Troisième devoir à la maison

On considère un entier $n \ge 2$ et un espace vectoriel E de dimension n sur \mathbb{R} . On note 0_E le vecteur nul de E et id_E l'application identité de E.

Soit f un endomorphisme de E. On pose $f^0 = \mathrm{id}_E$ et, pour tout entier $k \ge 1$, $f^k = f \circ f^{k-1}$.

Le but du problème est de démontrer que

(1)
$$\forall f \in \mathfrak{L}(E), \exists p \in [1, n], E = \operatorname{Ker}(f^p) \oplus \operatorname{Im}(f^p).$$

- 1. Dans cette question, f est un automorphisme de E. Donner une valeur de p satisfaisant (1). Justifier la réponse.
- **2.** EXEMPLE 1. Dans cette question, $E=\mathbb{R}^3$; (e_1,e_2,e_3) est une base de E dans laquelle f a pour matrice :

$$\begin{pmatrix} 4 & -1 & 5 \\ -2 & -1 & -1 \\ -4 & 1 & -5 \end{pmatrix}.$$

- a) Déterminer une base de Ker f et de Im f. Peuton choisir p = 1?
- **b)** Déterminer une base de $Ker(f^2)$ et de $Im(f^2)$. Justifier l'égalité : $E = Ker(f^2) \oplus Im(f^2)$.
- **3.** EXEMPLE 2. Dans cette question, m est un paramètre réel; $E = \mathbb{R}^4$; (e_1, e_2, e_3, e_4) est une base de E dans laquelle f a pour matrice :

$$A_m = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & m & 0 & 0 \\ 1 & 0 & -m & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- a) Déterminer une base de Ker f et de Im f. Peuton choisir p=1? On discutera suivant les valeurs de m.
- **b)** Déterminer le plus petit entier p vérifiant (1).
- 4. ÉTUDE DU CAS GÉNÉRAL. Dans cette question, on suppose que l'endomorphisme f n'est pas bijectif.
 - a) Soit k un entier naturel. Montrer les inclusions :

$$\operatorname{Ker}(f^k) \subset \operatorname{Ker}(f^{k+1}), \quad \operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k).$$

- **b)** Pour tout $k \in \mathbb{N}$, on pose $a_k = \dim(\operatorname{Ker}(f^k))$. Montrer que la suite $(a_k)_{k \in \mathbb{N}}$ est croissante.
- c) Soit $F = \{k \in \mathbb{N} \mid a_k = a_{k+1}\}$. Montrer que $F \neq \emptyset$.
- **d)** En déduire l'existence d'un entier $p \geqslant 1$ tel que :

$$\forall k \in [0, p-1], \operatorname{Ker}(f^k) \neq \operatorname{Ker}(f^{k+1}), \operatorname{Ker}(f^p) = \operatorname{Ker}(f^{p+1}).$$

e) Montrer que

$$\forall k \in \mathbb{N}, \ k \geqslant p \Longrightarrow \operatorname{Ker}(f^k) = \operatorname{Ker}(f^p).$$

f) Déduire de ce qui précède l'égalité

$$E = \operatorname{Ker}(f^p) \oplus \operatorname{Im}(f^p).$$