Vingt-deuxième devoir à la maison

Intégrales de Gauss et théorème de Moivre-Laplace [CCINP22]

Présentation

Le théorème de Moivre-Laplace permet d'approcher les calculs de probabilité pour une variable aléatoire suivant une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$ par des calculs d'intégrales de fonctions gaussiennes. Une première démonstration a été donnée en 1733 par Abraham de Moivre pour le cas où $p=\frac{1}{2}$.

La partie I permet d'obtenir un résultat de convergence. La partie II aboutit à un calcul exact de fonction gaussienne dite « intégrale de Gauss ». La partie III permet d'établir une majoration utile à la partie IV qui s'intéresse à la convergence simple d'une suite de fonctions vers une fonction gaussienne. Ce résultat de convergence constitue une étape clé dans une démonstration possible du théorème de Moivre-Laplace.

Partie I - Convergence d'une suite

Soit $n \in \mathbb{N}^*$. Pour tout $k \in [0, 2n]$, on pose :

$$a_{k,n} = \frac{\sqrt{2n}}{2^{2n+1}} \binom{2n}{k}.$$

Pour tout $m \in \mathbb{N}$, on pose :

$$I_m = \int_0^1 (1 - t^2)^{\frac{m}{2}} dt.$$

- **Q1.** Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante.
- **Q2.** Montrer que pour tout $m \in \mathbb{N}$:

$$I_{m+2} = \frac{m+2}{m+3} I_m.$$

Q3. En déduire que pour tout $n \in \mathbb{N}^*$:

$$I_{2n} = \frac{\sqrt{2n}}{2(2n+1)a_{n,n}} \text{ et } I_{2n-1} = \frac{\pi}{\sqrt{2n}}a_{n,n}.$$

Q4. Montrer que pour tout $n \in \mathbb{N}^*$:

$$1 \leqslant \frac{I_{2n-1}}{I_{2n}} \leqslant \frac{I_{2n-2}}{I_{2n}}.$$

En déduire que :

$$\frac{1}{1 + \frac{1}{2n}} \leqslant 2\pi (a_{n,n})^2 \leqslant 1.$$

Q5. En déduire la convergence de la suite $(a_{n,n})_{n\geqslant 1}$ lorsque n tend l'infini, puis que :

$$I_{2n} \underset{n \to +\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{n}}.$$

Partie II - Calcul d'une intégrale de Gauss

Pour tout $n \in \mathbb{N}^*$, on pose :

$$J_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n \mathrm{d}t.$$

Pour tout $n \in \mathbb{N}^*$ et pour tout $t \in \mathbb{R}_+$, on pose :

$$u_n(t) = \begin{cases} \left(1 - \frac{t^2}{n}\right)^n & \text{si } 0 \leqslant t \leqslant \sqrt{n}, \\ 0 & \text{sinon.} \end{cases}$$

Enfin, on considère l'intégrale de Gauss :

$$K = \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} dt.$$

Q6. À l'aide d'un changement de variable simple, déduire de la question Q5 que la suite $(J_n)_{n\in\mathbb{N}^*}$ converge et donner sa limite.

Q7. Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+ et donner sa limite.

Q8. Montrer que pour tout $x \in \mathbb{R}$, on $a: 1+x \leq e^x$, et en déduire que pour tout $n \in \mathbb{N}^*$:

$$\forall t \in \mathbb{R}_+, \ 0 \leqslant u_n(t) \leqslant e^{-t^2}.$$

Q9. Montrer que l'intégrale K est convergente, puis déduire des questions précédentes une valeur exacte de K.

Partie III - Calcul d'une majoration

Q10. Montrer qu'il existe une fonction $g:[0,\frac{1}{2}] \to \mathbb{R}$ et un réel $M \geqslant 0$, tels que :

$$\forall x \in \left[0, \frac{1}{2}\right], \ \frac{1-x}{1+x} = e^{-2x+g(x)}, \ \text{et } |g(x)| \leqslant M \, x^3.$$

Q11. Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in [n+1,2n]$:

$$\frac{a_{k,n}}{a_{n,n}} = \frac{\prod_{i=1}^{k-n-1} (1 - \frac{i}{n})}{\prod_{i=1}^{k-n-1} (1 + \frac{i}{n})} \times \frac{n}{k}.$$

Q12. En déduire que pour tout $k \in \mathbb{N}$ tel que

$$n+1 \leqslant k \leqslant \frac{3n}{2}+1,$$

il existe $b_{k,n} \in \mathbb{R}$ tel que :

$$|b_{k,n}| \leqslant \frac{M}{n^3} (k-n-1)^4,$$

et $\frac{a_{k,n}}{a_{n,n}} = \frac{n}{k} \times e^{b_{k,n}} \times e^{-\frac{1}{n}(k-n-1)(k-n)}.$

Partie IV - Vers le théorème de Moivre-Laplace

On considère une suite de variables aléatoires $(X_n)_{n\geqslant 1}$ définies sur un espace probabilisé (Ω, Σ, P) . On suppose que pour tout $n\in \mathbb{N}^*$, la variable aléatoire X_n suit une loi binomiale $\mathscr{B}(2n,\frac{1}{2})$ et on pose :

$$Z_n = \frac{2X_n - 2n}{\sqrt{2n}}.$$

Pour tout $k \in [0, 2n]$, on pose

$$t_{k,n} = \frac{2\,k - 2\,n}{\sqrt{2\,n}} \text{ et } J_{k,n} = \left[t_{k,n} - \frac{1}{\sqrt{2\,n}}, t_{k,n} + \frac{1}{\sqrt{2\,n}}\right[.$$

On admet que les intervalles $J_{k,n}$, pour $k \in [0, 2n]$, sont disjoints deux à deux et que :

$$\left[-\sqrt{2n} - \frac{1}{\sqrt{2n}}, \sqrt{2n} + \frac{1}{\sqrt{2n}}\right] = \bigcup_{k=0}^{2n} J_{k,n}.$$

Pour tout $n \in \mathbb{N}^*$, on définit une fonction $h_n : \mathbb{R} \to \mathbb{R}$ en escalier de la manière suivante :

$$h_n: t \mapsto \begin{cases} \frac{\sqrt{2n}}{2} P(X_n = k) & \text{s'il existe } k \in \llbracket 0, 2n \rrbracket \\ 0 & \text{tel que } t \in J_{k,n}, \end{cases}$$

Q13. Soit $n \in \mathbb{N}^*$. Déterminer la loi, l'espérance et la variance de la variable aléatoire Z_n .

Q14. Proposer une représentation graphique de la fonction h_2 .

Q15. Soit $n \in \mathbb{N}^*$. Vérifier que la fonction h_n possède un maximum sur \mathbb{R} et déterminer pour quelles valeurs ce maximum est atteint.

Q16. Soit $x \in]0, +\infty[$. Montrer qu'il existe $n_0 \in \mathbb{N}$, tel que pour tout $n \in \mathbb{N}$, vérifiant $n \geq n_0$, il existe $k_n \in \mathbb{N}$, tel que $x \in J_{k_n,n}$. Vérifier qu'alors :

$$k_n - n \underset{n \to +\infty}{\sim} \frac{x\sqrt{2n}}{2}, \ t_{k_n,n} \underset{n \to +\infty}{\sim} x, \ k_n \underset{n \to +\infty}{\sim} n.$$

Q17. Soit $n \in \mathbb{N}^*$. Vérifier que pour tout $k \in [0, 2n]$: $h_n(t_{k,n}) = a_{k,n}$. Montrer ensuite, en utilisant les résultats des questions Q5, Q12, Q16, que la suite de fonctions $(h_n)_{n \in \mathbb{N}^*}$ converge simplement sur \mathbb{R} et préciser sa limite.

La convergence simple de cette suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ est une étape importante permettant de démontrer un cas particulier du théorème de Moivre-Laplace :

Théorème

Pour tous réels $a \in \mathbb{R}$, $b \in \mathbb{R}$, tels que a < b:

$$\lim_{n \to +\infty} P(a \leqslant Z_n \leqslant b) = \int_a^b e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} dt.$$