}]$.
- o Clairement, la suite de fonctions (g_n) converge simplement sur $[0, \frac{\pi}{2}]$ vers la fonction

$$g: x \mapsto \begin{cases} 0 & \text{si } x < \frac{\pi}{2} \\ f(\frac{\pi}{2}) & \text{si } x = \frac{\pi}{2}. \end{cases}$$

∘ La fonction g est continue par morceaux sur $[0, \frac{\pi}{2}]$. ∘ Enfin, pour tout $x \in [0, \frac{\pi}{2}]$ et tout $n \in \mathbb{N}$, $|g_n(x)| \leq ||f||_{\infty}^{[0,\pi/2]}$, où $x \mapsto ||f||_{\infty}^{[0,\pi/2]}$ est intégrable

sur $\left[0, \frac{\pi}{2}\right]$.

- Alors, • les g_n et g sont intégrables sur $\left[0, \frac{\pi}{2}\right]$ — ce qui n'est pas une surprise;
- la suite (u_n) converge;
- et l'on a

$$\lim_{n \to +\infty} u_n = \int_0^{\pi/2} g(x) \, \mathrm{d}x = 0.$$

VI MP

Pour $n \in \mathbb{N}$, considérons $f_n : x \mapsto \frac{e^{-nx}}{n+1}$

- 1. Étudier la convergence simple puis uniforme de la série de fonctions $\sum f_n$.
- **2.** On note f sa somme. Est-elle continue? dérivable?
- **3.** Donner ses limites en 0 et $+\infty$.
- 1. Convergence simple. Soit $x \in \mathbb{R}$. Si x < 0, $\lim_{n \to +\infty} f_n(x) = +\infty$ et $\sum f_n(x)$ diverge grossièrement. Si x = 0, $f_n(0) = 1/(n+1) \sim_{n \to +\infty} 1/n$ et $\sum f_n(0)$ diverge. Enfin, si x > 0, $0 < f_n(x) < e^{-nx}$, où $\sum e^{-nx}$ converge comme série géométrique de raison $e^{-x} \in]0,1[$, donc $\sum f_n(x)$ converge.

Ainsi, $\sum f_n$ converge simplement sur \mathbb{R}_+^* .

Convergence uniforme sur $[a, +\infty[$ où a > 0. On se doute que $\sum f_n$ ne converge pas uniformément sur \mathbb{R}_+^* . On voit que la convergence uniforme sur tout $[a, +\infty[$ où a > 0 suffit pour la suite de l'exercice.

Soient a > 0, $x \in [a, +\infty[$ et $n \in \mathbb{N}$.

$$|R_n(x)| = \sum_{k=n+1}^{+\infty} \frac{e^{-kx}}{k+1} \le \sum_{k=n+1}^{+\infty} e^{-kx}$$
$$= \frac{e^{-(n+1)x}}{1 - e^{-x}} \le \frac{e^{-(n+1)a}}{1 - e^{-a}}.$$

Ce dernier majorant ne dépend pas de x et tend vers 0 avec n, donc (R_n) converge uniformément sur $[a, +\infty[$

vers la fonction nulle, et $\sum f_n$ converge uniformément sur $[a, +\infty[$.

Commentaire. On a traité la convergence uniforme pour répondre à la question, mais la convergence normale est encore plus simple et suffit pour la suite.

2. Puisque les f_n sont toutes continues sur \mathbb{R}_+^* et que $\sum f_n$ converge uniformément sur tout $[a, +\infty[$ où a > 0 d'après ce qui précède, la somme f est continue sur ces intervalles. Comme a > 0 est arbitraire, f est continue sur \mathbb{R}_+^* .

Les f_n sont \mathscr{C}^1 sur \mathbb{R}_+^* et pour $n \in \mathbb{N}$ et x > 0,

$$f_n'(x) = -\frac{ne^{-nx}}{n+1}.$$

En outre, pour a > 0 et $x \in [a, +\infty[$,

$$|f'_n(x)| = \frac{ne^{-nx}}{n+1} \le e^{-na}.$$

Or e^{-na} ne dépend pas de x et $\sum e^{-na}$ converge comme série géométrique de raison $e^{-a} \in [0, 1[$, donc $\sum f'_n$ converge normalement donc uniformément sur $[a, +\infty[$. Il s'ensuit que f est \mathscr{C}^1 sur $[a, +\infty[$ et

$$\forall x \geqslant a, \ f'(x) = -\sum_{n=0}^{+\infty} \frac{n e^{-nx}}{n+1}.$$

Comme f est de classe \mathscr{C}^1 sur tout $[a, +\infty[$ où a > 0, elle l'est sur \mathbb{R}_+^* .

3. LIMITE EN $+\infty$. On a vu que $\sum f_n$ converge uniformément sur $[1, +\infty[$, par exemple. De plus, pour tout $n \in \mathbb{N}$,

$$\lim_{x \to +\infty} f_n(x) = \begin{cases} 0 & \text{si } n \geqslant 1, \\ 1 & \text{si } n = 0. \end{cases}$$

Notons ℓ_n ces limites. D'après le théorème de la double limite, la série $\sum \ell_n$ converge et f admet une limite en $+\infty$ qui vaut

$$\lim_{x \to +\infty} f(x) = \sum_{n=0}^{+\infty} \ell_n = 1.$$

LIMITE EN 0. On imagine que f tend vers $+\infty$ en 0. Prouvons-le.

Soit x > 0. Pour tout $n \in \mathbb{N}^*$,

$$f(x) = \sum_{k=0}^{+\infty} \frac{e^{-kx}}{k+1} \geqslant \sum_{k=0}^{n} \frac{e^{-kx}}{k+1} \geqslant e^{-nx} \sum_{k=0}^{n} \frac{1}{k+1}.$$

En choisissant $x_n = 1/n$,

$$f(x_n) \geqslant e^{-1} \sum_{k=0}^n \frac{1}{k+1} \xrightarrow[n \to +\infty]{} +\infty.$$

Comme la suite (x_n) décroit vers 0 et que f décroit sur \mathbb{R}_+^* , puisque $f' \leq 0$, il s'ensuit que

$$\lim_{x \to 0^+} f(x) = +\infty.$$