Vingt-quatrième devoir à la maison

Exercice

[E3A22]

1. Question de cours.

Soit f une fonction continue sur \mathbb{R} , à valeurs réelles et T-périodique. Montrer que :

$$\forall x \in \mathbb{R}, \ \int_{x}^{x+T} f(u) du = \int_{0}^{T} f(u) du.$$

On se propose de déterminer des fonctions y de classe \mathscr{C}^2 sur $\mathbb R$ et vérifiant, pour tout réel x, la relation :

(*)
$$xy''(x) + y'(x) - 4xy(x) = 0.$$

2. On suppose qu'il existe une fonction g, développable en série entière, de rayon de convergence non nul, vérifiant (*), sous la forme

$$g(x) = \sum_{n=0}^{+\infty} a_n x^n$$

et telle que $g(0) = a_0 = 1$.

- **2.1.** Prouver que $a_1 = 0$ et déterminer pour tout $n \ge 1$ une relation entre a_{n+1} et a_{n-1} .
- **2.2.** Déterminer alors a_n pour tout entier naturel n
- **2.3.** Déterminer l'ensemble de définition de la fonction g ainsi obtenue.

Soit F la fonction définie sur $\mathbb R$ par :

$$F: x \mapsto F(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp(2x\cos(t)) \,\mathrm{d}t.$$

3. Quelques propriétés de la fonction F.

3.1. Étudier la parité de la fonction F.

On pourra utiliser le changement de variable $u = \pi - t$ et la question de cours.

- **3.2.** Pour tout couple (x,t) de $\mathbb{R} \times [0,2\pi]$, on pose $h(x,t) = \exp(2x\cos(t))$.
 - **3.2.1.** Justifier que h est \mathscr{C}^1 sur $\mathbb{R} \times [0, 2\pi]$.
 - **3.2.2.** Prouver que pour k non nul, la fonction $\frac{\partial^k h}{\partial x^k}$ existe et est continue sur $\mathbb{R} \times [0, 2\pi]$.
 - **3.2.3.** Soit I un segment de \mathbb{R} . Montrer que pour tout entier k non nul, il existe un réel positif M_k tel que :

$$\forall (x,t) \in I \times [0,2\pi], \ 0 \leqslant \left| \frac{\partial^k h}{\partial x^k}(x,t) \right| \leqslant M_k.$$

- **3.2.4.** En déduire que F est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- **3.2.5.** Donner pour tout x réel et tout $k \in \mathbb{N}^*$ une expression de $F^{(k)}(x)$ sous la forme d'une intégrale.
- **3.3.** Démontrer que F vérifie la relation (*).

4. Développement en série entière de F.

- **4.1.** Donner le développement en série entière au voisinage de zéro de la fonction exponentielle et son domaine de validité.
- **4.2.** En utilisant la question précédente, montrer qu'il existe une suite $(I_n)_{n\in\mathbb{N}}$ de réels tels que :

$$\forall x \in \mathbb{R}, \ F(x) = \sum_{n=0}^{+\infty} I_n x^n$$

où I_n s'exprime simplement à l'aide de l'intégrale

$$J_n = \int_0^{2\pi} \cos^n(t) \, \mathrm{d}t.$$

On citera les théorèmes utilisés en s'assurant que toutes leurs hypothèses sont bien vérifiées.

- **4.3.** Calculer J_0 et J_1 .
- **4.4.** Soit $n \ge 2$. Déterminer une relation de récurrence entre J_n et J_{n-2} .
- **4.5.** En déduire, pour tout entier naturel n, une expression de J_n en fonction de n.
- **4.6.** Comparer alors les fonctions F et g.