Vingt-septième devoir à la maison

Marche aléatoire : retour à 0 [MP16]

Durée : 3 heures L'usage de l'ordinateur ou de la calculatrice est interdit.

A Préliminaire

1. Montrer que, pour tout $x \in]-1,1[$,

$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{4^k} x^k.$$

B Identité de Karamata

On considère dans cette partie une suite réelle $(a_k)_{k\in\mathbb{N}}$ telle que, pour tout réel $x\in]-1,1[$, la série de terme général a_k x^k converge absolument. Pour tout réel $x\in]-1,1[$, on note f(x) la somme de cette série et l'on suppose que

$$\lim_{x \to 1^{-}} \sqrt{1 - x} f(x) = \sqrt{\pi}.$$

2. Pour tout $p \in \mathbb{N}$, déterminer

$$\lim_{x \to 1^{-}} \sqrt{1-x} \sum_{k=0}^{\infty} a_k x^{(p+1)k}.$$

3. Pour tout $p \in \mathbb{N}$, justifier la convergence de l'intégrale

$$\int_0^{+\infty} \frac{e^{-(p+1)t}}{\sqrt{t}} \, \mathrm{d}t$$

et calculer sa valeur. En déduire l'égalité :

$$\lim_{x \to 1^{-}} \sqrt{1 - x} \sum_{k=0}^{\infty} a_k x^{(p+1)k} = \int_{0}^{+\infty} \frac{e^{-(p+1)t}}{\sqrt{t}} dt.$$

On admettra que $\int_{0}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = \sqrt{\pi}$.

4. Montrer que pour toute application polynomiale réelle Q, on a

$$\lim_{x \to 1^{-}} \sqrt{1 - x} \sum_{k=0}^{\infty} a_k x^k Q(x^k) = \int_0^{+\infty} \frac{e^{-t} Q(e^{-t})}{\sqrt{t}} dt.$$

Soit h la fonction définie, pour tout $x \in [0, 1]$, par :

$$h(x) = \begin{cases} 0 & \text{si } x \in [0, e^{-1}[\\ \frac{1}{x} & \text{si } x \in [e^{-1}, 1] \end{cases}$$

5. Justifier la convergence de

$$\int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} h(e^{-t}) dt$$

et donner sa valeur.

6. Soit $x \in [0, 1[$. Justifier la convergence de la série de terme général $a_k x^k h(x^k)$.

On admet l'égalité (dite de Karamata) :

$$\lim_{x \to 1^{-}} \sqrt{1 - x} \sum_{k=0}^{\infty} a_k x^k h(x^k) = \int_0^{+\infty} \frac{e^{-t} h(e^{-t})}{\sqrt{t}} dt.$$

7. En utilisant ce résultat pour $x=e^{-\frac{1}{n}}$, en déduire que

$$\sum_{k=0}^{n} a_k \underset{n \to \infty}{\sim} 2\sqrt{n}.$$

C Théorème taubérien

On considère une suite $(a_n)_{n \in \mathbb{N}}$ décroissante de réels positifs et, pour tout entier naturel n, on pose $S_n = \sum_{k=0}^n a_k$. On fait l'hypothèse que

$$S_n \underset{n \to \infty}{\sim} 2\sqrt{n}$$
.

On va montrer qu'alors

$$a_n \underset{n \to \infty}{\sim} \frac{1}{\sqrt{n}}.$$

On notera [x] la partie entière d'un réel x.

8. Soit α, β un couple de nombres réels vérifiant : $0 < \alpha < 1 < \beta$. Pour tout entier naturel n tel que $n - [\alpha n]$ et $n - [\beta n]$ soient non nuls, justifier l'encadrement :

$$\frac{S_{[\beta n]} - S_n}{[\beta n] - n} \leqslant a_n \leqslant \frac{S_n - S_{[\alpha n]}}{n - [\alpha n]}.$$

9. Soit γ un réel strictement positif. Déterminer les limites des suites de termes généraux

$$\frac{n}{[\gamma n]}$$
 et $\frac{S_{[\gamma n]}}{\sqrt{n}}$.

10. Soit ε un réel strictement positif. Montrer que, pour tout entier naturel n assez grand, on a :

$$\frac{2(\sqrt{\beta}-1)}{\beta-1} - \varepsilon \leqslant \sqrt{n} \, a_n \leqslant \frac{2(1-\sqrt{\alpha})}{1-\alpha} + \varepsilon.$$

11. En déduire que $\lim_{n\to\infty} \sqrt{n} a_n = 1$.

D Marche aléatoire

On considère $\Omega = \mathbf{Z}^{\mathbf{N}^*}$ l'ensemble des suites indexées par \mathbf{N}^* à valeurs dans \mathbf{Z} . On définit les applications coordonnées, pour tout $i \geq 1$,

$$X_i: \Omega \longrightarrow \mathbf{Z}$$

 $\omega = (\omega_1, \omega_2, \ldots) \longmapsto \omega_i.$

On admet que l'on peut construire une tribu \mathcal{B} et une mesure de probabilité \mathbf{P} sur Ω , de sorte que les X_i soient des variables aléatoires, indépendantes et de même loi donnée par

$$\mathbf{P}(X_1 = 1) = \mathbf{P}(X_1 = -1) = \frac{1}{2}.$$

On définit la suite de variables aléatoires $(S_n, n \ge 0)$ par

$$S_0(\omega) = 0$$
, $S_n(\omega) = \sum_{i=1}^n X_i(\omega)$.

On définit enfin la variable aléatoire T par

$$T: \Omega \longrightarrow \overline{\mathbf{N}}^* = \mathbf{N}^* \cup \{+\infty\}$$

$$\omega \longmapsto \begin{cases} +\infty & \text{si } S_n(\omega) \neq 0, \ \forall n \geqslant 1, \\ \inf\{n \geqslant 1, S_n(\omega) = 0\} \\ & \text{s'il existe } n \geqslant 1 \text{ tel que } S_n(\omega) = 0. \end{cases}$$

Pour tout entier naturel n, on note $E_n = \{T > n\}$, pour $n \ge 1$, $A_n^n = \{S_n = 0\}$ et pour $k \in \{0, ..., n-1\}$,

$$A_k^n = \{S_k = 0\} \cap \bigcap_{i=k+1}^n \{S_i \neq 0\}.$$

12. Montrer pour tout $1 \le k < n$, pour tout $(i_1, \ldots, i_{n-k}) \in \{-1, 1\}^{n-k}$,

$$\mathbf{P}(X_{k+1} = i_1, \dots, X_n = i_{n-k})$$

= $\mathbf{P}(X_1 = i_1, \dots, X_{n-k} = i_{n-k}).$

13. Montrer pour tout $1 \leq k < n$, pour tout $(j_1, \ldots, j_{n-k}) \in \mathbf{Z}^{n-k}$ que

$$\mathbf{P}(S_{k+1} - S_k = j_1, \dots, S_n - S_k = j_{n-k})$$

= $\mathbf{P}(S_1 = j_1, \dots, S_{n-k} = j_{n-k}).$

Indication : on pourra considérer l'application

$$\theta: \mathbf{Z}^{n-k} \longrightarrow \mathbf{Z}^{n-k}$$

$$(z_1,\ldots,z_{n-k})\longmapsto \left(z_1,z_1+z_2,\ldots,\sum_{j=1}^{n-k}z_j\right).$$

14. En déduire que pour tout $k \in \{0, \ldots, n\}$

$$\mathbf{P}(A_k^n) = \mathbf{P}(S_k = 0)\mathbf{P}(E_{n-k}).$$

15. Montrer l'égalité

$$1 = \sum_{k=0}^{n} \mathbf{P}(S_k = 0) \mathbf{P}(E_{n-k}).$$

16. Pour tout réel x de]0,1[, établir l'égalité :

$$\frac{1}{1-x} = \left(\sum_{n=0}^{\infty} \mathbf{P}(S_n = 0) x^n\right) \left(\sum_{n=0}^{\infty} \mathbf{P}(E_n) x^n\right).$$

- 17. Pour tout entier naturel n, calculer $P(S_n = 0)$. Indication: on discutera suivant la parité de n.
- **18.** En déduire que, pour tout $x \in]0,1[$, on a

$$\sum_{n=0}^{\infty} \mathbf{P}(E_n) x^n = \sqrt{\frac{1+x}{1-x}}.$$

- 19. À l'aide des résultats obtenus dans les parties précédentes déterminer, quand l'entier naturel n tend vers l'infini, un équivalent de $\mathbf{P}(E_n)$.
- **20.** Montrer que l'on a : $\mathbf{P}(T = +\infty) = 0$.
- **21.** Pour tout réel $x \in [0, 1]$, prouver l'égalité :

$$1 - \sqrt{1 - x^2} = \sum_{n=1}^{\infty} \mathbf{P}(T = n) x^n.$$

22. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$\mathbf{P}(T = 2n) = \frac{1}{2n-1} \frac{\binom{2n}{n}}{4^n}.$$

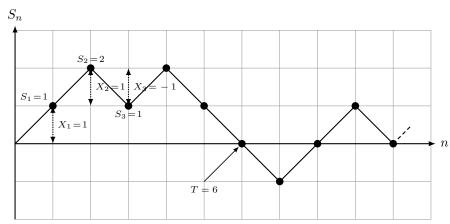


FIGURE 1 – Ici ω commence par (1, 1, -1, 1, -1, -1, -1, 1, 1, -1). ω appartient à A_6^6 et A_8^8 ainsi qu'à $A_0^1, A_0^2, \ldots, A_0^5, A_6^7$, etc.