Sixième devoir à la maison

Sous-algèbres [CS19]

Dans cet exercice, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E est un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

On dit qu'un sous-ensemble \mathcal{A} de $\mathcal{L}(E)$ est une sous-algèbre de $\mathcal{L}(E)$ si \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$, stable pour la composition, c'est-à-dire tel que $u \circ v$ appartient à \mathcal{A} quels que soient les éléments u et v de \mathcal{A} . (Remarquer qu'on ne demande pas que Id_E appartienne à \mathcal{A} .)

Une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est dite diagonalisable s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ soit diagonale pour tout u de \mathcal{A} .

On dit qu'une partie \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est une sousalgèbre de $\mathcal{M}_n(\mathbb{K})$ si \mathcal{A} est un sous-espace vectoriel stable pour le produit matriciel. Une sous-algèbre \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable s'il existe $P \in GL_n(\mathbb{K})$ telle que pour toute matrice M de \mathcal{A} , $P^{-1}MP$ soit diagonale.

On désigne par $S_n(\mathbb{K})$ (respectivement $A_n(\mathbb{K})$) l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{K})$ (respectivement antisymétriques). On désigne par $T_n(\mathbb{K})$ (respectivement $T_n^+(\mathbb{K})$) le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices triangulaires supérieures (respectivement des matrices triangulaires supérieures à coefficients diagonaux nuls).

A – Exemples de sous-algèbres de $\mathcal{M}_n(\mathbb{K})$

- **Q 1.** Les sous-ensembles $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- **Q 2.** Les sous-ensembles $S_2(\mathbb{K})$ et $A_2(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_2(\mathbb{K})$?
- **Q 3.** On suppose $n \ge 3$. Les sous-ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?

B – Exemples de sous-algèbres de $\mathcal{L}(E)$

Soit F un sous-espace vectoriel de E de dimension p et \mathcal{A}_F l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire $\mathcal{A}_F = \{u \in \mathcal{L}(E) \mid u(F) \subset F\}$.

- **Q 4.** Montrer que A_F est une sous-algèbre de $\mathcal{L}(E)$.
- **Q 5.** Montrer que dim $A_F = n^2 pn + p^2$.

On pourra considérer une base de E dans laquelle la matrice de tout élément de \mathcal{A}_F est triangulaire par blocs.

Q 6. Déterminer
$$\max_{1 \leq p \leq n-1} (n^2 - pn + p^2)$$
.

C – Exemples de sous-algèbres de $\mathcal{M}_2(\mathbb{K})$ diagonalisables et non diagonalisables

Soit $\Gamma(\mathbb{K})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $(a,b) \in \mathbb{K}^2$.

- **Q 7.** Montrer que $\Gamma(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_2(\mathbb{K})$.
- **Q 8.*** Montrer que $\Gamma(\mathbb{R})$ n'est pas une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{R})$.
- **Q 9.*** Montrer que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est diagonalisable sur \mathbb{C} . En déduire que $\Gamma(\mathbb{C})$ est une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{C})$.