Cinquième devoir à la maison

[E3A17]

Les questions étoilées sont réservées aux 5/2 et aux 3/2 aventureux.

Dans tout l'exercice, n désigne un entier supérieur ou égal à 3. On note $E = \mathbb{R}_{n-1}[X]$ et $\mathscr{B} = (1, X, \dots, X^{n-1})$ sa base canonique.

Soient a_1, \ldots, a_n, n réels vérifiant :

$$a_1 < a_2 < \ldots < a_n.$$

1. Montrer que l'application :

$$T: P \mapsto (P(a_1), \dots, P(a_n))$$

est un isomorphisme de E dans \mathbb{R}^n .

2. On note $\mathscr{E} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n et pour tout $i \in [1, n]$, on note $L_i = T^{-1}(e_i)$, c'est-à-dire l'unique polynôme dont l'image par T est e_i .

Montrer que $\mathscr{B}' = (L_1, \ldots, L_n)$ est une base de E puis déterminer les composantes d'un polynôme P quelconque de E dans cette base.

Dans la suite de l'exercice, on note $M=(m_{ij})_{1\leqslant i,j\leqslant n}$ la matrice de passage de la base \mathscr{B} à la base \mathscr{B}' .

- **3. Dans cette question uniquement,** on suppose que n = 3, $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$.
 - **3.1.** Donner, sans justification, les polynômes L_1 , L_2 et L_3 et expliciter la matrice M.
 - **3.2.*** Montrer que 1 est valeur propre de la matrice M et déterminer le sous-espace propre associé.

3.3. En déduire tous les polynômes P de $\mathbb{R}_2[X]$ vérifiant : $P(X) = P(0) + P(1)X + P(2)X^2$.

4. On revient au cas général.

- **4.1.** Montrer que M est inversible. Calculer son inverse. (On pourra utiliser la question 2).
- **4.2.** Établir la relation : $\sum_{i=1}^{n} L_i = 1.$
- **4.3.** Montrer que l'on a : $\sum_{j=1}^{n} m_{1j} = 1$.

Montrer ensuite que pour tout $i \in [2, n]$,

$$\sum_{j=1}^{n} m_{ij} = 0.$$

- **4.4.** Lorsque $a_1 = 1$, déterminer la somme des coefficients de chaque colonne de M.
- 5. Dans cette question, on suppose que $n\geqslant 4$ et soit u l'endomorphisme de E défini par :

$$\forall P \in E, \ u(P) = Q$$

avec
$$Q(X) = P(0)L_1(X) + P(1)L_2(X) + P(2)L_3(X)$$
.

- **5.1.** Déterminer Ker(u) et Im(u). Sont-ils supplémentaires?
- **5.2.*** Déterminer les éléments propres de u et caractériser géométriquement u.